Система автоматического регулирования частоты вращения коленчатого вала

Система автоматического регулирования частоты вращения коленчатого вала

Регулятор частоты вращения коленчатого вала изменяет подачу топлива в зависимости от нагрузки двигателя, поддерживая заданную водителем частоту вращения коленчатого вала. Регулятор называется все режимным, так как он может поддерживать любую заданную водителем частоту вращения коленчатого вала и ограничивать максимальную. Ограничение максимальной частоты вращения коленчатого вала вызвано необходимостью предохранить детали дизеля от быстрого изнашивания и чрезмерных нагрузок, а ограничение малой частоты вращения — ухудшением подачи топлива и смесеобразования. Регулятор крепится к задней части корпуса ТНВД и приводится во вращение от кулачкового вала ТНВД через ускоряющие зубчатые колеса, поэтому вал регулятора вращается с большей частотой вращения, чем кулачковый вал. Это позволяет повысить чувствительность регулятора к изменению нагрузки.

Видео:Регулятор частоты вращения часть 1.Скачать

Регулятор частоты вращения часть 1.

Регулятор частоты вращения состоит из:

корпуса с крышкой, смотрового люка, зубчатого колеса привода, вала регулятора с ведомым зубчатым колесом и державкой грузов (ролики грузов упираются в подвижную муфту с шарикоподшипником и пятой), рычага управления рейкой топливного насоса, который крепится на одной оси с пятой (рычаг тягой соединен одним концом с рейкой, а другим концом посредством пальца с кулисой). Скоба управления кулисой может занимать два положения: «Работа» и «Стоп». В состав регулятора также входят силовой и двуплечий рычаги управления регулятором, болты ограничения максимальной и минимальной частоты вращения коленчатого вала.
При неработающем двигателе скоба управления кулисой находится в положении «Стоп». После пуска двигателя грузы под действием центробежных сил расходятся и перемещают подвижную муфту от себя. Силовой и двуплечий рычаги поворачиваются против часовой стрелки, преодолевая усилие силовой пружины, одновременно рычаг управления рейкой перемещает рейку в сторону уменьшения подачи топлива. Перемещение рычажной системы продолжается до тех пор, пока центробежные силы грузов не уравновесятся силовой пружиной регулятора.
Необходимую частоту вращения коленчатого вала устанавливает водитель, нажимая на педаль подачи топлива. Установившаяся частота вращения коленчатого вала автоматически поддерживается регулятором следующим образом. При уменьшении нагрузки на двигатель частота вращения коленчатого вала возрастает, так как в цилиндры поступает то же количество топлива. Управления кулисой может занимать два положения: «Работа» и «Стоп». В состав регулятора также входят силовой и двуплечий рычаги управления регулятором, болты ограничения максимальной и минимальной частоты вращения коленчатого вала.

Система автоматического регулирования частоты вращения коленчатого вала

Видео:326) АВТОМАТИКА Предельный регулятор частоты вращения дизеля ( вопросы Госов и мкк )Скачать

326)  АВТОМАТИКА Предельный регулятор частоты вращения дизеля ( вопросы Госов и мкк )

Всережимный регулятор частоты вращения коленчатого вала дизеля ЯМЗ-236М;

а — устройство; б — схема работы (увеличение частоты вращения коленчатого вала);1 и 3 — зубчатые колеса; 2 — кулачковый вал топливного насоса; 4 — вал регулятора; 5 — стакан; 6 — ось грузов; 7 — державка; 8 — вал рычагов; 9 — рычаг пружины; 10 — рейка топливного насоса; 11 — тяга; 12 — стартовая пружина рычага рейки; 13 — болт ограничителя максимальной частоты вращения коленчатого вала; 14 — рычаг управления регулятором; 15 — болт регулировки минимальной частоты вращения коленчатого вала на режиме холостого хода; 16 — крышка смотрового люка; 17 — ось двуплечего рычага; 18 — двуплечий рычаг; 19 — пружина регулятора; 20, 22 и 29 — регулировочные винты; 21 — регулировочный болт; 23 — упорная пружина; 24 — серьга; 25 — корректор; 26 — рычаг; 27— рычаг управления рейкой; 28 — скоба; 30 — палец; 31 — кулиса; 32 — пята; 33 — пробка отверстия для слива масла из регулятора; 34 — подвижная муфта; 35 — груз; 36 — резиновые сухари; / — скоба кулисы в положении
«Работа»;11 — скоба кулисы в положении «Стоп».

Система автоматического регулирования частоты вращения коленчатого вала

При неработающем двигателе скоба управления кулисой находится в положении «Стоп». После пуска двигателя грузы под действием центробежных сил расходятся и перемещают подвижную муфту от себя. Силовой и двуплечий рычаги поворачиваются против часовой стрелки, преодолевая усилие силовой пружины, одновременно рычаг управления рейкой перемещает рейку в сторону уменьшения подачи топлива. Перемещение рычажной системы продолжается до тех пор, пока центробежные силы грузов не уравновесятся силовой пружиной регулятора.
Необходимую частоту вращения коленчатого вала устанавливает водитель, нажимая на педаль подачи топлива. Установившаяся частота вращения коленчатого вала автоматически поддерживается регулятором следующим образом. При уменьшении нагрузки на двигатель частота вращения коленчатого вала возрастает, так как в цилиндры поступает то же количество топлива. Грузы регулятора, расходясь на некоторый угол, перемещают рычажную систему в сторону, соответствующую уменьшению подачи топлива и восстанавливают величину частоты вращения коленчатого вала до ±30 мин»1
При увеличении нагрузки на двигатель частота вращения коленчатого вала снижается. Центробежные силы грузов уменьшаются, грузы сходятся, рычажная система под действием силовой пружины регулятора перемещает рейку топливного насоса в сторону увеличения подачи топлива до восстановления заданного скоростного режима (перемещению рейки в сторону увеличения подачи топлива также способствует и стартовая пружина рычага рейки).

Видео:Регулирование частоты и мощности. Часть 1. Баланс мощностей. Автоматический регулятор скорости.Скачать

Регулирование частоты и мощности. Часть 1. Баланс мощностей. Автоматический регулятор скорости.

АВТОМАТИЧЕСКОЕ РЕГУЛИРОВАНИЕ

ДЛЯ ЧЕГО НУЖНЫ РЕГУЛЯТОРЫ?

Не исключена возможность, что в процессе работы по каким-либо причинам нагрузка на дизель упадет сразу до нуля. В этом случае, если не иметь специальных устройств, произойдет авария: частота вращения коленчатого вала дизеля, в цилиндры которого продолжает поступать топливо в прежнем количестве, может превысить допустимое значение. В результате значительно увеличатся центробежные силы вращающихся деталей, силы инерции возвратно-поступательных масс и двигатель может разрушиться.
Ясно, что машинист физически не успеет проследить за таким быстрым изменением нагрузки, В этом исключительном случае надо человека заменить автоматом, что и предусмотрено. Регулятор безопасности (предельный регулятор) дизелей 10Д100 и 2Д100 при увеличении частоты вращения коленчатого вала выше установленной, т. е. при 940—980 об/мин, воздействует на рычаг выключения подачи топлива, который переводит рейки топливных насосов в положение нулевой подачи. На дизелях 11Д45А выключается подача топлива при 840—870 об/мин, на 2Д70 — при 1080—1120 об/мин, а на 5Д49 — при 1150—1200 об/мин. Предельный регулятор дизелей Д50, 2Д50М и ПД1М при 840—870 об/мин приводит в действие механизм, который стопорит толкатели топливных насосов, удерживая их в верхнем крайнем положении.
Предельный регулятор, как показывает само название, решает только одну задачу — совершенно прекращает доступ топлива в цилиндры дизеля, когда частота вращения коленчатого вала превысит допустимую величину. Чтобы решить другую не менее важную задачу — поддерживать постоянную частоту вращения независимо от изменения нагрузки, кроме регулятора безопасности, на дизелях устанавливают регулятор частоты вращения.
Зададим себе такой вопрос: что является нагрузкой для тепловозного дизеля? Нагрузка дизеля — это мощность, которую от него отбирают передача (электрическая, гидравлическая и т. п.) к движущим колесам тепловоза и вспомогательные агрегаты (поездной компрессор, вентилятор холодильника дизеля и др.).
Время проследования поезда по участку задается графиком движения. Для того чтобы выполнить график, тепловоз должен развивать достаточную мощность, которая зависит от частоты вращения вала дизеля и количества топлива, подаваемого в цилиндры.
Частота вращения вала дизеля устанавливается машинистом тепловоза с помощью специального устройства — контроллера. В зависимости от массы поезда, трудности профиля и заданной скорости движения по участку машинист устанавливает в то или иное положение рукоятку контроллера. В дальнейшем отбор мощности, соответствующей заданной контроллером частоте вращения вала дизеля, должен автоматически обеспечиваться передачей тепловоза.
Однако существующие на тепловозах передачи не могут полностью обеспечивать постоянство нагрузки на дизель. В связи с этим при изменении скорости движения нагрузка меняется. Кроме того, даже при постоянной подаче топлива дизель будет развивать различную мощность, потому что к. п. д. его изменяется в зависимости от условий окружающей среды, температуры масла, воды, качества работы отдельных его узлов (например, топливной аппаратуры) и т. д. В процессе работы отдельные цилиндры могут выключиться из-за, например, заклинивания плунжерной пары топливного насоса и т. п.
Итак, представим себе, что в цилиндры дизеля впрыскивается топливными насосами постоянное количество топлива на каждый рабочий цикл. Тогда с увеличением нагрузки на дизель или снижением развиваемой мощности частота вращения коленчатого вала упадет, а при уменьшении нагрузки или увеличении мощности дизеля возрастет и даже может превзойти установленные пределы, что, как мы знаем, недопустимо.
Таким образом, частота вращения вала дизеля, имеющего постоянную подачу топлива, будет изменяться то в меньшую, то в большую сторону, что в конечном счете нарушает нормальную работу дизеля, снижает его экономичность и повышает износ деталей.
Отсюда вытекает необходимость в устройстве, которое изменяло бы подачу топлива в цилиндры согласованно с изменением нагрузки: при увеличении нагрузки увеличивало бы подачу топлива в цилиндры, а при уменьшении — соответственно уменьшало. Иными словами, нужно устройство, изменяющее мощность дизеля в соответствии с требуемой нагрузкой. Тогда частота вращения вала дизеля будет поддерживаться постоянной в установленных пределах. Эту задачу могут выполнить только автоматические устройства, так как для человека ручное регулирование подачи топлива насосами было бы утомительно и не всегда возможно.
Вот почему на тепловозных дизелях, кроме предельного регулятора, ставится регулятор частоты вращения коленчатого вала, который, реагируя на изменение частоты вращения из-за несоответствия между нагрузкой и мощностью, развиваемой дизелем, перемещает на нужную величину рейки топливных насосов без вмешательства машиниста в строгом соответствии с нагрузкой и, таким образом, поддерживает постоянной заданную частоту вращения коленчатого вала дизеля независимо от нагрузки.
На дизелях 10Д100, 11Д45, Д49, 2Д70 применяются более совершенные регуляторы: они регулируют не только частоту вращения, но и мощность дизеля. Как это достигается, мы узнаем дальше (см. с. 128), а пока рассмотрим принцип действия простейшего центробежного регулятора частоты вращения.

ПРИНЦИП РАБОТЫ ЦЕНТРОБЕЖНОГО РЕГУЛЯТОРА ПРЯМОГО ДЕЙСТВИЯ

Регулятор называется центробежным потому, что его действие основано на изменении центробежных сил, возникающих при разных значениях частоты вращения его грузов. Как известно, центробежная сила возникает при вращении любого тела (груза). В регуляторе таким вращающимся телом является траверса (диск). Диск (рис. 85) приводится во вращение через зубчатую передачу от коленчатого вала дизеля.

Рис. 85. Схема простейшего центробежного регулятора

К краям диска шарнирно прикреплены два рычага с одинаковыми грузами, по одному на каждом рычаге. Грузы вращаются вместе с диском регулятора вокруг вертикальной оси и шарнирно связаны со скользящей муфтой, которая может свободно перемещаться вверх или вниз. Весь этот узел называется измерителем частоты вращения коленчатого вала дизеля. Это исходный основной орган регулятора.
Возникает вопрос: каково назначение пружины? Пружина регулятора имеет определенную затяжку (силу предварительного сжатия). Эта сила пружины соответствует заданной частоте вращения, т. е. уравновешивается вертикальной составляющей от центробежной силы грузов. Сила затяжки (настройки) пружины задается машинистом в зависимости от профиля пути, необходимой скорости движения поезда и других причин. Если машинисту необходимо увеличить (или уменьшить) частоту вращения вала дизеля, специальный механизм сильнее (или слабее) затянет пружину. О том, как на тепловозах 2ТЭ10Л, 2ТЭ10В, ТЭП60, ТЭП70, 2ТЭ116 и др. по сигналу машиниста изменяется затяжка пружины, мы узнаем на с. 130. Когда подача топлива в цилиндры соответствует нагрузке дизеля, его коленчатый вал вращается с некоторой постоянной частотой и вся система регулятора находится в равновесии. Рассмотрим, что произойдет, если нагрузка на дизель изменится, например уменьшится. В этом случае частота вращения вала дизеля при той же подаче топлива увеличится, соответственно увеличится и частота вращения диска регулятора, а следовательно, и связанных с ним двух грузов. Грузы регулятора под влиянием центробежных сил расходятся и, преодолевая усилие пружины, поднимаются вверх, увлекая за собой муфту. Положение муфты изменяется всякий раз, когда изменяется частота вращения коленчатого вала дизеля. Иными словами, разной частоте вращения соответствует разное положение муфты регулятора. Именно при переходе муфты в новое положение регулятор выполняет свое назначение, т. е. создает силу, необходимую для перемещения реек топливных насосов. В самом деле, при уменьшении нагрузки на дизель и перемещении муфты рычаг АОВ будет воздействовать на рейки топливных насосов, вызывая поворот плунжера в сторону уменьшения подачи топлива в цилиндры дизеля: частота вращения коленчатого вала начнет уменьшаться. Это будет происходить до тех пор, пока центробежная сила грузов не уравновесится силой пружины регулятора. Благодаря такому устройству регулятора частота вращения вала дизеля при уменьшении нагрузки устанавливается всегда примерно постоянной. Наоборот, при увеличении нагрузки частота вращения коленчатого вала дизеля уменьшится, грузы регулятора сблизятся, муфта несколько опустится и рычаг АОВ, переставляя рейки топливных насосов, заставит их увеличивать подачу топлива в цилиндры до тех пор, пока снова не восстановится нарушенное равновесие.
Такой простой по устройству регулятор называется центробежным регулятором прямого действия, так как он прямо (непосредственно) воздействует на рейки топливных насосов, т, е. его рычаг жестко связан с рейкой. Основной недостаток такого регулятора состоит в том, что для мощных дизелей (в 736 кВт и более) требуется большое усилие для перемещения (перестановки) реек топливных насосов. Большая сила необходима из-за того, что масса деталей, которые нужно перемещать в процессе регулирования, достигает нескольких килограммов. Кроме того, в местах сочленения рычагов, соединяющих регулятор с топливными насосами, возникают силы сопротивления от трения деталей. Поэтому приходится создавать большую центробежную силу, а для этого необходимо значительно увеличивать размеры грузов. Это делает регулятор громоздким, уменьшает его чувствительность и, как следствие, ухудшает процесс регулирования. Такие регуляторы на тепловозах не применяются.
Чтобы избежать увеличения размеров регулятора, приходится усложнять его конструкцию.

ЦЕНТРОБЕЖНЫЙ РЕГУЛЯТОР НЕПРЯМОГО ДЕЙСТВИЯ

Как увеличить перестановочную силу нашего регулятора, сохранив прежние размеры его грузов? Чтобы сделать регулятор «сильным», пользуются услугами особого вспомогательного устройства — сервомотора ( Слово «сервомотор» происходит от латинского слова servus, что значит раб, слуга, и motor — приводящий в движение) (серводвигателя), играющего роль усилителя. Серводвигатель представляет собой цилиндр с силовым поршнем (рис. 86), шток которого соединен с рейками топливных насосов.

Рис. 86. Схема регулятора с серводвигателем

Рейка передвигается непосредственно серводвигателем, а не муфтой регулятора, как это было у регулятора прямого действия (см. рис. 85). Какая сила заставляет поршень серводвигателя передвигаться в цилиндре? Это давление масла на поршень. Сила, действующая на поршень, пропорциональна давлению масла. Например, в регуляторе дизеля 10Д100 давление масла составляет 0,58—0,68 МПа (6—7 кгс/см2). Для нагнетания масла используется шестеренный насос регулятора. Итак, несколько усложнив регулятор, можно добиться увеличения перестановочной силы при тех же размерах грузов. Но ведь это еще не все. Нужно сделать так, чтобы движение силового поршня было управляемо. Как видно из рис. 86, задача эта решается с помощью легкого золотника, на перемещение которого нужна очень небольшая сила. Золотник полностью уравновешен, и, чтобы вывести его из среднего положения, необходима сила не больше той, которую могут создать относительно маленькие центробежные грузы регулятора. Поэтому золотник соединяют с муфтой регулятора. Таким образом, если раньше муфта регулятора приводила в движение рейки топливных насосов, то теперь она непосредственно приводит в движение только небольшой золотник, который управляет силовым поршнем серводвигателя.
Золотник может свободно перемещаться в камере, к которой подводится масло под давлением. Камера золотника сообщена через окна с цилиндром серводвигателя. На рис. 86 схематично показано положение, при котором окна в камере закрыты золотником и масло пройти в цилиндр серводвигателя не может. Это значит, что количество топлива, поступающее в цилиндры дизеля, соответствует его нагрузке. Золотник находится при этом в среднем положении (положение перекрыши). Но стоит нарушиться соответствию между требуемой нагрузкой и мощностью, развиваемой дизелем, как положение муфты регулятора изменится. Тогда, как понятно из рис. 86, муфта переместится, легкий золотник, связанный с муфтой двуплечим рычагом, тоже переместится, отклоняясь от среднего положения. Перемещаясь, золотник откроет доступ маслу в одну из полостей цилиндра серводвигателя. Передвигаясь, например, вниз муфта потянет за собой золотник, который будет открывать верхнее окно, открывая, таким образом, доступ масла в полость над поршнем серводвигателя, и в то же время он будет открывать нижнее окно, выпуская масло из нижней полости на слив. Передвигаясь вверх, золотник, наоборот, будет открывать доступ масла в нижнюю полость и выпускать его из верхней полости.
В результате силовой поршень, управляемый золотником, будет перемещаться вниз или вверх.
Регулятор, снабженный серводвигателем, называется регулятором непрямого действия, так как силу для перемещения реек топливного насоса создают не сами центробежные грузы регулятора, а серводвигатель. Казалось бы, теперь уже регулятор отвечает требованиям регулирования дизеля. Однако возникает новая трудность. Переставив рейку топливного насоса в положение, соответствующее новой нагрузке, силовой поршень серводвигателя должен остановиться, а для этого золотник должен вернуться в первоначальное, среднее положение и перекрыть окна золотниковой втулки (камеры). Но для того, чтобы золотник занял среднее положение, точка В рычага регулятора после окончания процесса регулирования должна находиться всегда в одном положении.
Однако при схеме, приведенной на рис. 86, указанные требования выполнить невозможно. В самом деле, при увеличении нагрузки частота вращения диска уменьшится, грузы регулятора сойдутся и золотник переместится вниз. Масло будет поступать в верхнюю полость серводвигателя, а его шток пойдет вниз, увеличивая подачу топлива.
Частота вращения вала дизеля будет возрастать. Так как золотник по-прежнему открывает верхнее окно, поршень серводвигателя продолжает перемещаться вниз до нижнего крайнего положения.
При этом подача топлива превысит необходимую, частота вращения вала дизеля возрастет и грузы регулятора разойдутся.
Золотник откроет доступ масла в нижнюю полость серводвигателя, и поршень его переместится в верхнее крайнее положение.
Частота вращения вала резко упадет, что вызовет новое перемещение золотника вниз.
Мы видим, что золотник, так же как и поршень серводвигателя, совершает непрерывное движение вверх и вниз. Частота вращения вала также меняется от верхнего до нижнего предела. В этом случае говорят, что процесс регулирования неустойчив, т. е. имеет место колебание частоты вращения (числа оборотов).
Остановить колебания, а следовательно, и колебательные перемещения поршня серводвигателя и золотника нечем. Между тем это крайне необходимо. Как же затормозить колебания золотника, когда силовой поршень сервомотора займет новое нужное положение и подача дизельного топлива будет соответствовать изменившейся нагрузке?
Для этого нужно точку В (см. рис. 86) каким-либо способом возвратить во вполне определенное положение, при котором золотник снова займет среднее положение.

ПОНЯТИЕ О ЖЕСТКОЙ ОБРАТНОЙ СВЯЗИ

В рассмотренной нами схеме регулятора непрямого действия (см. рис. 86) точка качания А рычага АВ неподвижна и поэтому движение золотника не связано с движением силового поршня серводвигателя. А что, если левый конец рычага АОВ (рис. 87) соединить со штоком поршня серводвигателя тягой АС, т. е. сделать так, чтобы точка А стала подвижной?

Рис. 87. Схема регулятора с жесткой обратной связью

В этом случае при перемещении муфты регулятора, например, вверх точка А в начальный момент будет оставаться неподвижной потому, что поршень серводвигателя имеет сравнительно большое сопротивление движению; золотник переместится вверх и при этом откроет вход маслу в пространство под силовой поршень серводвигателя и выход масла из пространства над поршнем. Как только поршень начнет подниматься, то вместе с ним начнет подниматься и левый конец рычага АОВ (точка А), поэтому правый конец рычага (точка В), поворачивающийся около точки О муфты регулятора, станет опускаться и заставит опуститься золотник. При этом золотник будет постепенно возвращаться в среднее положение, закрывая доступ масла в пространство под поршнем. Движение поршня прекратится как раз в тот момент, когда насосы увеличат подачу топлива на величину, соответствующую увеличению нагрузки.
Таким образом, соединение левого конца рычага АОВ с поршнем серводвигателя позволяет возвращать точку В в определенное положение, при котором золотник приходит в среднее положение. Иными словами, движение силового поршня, начатое по «приказу» золотника, передается теперь (с помощью рычага АОВ) обратно золотнику: серводвигатель переставляет золотник в среднее положение, после того как выполнит «приказ» золотника. Следовательно, наряду с прямой связью золотника с поршнем имеется обратная связь поршня с золотником с помощью рычага АО В, Такое соединение жесткого рычага поршня серводвигателя с золотником через муфты регулятора принято называть жесткой обратной связью, а весь регулятор — регулятором непрямого действия с жесткой обратной связью.
Название жесткой связи принято потому, что рычаг АОВ является жестким, а обратной она называется потому, что силовой поршень с помощью рычага АОВ передает обратное воздействие на золотник. Однако и регулятор с жесткой обратной связью имеет недостаток. Он заключается в том, что при изменении нагрузки частота вращения коленчатого вала дизеля не остается равной прежней, а все-таки несколько изменяется, в то время как она должна быть постоянной. Почему это происходит?
Взгляните на рис. 87. Пусть нагрузка увеличилась. Тогда грузы регулятора опустятся, точка В опустится, золотник передвинется и откроет окна, подача топлива увеличится: мощность дизеля придет в соответствие с новой нагрузкой. Это так. Но коленчатый вал дизеля не сохранит ту частоту вращения, которую он имел до начала нового режима (до начала увеличения нагрузки). Почему? Потому что система регулирования придет в равновесие (успокоится) только тогда, когда точка В вернется в начальное положение, т. е. когда золотник вернется в среднее положение и перекроет окна. Следовательно, в описанной схеме регулирования точка В всегда приходит в начальное положение; положение же точек О и А меняется.
При увеличении подачи топлива поршень займет положение ближе к нижнему крайнему и переместит за собой вниз муфту О. А это положение муфты, а значит, и грузов соответствует меньшей частоте вращения вала. Поэтому в регуляторах с жесткой обратной связью всегда наблюдается небольшая «просадка» (уменьшение) частоты вращения по мере увеличения нагрузки на дизель. Если превратить жесткую обратную связь в упругую (гибкую), то от этого недостатка можно избавиться. Как это сделать?

УПРУГАЯ (ГИБКАЯ) ОБРАТНАЯ СВЯЗЬ В РЕГУЛЯТОРЕ НЕПРЯМОГО ДЕЙСТВИЯ. ИЗОДРОМНЫЙ РЕГУЛЯТОР

Между точкой А и серводвигателем разместим небольшой цилиндрик с поршеньком (рис, 88). Как видно, в поршеньке сделаны маленькие калиброванные отверстия, сообщающие противоположные полости цилиндрика. В обеих полостях находится масло.

Рис. 88. Схема регулятора с гибкой обратной связью

Цилиндрик присоединен к поршню серводвигателя, а поршенек цилиндрика — к рычагу АО В жесткой обратной связи. Но не только этим отличается схема рис. 88 от схемы рис. 87. Мы видим еще пружину, прикрепленную к рычагу АОВ. Это пружина-компенсатор ( Компенсатор — от латинского слова compenso, что значит уравновешиваю, возмещаю) .
Что же нового вносит это устройство в работу регулятора? А то, что жесткая обратная связь превращается в упругую (гибкую). До начала перемещения силового поршня в серводвигателе и в первый момент этого перемещения работа регулятора подобна работе регулятора с жесткой обратной связью, так как поршенек и его цилиндрик движутся совместно. Это объясняется тем, что перетекание масла из одной полости в другую происходит с большим трудом и очень медленно из-за значительных сопротивлений в маленьких отверстиях поршенька. Поэтому золотник после впуска масла в одну из полостей серводвигателя возвращается в среднее положение, останавливая движение поршня серводвигателя, как описано выше. Немного ранее того момента, как золотник возвратится в среднее положение, масло в цилиндрике под влиянием пружины-компенсатора, действующей на поршенек, преодолевая сопротивление в цилиндрике, начинает переходить из одной полости в другую, и поршенек перемещается. Перемещение поршенька вызывает перемещение муфты регулятора (точка О), которая возвращается в свое первоначальное положение. Благодаря этому при новой нагрузке грузы регулятора также займут снова первоначальное положение, при котором равновесие наступит в тот момент, когда частота вращения вала станет прежней.
Таким образом, при наличии гибкой обратной связи удается сохранить постоянной частоту вращения вала дизеля при разных нагрузках. В технической литературе поршенек с цилиндриком и компенсирующей пружиной, превращающей жесткую обратную связь в гибкую, называется изодромом ( Слово «изодром» происходит от сочетания двух греческих слов: isos — равный и dromos — скорость (бег) , а сам регулятор — изодромным.
На тепловозных дизелях устанавливаются в основном изодромные регуляторы непрямого действия с обратной связью. Изодромный регулятор частоты вращения дизеля 2Д100 представлен в разрезе на рис. 89.

Рис. 89. Всережимный регулятор частоты вращения дизеля 2Д100

Чувствительный элемент этого регулятора, как и обычно, состоит из двух грузов. Грузы выполнены в виде гаек, навернутых на L-образные рычаги. Грузы на шариковых подшипниках установлены в специальном корпусе, напрессованном на буксу. Букса представляет собой втулку с кольцевыми каналами и радиальными отверстиями для прохода масла. Букса, а следовательно, и грузы получают вращение через зубчатую передачу от коленчатого вала дизеля. Грузы воздействуют на золотник, имеющий три пояска, средний из которых является рабочим. Центробежные силы, возникающие при вращении грузов, уравновешиваются конической пружиной, которая называется всережимной. Средний поясок золотника управляет доступом масла под силовой поршень серводвигателя, который связан с рейками топливных насосов. Масло поступает сюда по внутренним каналам в корпусе от масляного насоса самого регулятора. При увеличении нагрузки на дизель частота вращения коленчатого вала и грузов регулятора в первый момент снижается, грузы несколько сходятся и золотник опускается вниз. Открывается доступ масла от насоса под силовой поршень регулятора. Поршень поднимается вверх, воздействует на топливный насос, который увеличивает подачу топлива до величины, обеспечивающей заданную частоту вращения коленчатого вала. При уменьшении нагрузки на дизель в первый момент частота вращения коленчатого вала и грузов несколько увеличивается, грузы расходятся, поднимают своими рычагами золотник. Средний поясок золотника, поднявшись, открывает выход масла из-под силового поршня в масляную ванну регулятора. Масло начинает уходить из-под силового поршня, а поршень опускается вниз, при этом топливные насосы уменьшают подачу топлива в цилиндры дизеля и частота вращения коленчатого вала приводится в норму.
Роль изодрома в этом регуляторе выполняют: компенсирующий поршень (который насажен на шток силового поршня серводвигателя), поршень золотниковой втулки, пружина-компенсатор, игольчатый клапан, частично закрывающий проход масла из канала, соединяющего указанные поршни с масляной ванной регулятора. Масло из-под силового поршня серводвигателя может выходить еще через один канал, который при нормальной работе дизеля плотно закрыт клапаном. Клапан удерживается блокировочным электромагнитом. Для остановки дизеля достаточно разомкнуть цепь питания катушки электромагнита. Тогда клапан, больше ничем не удерживаемый, открывается давлением масла. Масло уходит, силовой поршень быстро опускается вниз, передвигая рейки насосов в положение нулевой подачи.
Этот регулятор дизеля тепловоза является всережимным (а вернее, многорежимным). Это значит, что он может поддерживать постоянными разные скоростные режимы дизеля по воле машиниста. Для этой цели служит управляемый машинистом (посредством рукоятки контроллера) электропневматический механизм
(рис. 90) управления всережимной пружиной регулятора, состоящий из четырех электропневматических вентилей, которые открываются с помощью электромагнитов. Электропневматические вентили расположены против четырех колодцев с поршнями.

Рис. 90. Механизм управленияч регулятора дизеля 2Д100

При открытии каждого вентиля сжатый воздух поступает под поршень, который поднимает соответствующий рычаг, связанный с тягой регулятора. Тяга поворачивает зубчатый сектор и увеличивает затяжку
всережимной пружины. Электропневматические вентили включаются в определенной последовательности, благодаря чему обеспечивается 16 различных ступеней затяжки всережимной пружины регулятора и, следовательно, 16 разных скоростных режимов дизеля.
Всем хорош описанный регулятор, но он решает только одну проблему: поддерживает постоянным скоростной режим дизеля, автоматически уменьшая или увеличивая подачу топлива в его цилиндры в соответствии с меняющейся нагрузкой.
Но существует еще и вторая не менее важная проблема: создание такого регулятора, который бы наряду с регулированием подачи топлива в дизель поддерживал нагрузку дизеля на заданном уровне. Дело в том, что колебания температуры обмоток электрических машин и мощности, расходуемой на вспомогательные нужды тепловоза, могут сильно изменить нагрузку дизеля, привести к нарушению нормального режима работы силовой установки, ухудшению рабочего процесса дизеля и понижению скорости движения. Чтобы не допустить этого, на тепловозе ТЭЗ имеется специальное устройство АРМ (автоматическое регулирование мощности).
На дизелях 10Д100, 11Д45, 14Д40, 5Д49, Д70 (тепловозов 2ТЭ10В, ТЭП60, М62, 2ТЭ116 и др.) для этой цели применен объединенный регулятор (регулятор частоты вращения и регулятор нагрузки), смонтированный в один узел.

ОБЪЕДИНЕННЫЙ РЕГУЛЯТОР

Понять сущность работы и необходимость объединенного регулятора помогут нам следующие рассуждения. Предположим, что рейки топливных насосов находятся в положении максимальной подачи топлива в цилиндры дизеля, а нагрузка на дизель по каким-либо причинам увеличилась сверх того, что он может обеспечить при данном положении реек, В этом случае один регулятор частоты вращения бессилен поддерживать скоростной режим дизеля постоянным, так как все резервы увеличения подачи топлива в цилиндры исчерпаны (рейки доведены до упора). В результате из-за чрезмерной нагрузки дизель начинает снижать частоту вращения, коптит, работает неэкономично с недопустимо высокими температурой и давлением в цилиндрах. Возникает вопрос: можно ли в этих условиях не допустить падения частоты вращения вала дизеля и снять перегрузку с дизеля?
Вспомним, что такое реостат. Реостат — это электрический аппарат, предназначенный для регулирования величины тока, проходящего по проводнику (проволоке). Действие реостата основано на изменении длины проволоки. Чем короче проволока, по которой проходит ток /, тем меньше ее сопротивление, а чем он длиннее, тем оно выше. Следовательно, сопротивление увеличится во столько раз, во сколько раз при неизменной величине напряжения уменьшится сила тока (закон Ома). А что, если включить реостат в цепь обмотки возбуждения генератора? Тогда, чтобы увеличить нагрузку на тяговый генератор, а значит, и на дизель, надо передвинуть ползунок реостата в сторону уменьшения сопротивления (см. рис. 91).

Рис.91. Упрощенная схема объединенного регулятора частоты вращения (внизу) и нагрузки (вверху)

И наоборот, чтобы уменьшить нагрузку на генератор, надо передвинуть ползунок реостата в сторону увеличения его сопротивления. Искусственно уменьшая с помощью реостата нагрузку на дизель, можно добиться того, что частота вращения вала дизеля будет поддерживаться постоянной. В этом случае, как мы знаем, дизель будет отдавать мощность, соответствующую заданной для каждого скоростного режима дизеля.
Известно, что вентилятор холодильника тепловоза и тормозной компрессор то включается, то выключается, поэтому мощность дизеля, необходимая на привод этих машин, то высвобождается, то полностью используется. На тепловозе 2ТЭ10В это составляет около 95 — 110 кВт (130 — 150 л. с.) на каждый дизель на 15-й позиции контроллера машиниста.
Допустим, компрессор или вентилятор выключился. Чтобы полнее использовать мощность дизеля, надо переложить эти 95—ПО кВт на плечи другого потребителя — тягового генератора. Тогда мощность дизеля, отдаваемая потребителям, сохранится неизменной и, таким образом, будет использована полностью. «Перекладку» мощности осуществляет мощностная часть объединенного регулятора.
Чтобы понять принцип действия объединенного регулятора, обратимся к рис. 91. В нижней части рисунка представлена схема знакомого нам регулятора частоты вращения, в верхней части — схема регулятора нагрузки. Мы видим, что механизм управления нагрузкой соединяется с помощью жесткого рычага СД с механизмом управления частотой вращения. В регуляторе нагрузки так же, как и в регуляторе частоты, есть серводвигатель регулятора нагрузки (будем его дальше называть верхним). Он используется для изменения сопротивления реостата. Есть и золотник (условимся называть его верхним), который управляет подачей масла через каналы в силовой серводвигатель (золотник регулятора нагрузки).
Если рукоятка контроллера машиниста находится в неизменном положении, а установившийся режим работы дизель-генератора нарушился, например выключился компрессор или вентилятор и началось боксование колесных пар, то произойдет следующее: частота вращения увеличится, грузики (рис. 91) разойдутся, точка В рычага АО В поднимется, нижний золотник переместится вверх и откроет доступ масла под поршень силового серводвигателя — подача топлива уменьшится. Но при этом переместится и верхний золотник, открывая доступ масла в подпоршневое пространство верхнего серводвигателя. Поршень верхнего серводвигателя поднимется и своим штоком передвинет подвижной контакт реостата (увеличит возбуждение тягового генератора). Нагрузка увеличится, а частота вращения вала дизеля уменьшится. Тотчас чувствительный регулятор частоты вращения увеличит подачу топлива и возвратит верхний золотник, управляющий нагрузкой, в первоначальное положение перекрыши, соответствующее установившемуся режиму работы дизель-генератора.
Пользуясь схемой (см. рис. 91) и рассуждая аналогично, нетрудно уяснить, как будет протекать работа объединенного регулятора при возрастании нагрузки (включение вентилятора холодильника и др.). Таким образом, при данной нагрузке и частоте вращения вала подача топлива насосами в цилиндр дизеля не будет изменяться, так как перераспределения нагрузок между тяговым генератором, с одной стороны, и, скажем, компрессором и вентилятором, с другой стороны, дизель не почувствует и благодаря объединенному регулятору вся мощность дизеля будет использоваться для работы тепловоза при разных условиях движения. Однако и этот регулятор можно улучшить.

ЭЛЕКТРОГИДРАВЛИЧЕСКИЙ МЕХАНИЗМ ЗАТЯЖКИ ПРУЖИНЫ

Совершенствуя свой регулятор, конструкторы Харьковского завода транспортного машиностроения заменили электропневматический механизм более чувствительным и меньшим по размерам электрогидравлическим механизмом, регулирующим затяжку всережимной пружины. Посмотрите на рис. 92. Вы видите: электрическая часть этого механизма состоит из четырех тяговых электромагнитов 1, 2, 3, 4, три из которых находятся против трех углов треугольной пластины; гидравлическая часть механизма имеет золотник управления серводвигателем, который в свою очередь управляет затяжкой пружины.

Рис. 92. Схема электрогидравлического механизма режима затяжки всережимной пружины объединенного регулятора

Машинист в своей кабине переводит рукоятку контроллера с позиции на позицию. В соответствии с этим электромагниты включаются или выключаются в установленной последовательности и различных комбинациях. Якоря включенных электромагнитов нажимают на пластину, и она под их действием изменяет свое положение в пространстве (пластину поэтому называют пространственной). Стоит пластине переместиться вниз на какую-то величину, как золотник управления серводвигателем через тяговый рычажный механизм открывает отверстие в золотниковой втулке, благодаря чему масло поступает по каналу а в надпоршневое пространство серводвигателя: поршень серводвигателя, перемещаясь вниз, сжимает всережимную пружину. Так достигается одно из семи различных положений поршня серводвигателя управления, т. е. одна из семи степеней затяжки всережимной пружины. А как увеличить количество степеней затяжки? С этой целью на помощь первым трем электромагнитам при ходит четвертый электромагнит, воздействующий не на треугольную пластину, а на. золотниковую втулку. Именно на золотниковую втулку, потому что ей самой предоставлена возможность перемещаться относительно золотника управления. Двигаясь вниз (когда четвертый электромагнит включен), втулка открывает имеющееся в ней отверстие, и масло из надпоршневого пространства серводвигателя получает выход в ванну регулятора (на рисунке не показана), при этом затяжка всережимной пружины ослабляется. Таким образом, включение четвертого электромагнита вызывает действие, противоположное действию трех остальных электромагнитов. Этим достигается еще семь ступеней ослабления затяжки всережимной пружины. Так, включение четвертого электромагнита в комбинации с электромагнитами треугольной пластины позволяет удвоить число ступеней затяжки всережимной пружины, т. е. получить 14 ступеней частоты вращения коленчатого вала дизеля.
Вместе с положением холостого хода регулятор обеспечивает 15 ступеней частоты вращения коленчатого вала.
Описанный регулятор с электрогидравлической системой управления (условное обозначение 9Д100) нашел применение на всех тепловозах 2ТЭ10Л, 2ТЭ10В, ТЭП10, ТЭП60, М62 и др., которые выпускались до 1972 г,
В 1972 г., однако, эти регуляторы были снабжены новыми устройствами. Уже давно было замечено, что упомянутый выше проволочный реостат с непосредственным электрическим контактом, во-первых, произвольно изменяет величину электрического сопротивления в месте контакта ползунка с проволочной намоткой, а значит, искажает регулирование нагрузки и, во-вторых, не позволяет плавно регулировать нагрузку. Для того чтобы обойти эти неприятности, конструкторы решили заменить его «бесконтактным реостатом» — индуктивным датчиком.
Индуктивный датчик представляет собой катушку со стальным якорем (рис. 93).

Рис.93. Схема индуктивного датчика

Если через обмотку такой катушки пропустить переменный ток, то ее сопротивление будет изменяться в зависимости от положения якоря. Чем дальше задвинут якорь в катушку, тем больше ее сопротивление, и наоборот. Это свойство катушки используется для дополнительного регулирования мощности тепловозных дизель-генераторов. Обмотка катушки индуктивного датчика, питаемая переменным током, подключена посредством выпрямительного устройства (моста) в схему возбуждения генератора. Выпрямительный мост преобразовывает (выпрямляет) переменный ток в постоянный, необходимый для работы системы возбуждения тягового генератора.
Якорь индуктивного датчика соединен с серводвигателем регулятора нагрузки и изменяет свое положение при его перемещениях.
Применение бесконтактного индуктивного датчика позволило значительно повысить надежность регулятора и точность регулирования. Новый объединенный регулятор получил обозначение типа 10Д100 (в отличие от типа 9Д100). Регулятор типа 10Д100 имеет еще одно преимущество. Он снабжен дополнительным пятым электромагнитом, который устанавливает индуктивный датчик в положение минимального возбуждения. Это необходимо, например, при боксовании тепловоза.


📽️ Видео

Принципы регулированияСкачать

Принципы регулирования

Курс автодиагностики, Что такое угол опережения зажигания, Как он разрушает мотор?Скачать

Курс автодиагностики, Что такое угол опережения зажигания, Как он разрушает мотор?

ЯК ШВИДКО та ПРОСТО перевірити будь-який ДАТЧИК АВТОМОБІЛЯ чи РОБОЧИЙ СВОЇМИ РУКАМИСкачать

ЯК ШВИДКО та ПРОСТО перевірити будь-який ДАТЧИК АВТОМОБІЛЯ чи РОБОЧИЙ СВОЇМИ РУКАМИ

Датчики коленвала и распредвала: принцип работы, неисправности и способы диагностики. Часть 11Скачать

Датчики коленвала и распредвала: принцип работы, неисправности и способы диагностики. Часть 11

329) АВТОМАТИКА Регулятор частоты вращения типа ВУДВАРД УГ-8 (вопрос ГОСОВ и МКК).Скачать

329) АВТОМАТИКА Регулятор частоты вращения типа ВУДВАРД  УГ-8 (вопрос ГОСОВ и МКК).

Непрерывные законы регулированияСкачать

Непрерывные законы регулирования

Электроника, часть 4. Системы автоматического управленияСкачать

Электроника, часть 4. Системы автоматического управления

3/34: Основные системы управления бензиновым ДВС. Экспресс-курс для автодиагноста / Теория – ч.2.Скачать

3/34: Основные системы управления бензиновым ДВС. Экспресс-курс для автодиагноста / Теория – ч.2.

Про обрыв цепи и низкий сигнал датчиков.Скачать

Про обрыв цепи и низкий сигнал датчиков.

ДПКВ. Признаки неисправности датчикаСкачать

ДПКВ. Признаки неисправности датчика

Датчики двигателя внутреннего сгорания в 3D. Основы.Скачать

Датчики двигателя внутреннего сгорания в 3D. Основы.

Ошибка EDCСкачать

Ошибка EDC

Регулирование частоты и мощности. Часть 4. Первичное, вторичное, третичное регулирование частоты ЭЭССкачать

Регулирование частоты и мощности. Часть 4. Первичное, вторичное, третичное регулирование частоты ЭЭС

МПСЗ .Микропроцессорная система зажигания на классику.Microprocessor system of ignition.Скачать

МПСЗ .Микропроцессорная система зажигания на классику.Microprocessor system of ignition.

ошибка по датчику оборотов коленвала.Скачать

ошибка по датчику оборотов коленвала.

P0500 - Код ошибки датчика скорости. Причины возникновения и их решениеСкачать

P0500 - Код ошибки датчика скорости. Причины возникновения и их  решение

Неисправный датчик положения коленчатого вала, как он себя проявляет.Скачать

Неисправный датчик положения коленчатого вала, как он себя проявляет.
Поделиться или сохранить к себе:
Технарь знаток