2017-12-15
Как направлена сила трения, действующая на ведущие колеса автомобиля, при разгоне (а), торможении (б), повороте (в)? Равна ли эта сила своему максимальному значению $\mu N$ ($\mu$ — коэффициент трения, $N$ — сила реакции полотна дороги), и если да, то в каких ситуациях? А в каких ситуациях нет? Хорошо это, или плохо, если сила трения достигает своего максимального значения? Почему? Какой автомобиль может развивать на дороге большую мощность — передне- или заднеприводный — при одинаковой мощности мотора и почему? Считать, что масса автомобиля распределена равномерно, и его центр тяжести находится посередине.
Обсудим сначала вопрос о роли силы трения в движении машины. Представим себе, что водитель машины, стоящей на гладком-гладком льду (сила трения между колесами и льдом отсутствует), нажимает на педаль газа. Что будет происходить? Ясно, что машина ехать не будет: колеса будут вращаться, но будут пробуксовывать относительно льда — ведь трения-то нет. Причем это будет происходить независимо от мощности двигателя. А это значит, что для того, чтобы мощность двигателя использовать, нужно трение — без него машина не поедет.
Что же происходит, когда сила трения есть. Пусть сначала она очень маленькая, а водитель стоящей машины снова нажимает на педаль газа? Колеса (речь сейчас идет о ведущих колесах автомобиля, допустим это передние колеса) проскальзывают относительно поверхности (трение — маленькое), вращаясь так, как показано на рисунке, но при этом возникает сила трения, действующая со стороны дороги на колеса, направленная вперед по ходу движения машины. Она и толкает машину вперед.
Видео:Важность скольжения шинСкачать
Если сила трения большая, то при плавном нажатии на педаль газа колеса начинают вращаться, и как бы отталкиваются от шероховатостей дороги, используя силу трения, которая направлена вперед. При этом колеса не проскальзывают, а катятся по дороге, так, что нижняя точка колеса не перемещается относительно полотна. Иногда и при большом трении колеса пробуксовывают. Наверняка, вы сталкивались с ситуацией, когда какой-нибудь «сумасшедший водитель» так трогается при включении зеленого сигнала светофора, что колеса «визжат», а на дороге остается черный след из-за скольжения резины по асфальту. Итак, в экстренной ситуации (при резком торможении или трогании с побуксовкой) колеса скользят относительно дороги, в обычных случаях (когда на дороге не остается черного следа от стирающихся покрышек) колесо не скользит, а только катится по дороге.
Итак, если машина едет равномерно, то колеса не скользят по дороге, а катятся по ней так, что нижняя точка колеса покоится (а не проскальзывает) относительно дороги. Как в этом случае направлена сила трения? Сказать, что противоположно скорости машины — неверно, ведь говоря так про силу трения, подразумевают случай скольжения тела относительно поверхности, а сейчас у нас скольжения колес относительно дороги нет. Сила трения в этом случае может быть направлена как угодно, и мы сами определяем ее направление. И вот как это происходит.
Представим себе, что нет никаких препятствующих движению машины факторов. Тогда машина движется по инерции, колеса вращаются по инерции, причем угловая скорость вращения колес связана со скоростью движения машины. Установим эту связь. Пусть колесо движется со скоростью $v$ и вращается так, что нижняя точка колеса не проскальзывает относительно дороги. Перейдем в систему отсчета, связанную с центром колеса. В ней колесо как целое не движется, а только вращается, а земля движется назад со скоростью $v$. Но поскольку колесо не проскальзывает относительно земли, то его нижняя точка имеет такую же скорость как земля. А значит, и все точки поверхности колеса вращаются относительно центра со скоростью $v$ и, следовательно, имеют угловую скорость $\omega = v / R$, где R — радиус колеса. Переходя теперь назад в систему отсчета, связанную с землей, заключаем, что при отсутствии проскальзывания между нижней точкой колеса и дорогой угловая скорость колеса $\omega = v / R$, а все точки поверхности имеют разные скорости относительно земли: например, нижняя точка — нулевую, верхняя $2v$ и т. д.
А пусть водитель при таком движении машины нажимает на педаль газа. Он заставляет колесо вращаться быстрее, чем нужно при данной скорости машины. Колесо стремится проскользнуть назад, возникает сила трения, направленная вперед, которая и разгоняет машину (машина как бы отталкивается от шероховатостей дороги, используя силу трения). Если водитель нажимает на педаль тормоза, колесо стремится вращаться медленнее, чем нужно при данной скорости машины. Возникает сила трения, направленная назад, которая тормозит машину. Если водитель поворачивает колеса машины, возникает сила трения, направленная в сторону поворота, которая машину поворачивает. Таким образом, управление машиной — разгоном, торможением, поворотом — основано на правильном использовании силы трения, причем, конечно, подавляющее большинство водителей об этом даже не догадываются.
Видео:Сила трения покоя и сила трения скольженияСкачать
Читайте также: Летние шины экспресс шина
Ответим теперь на вопрос: равна ли эта сила своему максимальному значению? Вообще говоря, нет, поскольку нет скольжения колеса относительно дороги, а сила трения равна максимальному значению при скольжении. В покое сила трения может принимать любые значения от нуля до максимального $\mu N$, где $\mu$ — коэффициент трения; $N$ — сила реакции опоры. Поэтому если мы разгоняемся (сила трения направлена вперед), но хотим увеличить темп разгона, мы сильнее нажимаем на педаль газа, и увеличиваем силу трения. Аналогично, если мы тормозим (сила трения направлена назад), но хотим увеличить степень торможения, мы сильнее нажимаем на тормоз и увеличиваем силу трения. Но ясно, что ее можно увеличить и в том и в другом случае, если она не была максимальной! Таким образом, для управления машиной сила трения не должна равняться максимальному значению, и эту разность мы используем для совершения тех или иных маневров. И любой водитель (даже если он ничего не знает про силу трения, а таких, конечно, подавляющее большинство) интуитивно чувствует, есть ли у него резерв силы трения, «далеко» ли машина от пробуксовки, и есть ли возможность ей управлять.
Тем не менее, есть одна ситуация, когда сила трения равна своему максимальному значению. Эта ситуация называется заносом. Пусть водитель резко затормозил на скользкой дороге. Машина начинает скользить по дороге, это состояние движения и называется заносом. В этом случае сила трения направлена противоположно скорости (назад) и равна своему максимальному значению. Это ситуация очень опасна, ведь машина АБСОЛЮТНО неуправляема. Мы не можем повернуть (хоть как-то, хоть чуть-чуть), ведь для поворота нам нужна сила трения, направленная в сторону поворота, а в нашем распоряжении ее нет — сила трения максимальна и направлена назад. Мы не можем увеличить скорость торможения (невозможно увеличить силу трения — она и так максимальна), не можем (даже если бы мы захотели этого в такой ситуации) ускориться. Мы не можем ничего! Ситуация осложняется еще и тем, что в состоянии заноса машину никто не «держит» на дороге. Почему машина в обычных условиях не съезжает в кювет, ведь полотно дороги всегда делается покатым к обочинам, чтобы стекала вода? Ее держит сила трения, а вот если машина скользит (занос) сила трения направлена противоположно скорости и никак иначе. Поэтому любое «боковое» возмущение — покатость дороги, небольшой камень под одним из колес — могут развернуть или сбросить машину на обочину. Никогда не допускайте заноса1.
Теперь сравним мощность, которую могут развивать на дороге передне- и заднеприводной автомобили с одинаковым мотором. Очевидно, что мощность, которую может развивать автомобиль на дороге, зависит не только от его двигателя, но и от того, как автомобиль «использует» силу трения. Действительно, в отсутствие силы трения автомобиль стоял бы на месте (с вращающимися колесами) независимо от мощности двигателя (вращающего эти колеса). Докажем, что заднеприводные автомобили мощнее переднеприводных при одинаковой мощности мотора и оценим отношение мощностей, которые может развивать двигатель, разгоняя машину на дороге (при условии, что мощность самого двигателя может быть очень большой).
Разгоняет автомобиль сила трения, действующая на ведущие колеса, а она не может превышать значения $\mu N$ ($N$ — сила реакции). Поэтому чем больше сила реакции, тем больших значений может достигнуть разгоняющая сила трения (а нажатие на педаль газа в ситуации, когда сила трения достигла максимума, приведет только к проскальзыванию и к заносу, но не к увеличению мощности, которую развивает двигатель). Найдем силы реакции для задних и передних колес машины. Силы, действующие на машину при разгоне, показаны на рисунках (на правом — для заднеприводной, на левом — для переднеприводной). На машину действуют: сила тяжести, силы реакции и сила трения. Поскольку машина движется поступательно, сумма моментов всех сил относительно ее центра тяжести равна нулю. Поэтому, если центр тяжести машины находится точно посередине машины, расстояние между задними и передними колесами $l$, а высота центра тяжести над дорогой $h$, условие равенства нулю суммы моментов относительно центра тяжести дает (при условии, что машина движется, развивая максимальную мощность на максимуме силы трения):
Видео:Физика С какой наибольшей скоростью автомобиль может проходить по горизонтальной дороге поворотСкачать
$N_ \frac = N_ \frac + F_ h = N_ \frac + \mu N_ h$, (1)
$N_ \frac = N_ \frac + F_ h = N_ \frac + \mu N_ h$, (2)
где $\mu$ — коэффициент трения. Учитывая, что и в том и в другом случае $N_ + N_ = mg$, из (1) найдем силу реакции для передних колес в случае переднеприводного автомобиля
и из (2) силу реакции задних колес в случае заднего привода
(здесь (пп) и (зп) — передний и задний привод). Отсюда находим отношение сил трения, разгоняющих передне- и заднеприводную машину, и, следовательно, отношение мощностей, которые может развивать на дороге их двигатель
📺 Видео
Силы трения. 7 класс.Скачать
Урок 39 (осн). Сила трения. Коэффициент тренияСкачать
Сила тренияСкачать
СИЛА ТРЕНИЯ | коэффициент трения | ДИНАМИКАСкачать
Сравнение сил трения, скольжения и каченияСкачать
Силы трения между соприкасающимися поверхностями твердых тел | Физика 10 класс #15 | ИнфоурокСкачать
Коэффициент тренияСкачать
Зависимость силы трения от свойств соприкасающихся поверхностейСкачать
Трение каченияСкачать
Опыт по Физике на тему "Сила Трения"Скачать
Определение работы силы тренияСкачать
Сила трения часть 2Скачать
Физика ЕГЭ 2020.Радиус поворота Задание 25 #4Скачать
Эффекты силы трения, или Как удержать слона?Скачать
Сила трения. Опыт по физикеСкачать
Сила трения (для чайников)Скачать