Сигналы в шинах процессора

Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Сигналы в шинах процессораКомпьютерная Энциклопедия

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

Видео:Микро 80. Процессор. #1Скачать

Микро 80. Процессор. #1

Ввод-вывод

Видео:Системная шина процессораСкачать

Системная шина процессора

Описание сигналов шины

OSC: Генератор. Высокочастотные импульсы с периодом 70 нс(14.31818 МГц).

CLOCK : Системная частота (от процессора).

RESET DRV : Этот сигнал используется для сброса или инициализации системной логики при включении питания или при низком уровне напряжения на линии. Он синхронизирован с задним фронтом CLOCK и имеет активный высокий уровень (от процессора ).

SA0-SA19: Биты адреса с 0 по 19. Эти линии используются для адресации памяти и устройств ввода/вывода в системе. 20 адресных линий позволяют адресовать до 1 Мбайта памяти. SA0 — это младший значащий разряд, а SA19 — старший значащий разряд. Сигналы генерируются либо процессором или устройством ПДП. Они имеют активный высокий уровень. (от процессора ).

SD0-SD15: Биты данных с 0 по 15. Эти сигналы служат для передачи данных между процессором, памятью и внешними устройствами. D0 — это младший разряд, а D15- старший. Они имеют активный высокий уровень (двунаправлен).

BALE :Разрешение селекции адреса. Этот сигнал вырабатывается контроллером шины 82288 и используется на системной плате для защелкивания верного значения адреса от процессора. Он доступен на канале ввода/вывода как индикатор того, что значение адреса на магистрали верное (если используется вместе с AEN). Адрес защелкивается по заднему фронту сигнала (двунаправлен).

I/ O CH CK: Проверка канала. Этот сигнал обеспечивает процессор информацией об ошибках четности памяти или внешних устройств в канале. Когда этот сигнал переходит в низкое состояние, регистрируется ошибка четности (в процессор).

I /O CHRDY : Готовность канала. Этот сигнал, обычно высокий, — переводится в низкое состояние памятью или внешним устройством для продления цикла обращения. Он дает возможность с минимальными затратами присоединять к системе устройства с низким быстродействием. Любое медленное устройство, используя этот сигнал, должно держать его в низком состоянии до тех пор, пока оно не проведет операцию распознавания адреса и не выполнит команду чтения или записи. Однако этот сигнал не должен оставаться в низком состоянии дольше 10 циклов синхронизации системы. Цикл обращения к памяти или внешнему уст-ройству увеличивается на целое число циклов синхронизации (в процессор).

IRQ3- IRQ15: Запрос на прерывание 3-15. Эти сигналы используются для передачи сообщения процессору о том, что устройство требует обслуживания. Они имеют разный приоритет. IRQ3 — с наивысшим приоритетом, а IRQ15 — с низшим. Запрос на прерывание вырабатывается при переходе сигнала из низкого состояния в высокое и удержании его до распознавания процессором (в процессор ).

IOR : Команда чтения из устройства. Данный сигнал указывает внешнему устройству на необходимость выставить свои данные на шину данных. Он может вырабатываться процессором или устройством ПДП. Активный уровень сигнала — низкий (от процессора ).

IOW: Команда записи в устройство. Этот сигнал сообщает устройству о необходимости ввода данных с магистрали. Он может вырабатываться как процессором, так и внешним устройством. Активный уровень сигнала — низкий (от процессора ).

SMEMR: Команда чтения памяти из пространства 1 Мбайт. Этот сигнал указывает памяти, что она должна выставить свои данные на шину. Он может вырабатываться как процессором, так и устройством ПДП. Активный уровень сигнала — низкий (от процессора ).

SMEMW: Команда записи в память из пространства 1 Мбайт. Данный сигнал указывает памяти на необходимость прочитать данные, выставленные на шину данных. Он может вырабатываться как процессором, так и устройством ПДП . Активный уровень сигнала -низкий (от процессора ).

MEMR : Команда чтения памяти: Этот сигнал указывает памяти, что она должна выставить свои данные на шину. Он может вырабатываться как процессором, так и устройством ПДП. Активный уровень сигнала — низкий (от процессора ).

MEMW: Команда записи в память. Данный сигнал указывает памяти на необходимость прочитать данные, выставленные на шину данных. Он может вырабатываться как процессором, так и устройством ПДП. Активный уровень сигнала — низкий (от процессора ).

Читайте также: Шины производства япония r14

D RQ0-DRQ3 DRQ5-DRQ7: Запрос ПДП 0-7. Данные сигналы являются асинхронными запросами канала периферийными устройствами для выполнения операций ПДП. Они имеют различный приоритет. DRQ7 — низший, а DRQ0 — высший. Запрос генерируется переводом соответствующего сигнала в активное (высокое) состояние. Сигнал должен удерживаться в высоком состоянии до тех пор, пока не станет активной соответствующая линия DACK (в процессор).

DACK0 — DACK7: Подтверждение ПДП 0-7. Эти сигналы используются для ответа на соответствующие запросы ПДП (0-7). Они имеют низкий активный уровень (от процессора).

AEN: Разрешение адреса. Данный сигнал используется для отключения процессора и других устройств от канала для проведения цикла ПДП. Когда этот сигнал активен (высокий), контроллер ПДП получает шину адреса, шину данных, а также линии чтения и записи (от процессора).

T/C: Счетчик завершения. На этой линии появляется импульс, когда достигнуто состояние счетчика завершения какого-либо устройства ПДП (от процессора).

REFRESH: Запрос на регенерацию динамической памяти (от процессора).

LA17-LA23: Незащелкиваемые адресные линии А17-А23 (двунаправлен).

SBHE: Показывает что старший байт данных находится на старшей шине данных SD8-SD15 (двунаправлен).

0WS: Сигнал показывает процессору что текущий цикл шины может быть выполнен без дополнительных тактов ожидания (в процессор).

MASTER: Сигнал перехвата управления внешним устройством системной магистрали (в процессор).

MEM CS16 : Сигнал, подтверждающий то, что процессор может работать с этой памятью 16-разрядными словами без побайтовой распаковки (в процессор).

IO CS16: Аналогично, только с устройствами ввода/вывода (в процессор).

Помимо описанных сигналов, в канале ввода/вывода имеется ряд линий питания для устройств, подключенных к каналу.

Видео:КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМСкачать

КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМ

Сигналы в шинах процессораКомпьютерная Энциклопедия

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

Видео:Как работает LIN шина автомобиля. K-Line L-Line шины данных. Лин шина автомобиля. Lin-bus networkСкачать

Как работает LIN шина автомобиля. K-Line L-Line шины данных. Лин шина автомобиля. Lin-bus network

Системные платы

Видео:Процесс запуска материнской платы. Power on SequenceСкачать

Процесс запуска материнской платы. Power on Sequence

Шина процессора

Видео:Принцип работы процессора на уровне ядраСкачать

Принцип работы процессора на уровне ядра


Общие сведения о шине процессора

Шина процессора — соединяет процессор с северным мостом или контроллером памяти MCH. Она работает на частотах 66–200 МГц и используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Схема взаимодействия шин в типичном компьютере на базе процессора Pentium (Socket 7) показано на рисунке.

На этом рисунке четко видна трехуровневая архитектура, в которой на самом верхнем уровне иерархии находится шина процессора, далее следует шина PCI и за ней шина ISA. Большинство компонентов системы подключается к одной из этих трех шин.

В системах, созданных на основе процессоров Socket 7, внешняя кэш-память второго уровня установлена на системной плате и соединена с шиной процессора, которая работает на частоте системной платы (обычно от 66 до 100 МГц). Таким образом, при появлении процессоров Socket 7 с более высокой тактовой частотой рабочая частота кэш-памяти осталась равной сравнительно низкой частоте системной платы. Например, в наиболее быстродействующих системах Intel Socket 7 частота процессора равна 233 МГц, а частота шины процессора при множителе 3,5х достигает только 66 МГц. Следовательно, кэш-память второго уровня также работает на частоте 66 МГц. Возьмем, например, систему Socket 7, использующую процессоры AMD K6-2 550, работающие на частоте 550 МГц: при множителе 5,5х ч астота шины процессора равна 100 МГц. Следовательно, в этих системах частота кэш-памяти второго уровня достигает только 100 МГц.

Проблема медленной кэш-памяти второго уровня была решена в процессорах класса P6, таких как Pentium Pro, Pentium II, Celeron, Pentium III, а также AMD Athlon и Duron. В этих процессорах использовались разъемы Socket 8, Slot 1, Slot 2, Slot A, Socket A или Socket 370. Кроме того, кэш-память второго уровня была перенесена с системной платы непосредственно в процессор и соединена с ним с помощью встроенной шины. Теперь эта шина стала называться шиной переднего плана (Front-Side Bus — FSB), однако я, согласно устоявшейся традиции, продолжаю называть ее шиной процессора.

Читайте также: Ошиповка зимних шин в обнинске

Сигналы в шинах процессора

Включение кэш-памяти второго уровня в процессор позволило значительно повысить ее скорость. В современных процессорах кэш-память расположена непосредственно в кристалле процессора, т.е. работает с частотой процессора. В более ранних версиях кэш-память второгоуровня находилась в отдельной микросхеме, интегрированной в корпус процессора, и работала с частотой, равной 1/2, 2/5 или 1/3 частоты процессора. Однако даже в этом случае скорость интегрированной кэш-памяти была значительно выше, чем скорость внешнего кэша, ограниченного частотой системной платы Socket 7.

В системах Slot 1 кэш-память второго уровня была встроена в процессор, но работала только на его половинной частоте. Повышение частоты шины процессора с 66 до 100 МГц привело к увеличению пропускной способности до 800 Мбайт/с. Следует отметить, что в большинство систем была включена поддержка AGP. Частота стандартного интерфейса AGP равна 66 МГц (т.е. вдвое больше скорости PCI), но большинство систем поддерживают порт AGP 2x, быстродействие которого вдвое выше стандартного AGP, что приводит к увеличению пропускной способности до 533 Мбайт/с. Кроме того, в этих системах обычно использовались модули памяти PC100 SDRAM DIMM, скорость передачи данных которых равна 800 Мбайт/с.

В системах Pentium III и Celeron разъем Slot 1 уступил место гнезду Socket 370. Это было связано главным образом с тем, что более современные процессоры включают в себя встроенную кэш-память второго уровня (работающую на полной частоте ядра), а значит, исчезла потребность в дорогом корпусе, содержащем несколько микросхем. Скорость шины процессора увеличилась до 133 МГц, что повлекло за собой повышение пропускной способности до 1066 Мбайт/с. В современных системах используется уже AGP 4x со скоростью передачи данных 1066 Мбайт/с.

Сигналы в шинах процессора

Шина процессора на основе hub-архитектуры

Обратите внимание на hub-архитектуру Intel, используемую вместо традиционной архитектуры “северный/южный мост”. В этой конструкции основное соединение между компонентами набора микросхем перенесено в выделенный hub-интерфейс со скоростью передачи данных 266 Мбайт/с (вдвое больше, чем у шины PCI), что позволило устройствам PCI использовать полную, без учета южного моста, пропускную способность шины PCI. Кроме того, микросхема Flash ROM BIOS, называемая теперь Firmware Hub, соединяется с системой через шину LPC. Как уже отмечалось, в архитектуре “северный/южный мост” для этого использовалась микросхема Super I/O. В большинстве систем для соединения микросхемы Super I/O вместо шины ISA теперь используется шина LPC. При этом hub-архитектура позволяет отказаться от использования Super I/O. Порты, поддерживаемые микросхемой Super I/O, называются традиционными (legacy), поэтому конструкция без Super I/O получила название нетрадиционной (legacy-free) системы. В такой системе устройства, использующие стандартные порты, должны быть подсоединены к компьютеру с помощью шины USB. В этих системах обычно используются два контроллера и до четырех общих портов (дополнительные порты могут быть подключены к узлам USB).

В системах, созданных на базе процессоров AMD, применена конструкция Socket A, в которой используются более быстрые по сравнению с Socket 370 процессор и шины памяти, но все еще сохраняется конструкция “северный/южный мост”. Обратите внимание на быстродействующую шину процессора, частота которой достигает 333 МГц (пропускная способность — 2664 Мбайт/с), а также на используемые модули памяти DDR SDRAM DIMM, которые поддерживают такую же пропускную способность (т.е. 2664 Мбайт/с). Также следует заметить, что большинство южных мостов включает в себя функции, свойственные микросхемам Super I/O. Эти микросхемы получили название Super South Bridge (суперъюжный мост).

Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является шина процессора с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина. Также обратите внимание на двухканальные модули PC3200 (DDR400), пропускная способность которых (3200 Мбайт/с) соответствует пропускной способности шины процессора, что позволяет максимально повысить производительность системы. В более производительных системах, включающих в себя шину с пропускной способностью 6400 Мбайт/с, используются двухканальные модули DDR400 с тактовой частотой 400 МГц, благодаря чему общая пропускная способность шины памяти достигает 6400 Мбайт/с. Процессоры с частотой шины 533 МГц могут использовать парные модули памяти (PC2100/DDR266 или PC2700/DDR333) в двухканальном режиме для достижения пропускной способности шины памяти 4266 Мбайт/с. Соответствие пропускной способности шины памяти рабочим параметрам шины процессора является условием оптимальной работы.

Читайте также: Как установить датчики давления в шинах kia

Процессор Athlon 64, независимо от типа гнезда (Socket 754, Socket 939 или Socket 940), использует высокоскоростную архитектуру HyperTransport для взаимодействия с северным мостом или микросхемой AGP Graphics Tunnel. Первые наборы микросхем для процессоров Athlon 64 использовали версию шины HyperTransport с параметрами 16 бит/800 МГц, однако последующие модели, предназначенные для поддержки процессоров Athlon 64 и Athlon 64 FX в исполнении Socket 939, используют более быструю версию шины HyperTransport с параметрами 16 бит/1 ГГц.

Наиболее заметным отличием архитектуры Athlon 64 от всех остальных архитектур ПК является размещение контроллера памяти не в микросхеме северного моста (или микросхеме MCH/GMCH), а в самом процессоре. Процессоры Athlon 64/FX/Opteron оснащены встроенным контроллером памяти. Благодаря этому исключаются многие “узкие места”, связанные с внешним контроллером памяти, что положительно сказывается на общем быстродействии системы. Главный недостаток этого подхода состоит в том, что для добавления поддержки новых технологий, например памяти DDR2, придется изменять архитектуру процессора.

Поскольку шина процессора должна обмениваться информацией с процессором с максимально возможной скоростью, в компьютере она функционирует намного быстрее любой другой шины. Сигнальные линии (линии электрической связи), представляющие шину, предназначены для передачи данных, адресов и сигналов управления между отдельными компонентами компьютера. Большинство процессоров Pentium имеют 64-разрядную шину данных, поэтому за один цикл по шине процессора передается 64 бит данных (8 байт).

Сигналы в шинах процессора

Тактовая частота , используемая для передачи данных по шине процессора, соответствует его внешней частоте. Это следует учитывать, поскольку в большинстве процессоров внутренняя тактовая частота, определяющая скорость работы внутренних блоков, может превышать внешнюю. Например, процессор AMD Athlon 64 3800+ работает с внутренней тактовой частотой 2,4 ГГц, однако внешняя частота составляет всего 400 МГц, в то время как процессор Pentium 4 с внутренней частотой 3,4 ГГц имеет внешнюю частоту, равную 800 МГц. В новых системах реальная частота процессора зависит от множителя шины процессора (2x, 2,5x, 3x и выше). Шина FSB, подключенная к процессору, по каждой линии данных может передавать один бит данных в течение одного или двух периодов тактовой частоты. Таким образом, в компьютерах с современными процессорами за один такт передается 64 бит.

Пропускная способность шины процессора

Для определения скорости передачи данных по шине процессора необходимо умножить разрядность шины данных (64 бит, или 8 байт, для Celeron/Pentium III/4 или Athlon/Duron/ Athlon XP/Athlon 64) на тактовую частоту шины (она равна базовой (внешней) тактовой частоте процессора).

Сигналы в шинах процессора

Например, при использовании процессора Pentium 4 с тактовой частотой 3,6 ГГц, установленного на системной плате, частота которой равна 800 МГц, максимальная мгновенная скорость передачи данных будет достигать примерно 6400 Мбайт/с. Этот результат можно получить, используя следующую формулу:
800 МГц × 8 байт (64 бит) = 6400 Мбайт/с.

Для более медленной системы Pentium 4:
533,33 МГц × 8 байт (64 бит) = 4266 Мбайт/с;
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с.

Для системы Athlon XP (Socket A) получится следующее:
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с;
333 МГц × 8 байт (64 бит) = 2667 Мбайт/с;
266,66 МГц × 8 байт (64 бит) = 2133 Мбайт/с.

Для системы Pentium III (Socket 370):
133,33 МГц × 8 байт (64 бит) = 1066 Мбайт/с;
100 МГц × 8 байт (64 бит) = 800 Мбайт/с.

Максимальную скорость передачи данных называют также пропускной способностью шины (bandwidth) процессора.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле


    📹 Видео

    Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать

    Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

    Как работает процессор: частоты, шины и т.д.Скачать

    Как работает процессор: частоты, шины и т.д.

    Частота процессора, множитель и системная шинаСкачать

    Частота процессора, множитель и системная шина

    Как разогнать процессор и память? Гоним по шине и множителю.Скачать

    Как разогнать процессор и память? Гоним по шине и множителю.

    Просто о сложном - тактовая частота процессора (CPU Clock)Скачать

    Просто о сложном - тактовая частота процессора (CPU Clock)

    Что означает маркировка на шинах! Значение цифр и букв на резине.Скачать

    Что означает маркировка на шинах! Значение цифр и букв на резине.

    Разгон AMD FX по шине или по множителю?!Скачать

    Разгон AMD FX по шине или по множителю?!

    Что означает МАРКИРОВКА НА ШИНАХ / Значение всех цифр и букв на резинеСкачать

    Что означает МАРКИРОВКА НА ШИНАХ / Значение всех цифр и букв на резине

    Разгон кольцевой шины и кэша L3 процессораСкачать

    Разгон кольцевой шины и кэша L3 процессора

    Лекция 311. Шина USB - кодирование сигналовСкачать

    Лекция 311. Шина USB - кодирование сигналов

    Как проверить микроконтроллер, процессор?Скачать

    Как проверить микроконтроллер, процессор?

    Частота процессора или частота системной шины?Скачать

    Частота процессора или частота системной шины?

    Разгон частоты шины на китайском LGA2011 с помощью SetFSBСкачать

    Разгон частоты шины на китайском LGA2011 с помощью SetFSB
Поделиться или сохранить к себе:
Технарь знаток