Система шина пропускная способность

Система шина пропускная способность

Эмблема PCI Conventional

Вот уже более десяти лет PCI – шина для подключения периферийных устройств к материнской плате компьютера – находится внутри практически каждого компьютера и, даже несмотря на моральное устаревание и уже недостаточную пропускную способность, продолжает (пока ещё) оставаться основной шиной для подключения к системе внешних устройств. Тем не менее она неуклонно сдаёт позиции новой последовательной шине PCI-Express, о которой чуть ниже.

В далёком 1991 году компания Intel представила первую спецификацию системной шины PCI – Peripheral Component Interconnect (дословно: взаимосвязь периферийных компонентов ). А в 1993 году уже началось активное продвижение на рынок шины PCI 2.0, которая дала толчок увеличению числа ориентированных на неё продуктов и довольно быстро вытеснила изрядно устаревшие к тому времени шины ISA и EISA.

Причины успеха PCI – это гораздо большая скорость и возможность динамического конфигурирования периферийных устройств, подключённых к PCI (чего не было в ISA), то есть распределения ресурсов между периферийными устройствами наиболее приемлемым в данный момент времени образом и без постороннего вмешательства.

Основные тактико-технические характеристики PCI 2.0:

Вскоре PCI «взяли на вооружение» также платформы с процессорами Alpha, MIPS, PowerPC, SPARC и другие.

Ещё большее распространение получил стандарт 2.2.

Система шина пропускная способность

Со времён анонса PCI 2.0 разработкой и продвижением стандарта занимается специальная организация – консорциум PCI-SIG (Special Interest Group), она же занимается продвижением PCI Express.

Существует множество вариаций на тему PCI 2.Х, наиболее распространённые из которых:

Система шина пропускная способность

Сводная таблица конструктивов карт и слотов в зависимости от версии стандарта

Макс. Скорость, Мб/с

Однако, как и многие параллельные шинные решения (те же Parallel ATA, SCSI), шина PCI в данное время находится на границе разумного масштабирования производительности, после которого «гонка частот и разрядности» приведёт к непозволительно высоким технологическим усложнениям и, соответственно, к затратам. Но на данный момент проблема эффективной масштабируемости и наращивания уже решена, ведь в компьютерной индустрии уже полным ходом идёт переезд с PCI на новую последовательную шину PCI-Express.

Различия топологий PCI и PCI-Express

PCI-Express

Система шина пропускная способность

Разработка рабочей группой Arapahoe, основанной компаниями Compaq, Dell, IBM, Intel и Microsoft при участии организации PCI-SIG, нового межкомпонентного интерфейса была начата фирмой Intel еще тогда, когда только ожидался выход в свет AGP 3.0 (он же AGP 8х). Так, программную модель PCI планировали унаследовать и в новом интерфейсе, чтобы системы и контроллеры могли быть доработаны для использования новой шины путём замены только физического уровня, без доработки программного обеспечения. Сам же интерфейс должен был быть последовательным. Это означало, во-первых, однозначное подключение «точка-точка», исключающее арбитраж шины и перетасовку ресурсов (как частный случай – прерываний). Во-вторых, упрощалась схемотехника, разводка и монтаж. В-третьих, экономилось место.

Анонс первой базовой спецификации PCI-Express состоялся в июле 2002 года, когда уже стало ясно, что PCI-Express – это последовательный интерфейс, нацеленный на использование в качестве локальной шины и имеющий много общего с сетевой организацией обмена данными, в частности, топологию типа «звезда» и стек протоколов.

Для взаимодействия с остальными узлами ПК, которые так или иначе обходятся собственными шинами, основной связующий компонент системной платы – Root Complex Hub (узел, являющийся перекрёстком процессорной шины, шины памяти и PCI-Express) – предусматривает систему мостов и свитчей. Логика всей структуры такова, что любые межкомпонентные соединения непременно оказываются построенными по принципу «точка-точка», свитчи-коммутаторы выполняют однозначную маршрутизацию пакета от отправителя к получателю.

Соединение между двумя устройствами PCI Express называется link и состоит из одного (называемого 1x) или нескольких (2x, 4x, 8x, 12x, 16x и 32x) двунаправленных последовательных соединений lane . Каждое устройство должно поддерживать соединение 1x.

Таблица. Пропускная способность шины PCI Express с разным количеством связей

В спецификации PCI-Express 2.0 планируется увеличить пропускную способность lane до 5 Гбит/с при сохранении совместимости с PCI-Express 1.1.

Система шина пропускная способность

Использование шин и устройств PCI Express.
Шины ( links ) PCI Express показаны оранжевым цветом

Кроме всего прочего, PCI Express предлагает:

Итоги

Как мы видим, последовательные интерфейсы пришли в компьютерную индустрию всерьёз и надолго. Не за горами времена, когда такие почётные долгожители, как PCI, IDE(PATA), SCSI, совсем уйдут со сцены, ибо преемники – PCI Express, Serial ATA, Serial Attached SCSI – уже агрессивно отвоёвывают позиции у «старичков». В стане процессорных шин пока паритет – архитектура K8 компании AMD c организацией процессорной шины на основе HyperTransport уже зарекомендовала себя как удачное решение, но и компания Intel с «последней редакцией» параллельной шины FSB (QPB) чувствует себя довольно уверенно и не собирается от неё отказываться.

Что касается возможной войны технологий PCI Express и HyperTransport, то здесь не тот случай – уж слишком разные сферы применения уготованы разработчиками этим решениям. Для вторжения в сферу сверхбыстрых передач у PCI Express недостаточно пропускной способности (максимум 8 ГБ/с для х16 против 41 ГБ/с у HyperTransport). Что касается работы HyperTransport с периферийными контроллерами, то данная шина не обладает для этого достаточными возможностями протоколов в силу своего изначального предназначения – замены процессорной шины, первое упоминание о «горячем» подключении появилось лишь в спецификации HyperTransport 3.0, да и стандартом пока что не предусмотрено внешних разъёмов.

Видео:Частота процессора или частота системной шины?Скачать

Частота процессора или частота системной шины?

Cистемная шина материнской платы, устройство и функции системной шины

Система шина пропускная способность

Устройство и функции системной шины.

Часто люди, интересующиеся компьютерной тематикой, встречают в интернете такой термин, как системная шина. Но что же это такое? Эта статья подробно расскажет об одном из важнейших элементов компьютерной системы.

Системная шина – это устройство которое связывает между собой различные функциональные блоки компьютера, а ее задачей является передача данных между ними. Строго говоря это магистраль, состоящая из проводниковых элементов, по которым информация передается в виде электрического сигнала. Соответственно, чем больше тактовая частота, на которой шина работает, тем быстрее осуществляется обмен данными между элементами компьютерной системы.

Системная шина состоит из адресной шины, шины управления и данных. Каждая шина используется для передачи конкретной информации: по адресной передаются адреса (ячеек памяти и устройств), шина управления служит для передачи управляющих сигналов устройствам, а данные соответственно передаются посредством шины данных.

Типы системных шин.

В современных компьютерах используются шины нескольких видов. Материнские платы с процессорами Intel, оснащаются шинами QPB типа. Они способны передавать данные 4 раза за такт, а вот платы с процессорами AMD используют шины EV6, передающие данные 2 раза за один такт. Кстати, в последних моделях своих процессоров AMD вообще отказывается от стандартной системной шины, её роль будет выполнять технология HyperTransport.

Так как шина передает данные несколько раз за такт, её эффективная частота обычно в несколько раз выше реальной, то есть шина, имеющая фактическую частоту 200 мГц и передающая данные 4 раза за один такт, будет работать с эффективной частотой в 800 мГц. Это важно понимать для оценки производительности шины и расчета возможностей её разгона.

Следует учитывать и тот факт, что системная шина имеет ограничения по разгону, потому что превышение допустимого уровня тактовой частоты может привести к неисправности и нарушениям в работе. В то же время системная шина будет нормально функционировать при показателях частоты, которые ниже указанных на упаковке, не превышающих допустимый уровень.

Пропускная способность системных шин.

Одним из важных параметров, который характеризует системную шину является пропускная способность. Она определяет максимальное количество информации, которая передается по шине данных за одну секунду (Бит/с). Для определения величины пропускной способности следует частоту шины (частота считывания данных) умножить на количество Бит, переданных за один такт. Количество данных за такт соответствует показателю разрядности процессора. На современных процессорах показатель разрядности составляет 64 Бит.

Используя формулу и известные данные получаем:

Это и будет величиной пропускной способности магистрали, соединяющей чипсет (или северный мост) с процессором. Связанные с материнской платой ОЗУ, видеоадаптер и жесткий диск между собой функционируют посредством магистралей, среди которых системная шина является самой важной.

На деле системная шина фактически соединяет процессор и чипсет. А вот чипсет напрямую соединяется с различными устройствами компьютера (ОЗУ, видеоадаптер, USB) используя вспомогательные шины (шина памяти, графического контроллера, PCI, PCI Express и LPC), частоты которых отличаются от показателей системной шины.

Итак, данная статья отвечает на вопрос: что такое системная шина, каковы ее устройство и функции, какие виды системных шин существуют, а также как вычислить значение пропускной способности.

Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Система шина пропускная способностьКомпьютерная Энциклопедия

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

534000-003 ymckt набор для печати datacard ymckt.

Видео:Влияние шин PCI-e и внутренней шины видеокарты на производительностьСкачать

Влияние шин PCI-e и внутренней шины видеокарты на производительность

Системные платы

Видео:Системная шина процессораСкачать

Системная шина процессора

Типы, назначение и функционирование шин

Видео:Шины ввода-выводаСкачать

Шины ввода-вывода

Типы, назначение и функционирование шин

Основой системной платы являются различные шины, служащие для передачи сигналов компонентам системы. Шина (bus) представляет собой общий канал связи, используемый в компьютере и позволяющий соединить два и более системных компонента.

Существует определенная иерархия шин ПК, которая выражается в том, что каждая более медленная шина соединена с более быстрой. Современные компьютерные системы включают в себя три, четыре или более шин. Каждое системное устройство соединено с какой-либо шиной, причем определенные устройства (чаще всего это наборы микросхем) играют роль моста между шинами.

  • Шина процессора. Эта высокоскоростная шина является ядром набора микросхем и системной платы. Она используется в основном процессором для передачи данных между кэш-памятью или основной памятью и северным мостом набора микросхем. В системах на базе процессоров Pentium эта шина работает на частоте 66, 100, 133, 200, 266, 400, 533, 800 или 1066 МГц и имеет ширину 64 разряда (8 байт).
  • Шина AGP. Эта 32-разрядная шина работает на частоте 66 (AGP 1х), 133 (AGP 2х), 266 (AGP 4х) или 533 МГц (AGP 8x), обеспечивает пропускную способность до 2133 Мбайт/с и предназначается для подключения видеоадаптера. Она соединена с северным мостом или контроллером памяти (MCH) набора микросхем системной логики.
  • Шина PCI-Express. Третье поколение шины PCI. Шина PCI-Expres — это шина с дифференциальными сигналами, которые может передавать северный или южный мост. Быстродействие PCI-Express выражается в количестве линий. Каждая двунаправленная линия обеспечивает скорость передачи данных 2,5 или 5 Гбит/с в обоих направлениях (эффективное значение — 250 или 500 Мбайт/с). Разъем с поддержкой одной линии обозначается как PCI-Express x1. Видеоадаптеры PCI-Express обычно устанавливаются в разъем x16, который обеспечивает скорость передачи данных 4 или 8 Гбайт/с в каждом направлении.
  • Шина PCI-X. Это второе поколение шины PCI, которое обеспечивает более высокую скорость передачи данных, но при этом обратно совместимо с PCI. Данная шина преимущественно применяется в рабочих станциях и серверах. PCI-X поддерживает 64-разрядные разъемы, обратно совместимые с 64- и 32-разрядными адаптерами PCI. Шина PCI-X версии 1 работает с частотой 133 МГц, в то время как PCI-X 2.0 поддерживает частоту до 533 МГц. Обычно полоса пропускания PCI-X 2.0 разделяется между несколькими разъемами PCI-X и PCI. Хотя некоторые южные мосты поддерживают шину PCI-X, чаще всего для обеспечения ее поддержки требуется специальная микросхема.
  • Шина PCI. Эта 32-разрядная шина работает на частоте 33 МГц; она используется, начиная с систем на базе процессоров 486. В настоящее время существует реализация этой шины с частотой 66 МГц. Она находится под управлением контроллера PCI — компонента северного моста или контроллера MCH набора микросхем системной логики. На системной плате устанавливаются разъемы, обычно четыре или более, в которые можно подключать сетевые, SCSI- и видеоадаптеры, а также другое оборудование, поддерживающее этот интерфейс. Шины PCI-X и PCI-Express представляют собой более производительные реализации шины PCI; материнские платы и системы, поддерживающие эту шину, появились на рынке в середине 2004 года.
  • Шина ISA. Эта 16-разрядная шина, работающая на частоте 8 МГц, впервые стала использоваться в системах AT в 1984 году (в первоначальном варианте IBM PC она была 8-разрядной и работала на частоте 5 МГц). Эта шина имела широкое распространение, но из спецификации PC99 была исключена. Реализуется с помощью южного моста. Чаще всего к ней подключается микросхема Super I/O.

Некоторые современные системные платы содержат специальный разъем, получивший название Audio Modem Riser (AMR) или Communications and Networking Riser (CNR). Подобные специализированные разъемы предназначены для плат расширения, обеспечивающих выполнение сетевых и коммуникационных функций. Следует заметить, что эти разъемы не являются универсальным интерфейсом шины, поэтому лишь немногие из специализированных плат AMR или CNR присутствуют на открытом рынке. Как правило, такие платы прилагаются к какой-либо определенной системной плате. Их конструкция позволяет легко создавать как стандартные, так и расширенные системные платы, не резервируя на них место для установки дополнительных микросхем. Большинство системных плат, обеспечивающих стандартные сетевые функции и функции работы с модемом, созданы на основе шины PCI, так как разъемы AMR/CNR имеют узкоспециализированное назначение.

Система шина пропускная способность

В современных системных платах существуют также скрытые шины, которые никак не проявляются в виде гнезд или разъемов. Имеются в виду шины, предназначенные для соединения компонентов наборов микросхем, например hub-интерфейса и шины LPC. Hub-интерфейс представляет собой четырехтактную (4x) 8-разрядную шину с рабочей частотой 66 МГц, которая используется для обмена данными между компонентами MCH и ICH набора микросхем (hub-архитектура). Пропускная способность hub-интерфейса достигает 266 Мбайт/с, что позволяет использовать его для соединения компонентов набора микросхем в недорогих конструкциях. Некоторые современные наборы микросхем для рабочих станций и серверов, а также последняя серия 9xx от Intel для настольных компьютеров используют более быстродействующие версии этого hub-интерфейса. Сторонние производители наборов микросхем системной логики также реализуют свои конструкции высокоскоростных шин, соединяющих отдельные компоненты набора между собой.

Для подобных целей предназначена и шина LPC, которая представляет собой 4-разрядную шину с максимальной пропускной способностью 16,67 Мбайт/с и применяется в качестве более экономичного по сравнению с шиной ISA варианта. Обычно шина LPC используется для соединения Super I/O или компонентов ROM BIOS системной платы с основным набором микросхем. Шина LPC имеет примерно равную рабочую частоту, но использует значительно меньше контактов. Она позволяет полностью отказаться от использования шины ISA в системных платах.

Набор микросхем системной логики можно сравнить с дирижером, который руководит оркестром системных компонентов системы, позволяя каждому из них подключиться к собственной шине.

Система шина пропускная способность

Система шина пропускная способность

Система шина пропускная способность

Для повышения эффективности во многих шинах в течение одного такта выполняется несколько циклов передачи данных. Это означает, что скорость передачи данных выше, чем это может показаться на первый взгляд. Существует достаточно простой способ повысить быстродействие шины с помощью обратно совместимых компонентов.

Видео:Виды видеопамяти и сколько её нужно? Какая нужна шина?Скачать

Виды видеопамяти и сколько её нужно? Какая нужна шина?

Шина процессора

Видео:Системная шина персонального компьютера ISAСкачать

Системная шина персонального компьютера ISA


Общие сведения о шине процессора

Шина процессора — соединяет процессор с северным мостом или контроллером памяти MCH. Она работает на частотах 66–200 МГц и используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Схема взаимодействия шин в типичном компьютере на базе процессора Pentium (Socket 7) показано на рисунке.

На этом рисунке четко видна трехуровневая архитектура, в которой на самом верхнем уровне иерархии находится шина процессора, далее следует шина PCI и за ней шина ISA. Большинство компонентов системы подключается к одной из этих трех шин.

В системах, созданных на основе процессоров Socket 7, внешняя кэш-память второго уровня установлена на системной плате и соединена с шиной процессора, которая работает на частоте системной платы (обычно от 66 до 100 МГц). Таким образом, при появлении процессоров Socket 7 с более высокой тактовой частотой рабочая частота кэш-памяти осталась равной сравнительно низкой частоте системной платы. Например, в наиболее быстродействующих системах Intel Socket 7 частота процессора равна 233 МГц, а частота шины процессора при множителе 3,5х достигает только 66 МГц. Следовательно, кэш-память второго уровня также работает на частоте 66 МГц. Возьмем, например, систему Socket 7, использующую процессоры AMD K6-2 550, работающие на частоте 550 МГц: при множителе 5,5х ч астота шины процессора равна 100 МГц. Следовательно, в этих системах частота кэш-памяти второго уровня достигает только 100 МГц.

Проблема медленной кэш-памяти второго уровня была решена в процессорах класса P6, таких как Pentium Pro, Pentium II, Celeron, Pentium III, а также AMD Athlon и Duron. В этих процессорах использовались разъемы Socket 8, Slot 1, Slot 2, Slot A, Socket A или Socket 370. Кроме того, кэш-память второго уровня была перенесена с системной платы непосредственно в процессор и соединена с ним с помощью встроенной шины. Теперь эта шина стала называться шиной переднего плана (Front-Side Bus — FSB), однако я, согласно устоявшейся традиции, продолжаю называть ее шиной процессора.

Система шина пропускная способность

Включение кэш-памяти второго уровня в процессор позволило значительно повысить ее скорость. В современных процессорах кэш-память расположена непосредственно в кристалле процессора, т.е. работает с частотой процессора. В более ранних версиях кэш-память второгоуровня находилась в отдельной микросхеме, интегрированной в корпус процессора, и работала с частотой, равной 1/2, 2/5 или 1/3 частоты процессора. Однако даже в этом случае скорость интегрированной кэш-памяти была значительно выше, чем скорость внешнего кэша, ограниченного частотой системной платы Socket 7.

В системах Slot 1 кэш-память второго уровня была встроена в процессор, но работала только на его половинной частоте. Повышение частоты шины процессора с 66 до 100 МГц привело к увеличению пропускной способности до 800 Мбайт/с. Следует отметить, что в большинство систем была включена поддержка AGP. Частота стандартного интерфейса AGP равна 66 МГц (т.е. вдвое больше скорости PCI), но большинство систем поддерживают порт AGP 2x, быстродействие которого вдвое выше стандартного AGP, что приводит к увеличению пропускной способности до 533 Мбайт/с. Кроме того, в этих системах обычно использовались модули памяти PC100 SDRAM DIMM, скорость передачи данных которых равна 800 Мбайт/с.

В системах Pentium III и Celeron разъем Slot 1 уступил место гнезду Socket 370. Это было связано главным образом с тем, что более современные процессоры включают в себя встроенную кэш-память второго уровня (работающую на полной частоте ядра), а значит, исчезла потребность в дорогом корпусе, содержащем несколько микросхем. Скорость шины процессора увеличилась до 133 МГц, что повлекло за собой повышение пропускной способности до 1066 Мбайт/с. В современных системах используется уже AGP 4x со скоростью передачи данных 1066 Мбайт/с.

Система шина пропускная способность

Шина процессора на основе hub-архитектуры

Обратите внимание на hub-архитектуру Intel, используемую вместо традиционной архитектуры “северный/южный мост”. В этой конструкции основное соединение между компонентами набора микросхем перенесено в выделенный hub-интерфейс со скоростью передачи данных 266 Мбайт/с (вдвое больше, чем у шины PCI), что позволило устройствам PCI использовать полную, без учета южного моста, пропускную способность шины PCI. Кроме того, микросхема Flash ROM BIOS, называемая теперь Firmware Hub, соединяется с системой через шину LPC. Как уже отмечалось, в архитектуре “северный/южный мост” для этого использовалась микросхема Super I/O. В большинстве систем для соединения микросхемы Super I/O вместо шины ISA теперь используется шина LPC. При этом hub-архитектура позволяет отказаться от использования Super I/O. Порты, поддерживаемые микросхемой Super I/O, называются традиционными (legacy), поэтому конструкция без Super I/O получила название нетрадиционной (legacy-free) системы. В такой системе устройства, использующие стандартные порты, должны быть подсоединены к компьютеру с помощью шины USB. В этих системах обычно используются два контроллера и до четырех общих портов (дополнительные порты могут быть подключены к узлам USB).

В системах, созданных на базе процессоров AMD, применена конструкция Socket A, в которой используются более быстрые по сравнению с Socket 370 процессор и шины памяти, но все еще сохраняется конструкция “северный/южный мост”. Обратите внимание на быстродействующую шину процессора, частота которой достигает 333 МГц (пропускная способность — 2664 Мбайт/с), а также на используемые модули памяти DDR SDRAM DIMM, которые поддерживают такую же пропускную способность (т.е. 2664 Мбайт/с). Также следует заметить, что большинство южных мостов включает в себя функции, свойственные микросхемам Super I/O. Эти микросхемы получили название Super South Bridge (суперъюжный мост).

Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является шина процессора с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина. Также обратите внимание на двухканальные модули PC3200 (DDR400), пропускная способность которых (3200 Мбайт/с) соответствует пропускной способности шины процессора, что позволяет максимально повысить производительность системы. В более производительных системах, включающих в себя шину с пропускной способностью 6400 Мбайт/с, используются двухканальные модули DDR400 с тактовой частотой 400 МГц, благодаря чему общая пропускная способность шины памяти достигает 6400 Мбайт/с. Процессоры с частотой шины 533 МГц могут использовать парные модули памяти (PC2100/DDR266 или PC2700/DDR333) в двухканальном режиме для достижения пропускной способности шины памяти 4266 Мбайт/с. Соответствие пропускной способности шины памяти рабочим параметрам шины процессора является условием оптимальной работы.

Процессор Athlon 64, независимо от типа гнезда (Socket 754, Socket 939 или Socket 940), использует высокоскоростную архитектуру HyperTransport для взаимодействия с северным мостом или микросхемой AGP Graphics Tunnel. Первые наборы микросхем для процессоров Athlon 64 использовали версию шины HyperTransport с параметрами 16 бит/800 МГц, однако последующие модели, предназначенные для поддержки процессоров Athlon 64 и Athlon 64 FX в исполнении Socket 939, используют более быструю версию шины HyperTransport с параметрами 16 бит/1 ГГц.

Наиболее заметным отличием архитектуры Athlon 64 от всех остальных архитектур ПК является размещение контроллера памяти не в микросхеме северного моста (или микросхеме MCH/GMCH), а в самом процессоре. Процессоры Athlon 64/FX/Opteron оснащены встроенным контроллером памяти. Благодаря этому исключаются многие “узкие места”, связанные с внешним контроллером памяти, что положительно сказывается на общем быстродействии системы. Главный недостаток этого подхода состоит в том, что для добавления поддержки новых технологий, например памяти DDR2, придется изменять архитектуру процессора.

Поскольку шина процессора должна обмениваться информацией с процессором с максимально возможной скоростью, в компьютере она функционирует намного быстрее любой другой шины. Сигнальные линии (линии электрической связи), представляющие шину, предназначены для передачи данных, адресов и сигналов управления между отдельными компонентами компьютера. Большинство процессоров Pentium имеют 64-разрядную шину данных, поэтому за один цикл по шине процессора передается 64 бит данных (8 байт).

Система шина пропускная способность

Тактовая частота , используемая для передачи данных по шине процессора, соответствует его внешней частоте. Это следует учитывать, поскольку в большинстве процессоров внутренняя тактовая частота, определяющая скорость работы внутренних блоков, может превышать внешнюю. Например, процессор AMD Athlon 64 3800+ работает с внутренней тактовой частотой 2,4 ГГц, однако внешняя частота составляет всего 400 МГц, в то время как процессор Pentium 4 с внутренней частотой 3,4 ГГц имеет внешнюю частоту, равную 800 МГц. В новых системах реальная частота процессора зависит от множителя шины процессора (2x, 2,5x, 3x и выше). Шина FSB, подключенная к процессору, по каждой линии данных может передавать один бит данных в течение одного или двух периодов тактовой частоты. Таким образом, в компьютерах с современными процессорами за один такт передается 64 бит.

Пропускная способность шины процессора

Для определения скорости передачи данных по шине процессора необходимо умножить разрядность шины данных (64 бит, или 8 байт, для Celeron/Pentium III/4 или Athlon/Duron/ Athlon XP/Athlon 64) на тактовую частоту шины (она равна базовой (внешней) тактовой частоте процессора).

Система шина пропускная способность

Например, при использовании процессора Pentium 4 с тактовой частотой 3,6 ГГц, установленного на системной плате, частота которой равна 800 МГц, максимальная мгновенная скорость передачи данных будет достигать примерно 6400 Мбайт/с. Этот результат можно получить, используя следующую формулу:
800 МГц × 8 байт (64 бит) = 6400 Мбайт/с.

Для более медленной системы Pentium 4:
533,33 МГц × 8 байт (64 бит) = 4266 Мбайт/с;
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с.

Для системы Athlon XP (Socket A) получится следующее:
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с;
333 МГц × 8 байт (64 бит) = 2667 Мбайт/с;
266,66 МГц × 8 байт (64 бит) = 2133 Мбайт/с.

Для системы Pentium III (Socket 370):
133,33 МГц × 8 байт (64 бит) = 1066 Мбайт/с;
100 МГц × 8 байт (64 бит) = 800 Мбайт/с.

Максимальную скорость передачи данных называют также пропускной способностью шины (bandwidth) процессора.

Видео:Системная шина персонального компьютера AGPСкачать

Системная шина персонального компьютера  AGP

Шина памяти

Шина памяти предназначена для передачи информации между процессором и основной памятью системы. Эта шина соединена с северным мостом или микросхемой Memory Controller Hub. В зависимости от типа памяти, используемой набором микросхем (а следовательно, и системной платой), шина памяти может работать с различными скоростями. Наилучший вариант, если рабочая частота шины памяти совпадает со скоростью шины процессора. Пропускная способность систем, использующих память PC133 SDRAM, равна 1066 Мбайт/с, что совпадает с пропускной способностью шины процессора, работающей на частоте 133 МГц. Рассмотрим другой пример: в системах Athlon и некоторых Pentium III используются шина процессора с частотой 266 МГц и память PC2100 DDR SDRAM, имеющая пропускную способность 2133 Мбайт/с — такую же, как и шина процессора. В системе Pentium 4 используется шина процессора с частотой 400 МГц, а также двухканальная память RDRAM со скоростью передачи данных для каждого канала 1600 или 3200 Мбайт/с при одновременной работе обоих каналов памяти, что совпадает с пропускной способностью шины процессора Pentium 4. В системах Pentium 4, содержащих шину процессора с тактовой частотой 533 МГц, могут использоваться двухканальные модули PC2100 или PC2700, параметры которых соответствуют пропускной способности шины процессора, равной 4266 Мбайт/с.

Память, работающая с той же частотой, что и шина процессора, позволяет отказаться от расположения внешней кэш-памяти на системной плате. Именно поэтому кэш-память второго и третьего уровней была интегрирована непосредственно в процессор. Некоторые мощные процессоры, к числу которых относится Intel Pentium Extreme Edition, содержат встроенную кэш-память третьего уровня объемом 2–4 Мбайт, работающую на полной частоте процессора. Самые современные процессоры, такие как Core Duo и Core 2 Quad, используют кэш-память только первого и второго уровней. Таким образом, в обозримом будущем кэш второго уровня будет оставаться наиболее распространенным типом вторичного кэша.

Примечание!

Видео:Частота процессора, множитель и системная шинаСкачать

Частота процессора, множитель и системная шина

Назначение разъемов расширения

Шина ввода-вывода позволяет процессору взаимодействовать с периферийными устройствами. Эта шина и подключенные к ней разъемы расширения предназначены для того, чтобы компьютер мог выполнить все предъявляемые запросы. Шина ввода-вывода позволяет подключать к компьютеру дополнительные устройства для расширения его возможностей. В разъемы расширения устанавливают такие жизненно важные узлы, как контроллеры накопителей на жестких дисках и платы видеоадаптеров; к ним можно подключить и более специализированные устройства, например звуковые платы, сетевые адаптеры, контроллеры SCSI и др.

Примечание!

Видео:Увеличение пропускной способности каналов связи в IP-видеонаблюденииСкачать

Увеличение пропускной способности каналов связи в IP-видеонаблюдении

Назначение разъемов расширения

Шина ввода-вывода позволяет процессору взаимодействовать с периферийными устройствами. Эта шина и подключенные к ней разъемы расширения предназначены для того, чтобы компьютер мог выполнить все предъявляемые запросы. Шина ввода-вывода позволяет подключать к компьютеру дополнительные устройства для расширения его возможностей. В разъемы расширения устанавливают такие жизненно важные узлы, как контроллеры накопителей на жестких дисках и платы видеоадаптеров; к ним можно подключить и более специализированные устройства, например звуковые платы, сетевые адаптеры, контроллеры SCSI и др.

📽️ Видео

Всё о видеокартах за 11 минутСкачать

Всё о видеокартах за 11 минут

Системная шина персонального компьютера pci expressСкачать

Системная шина персонального компьютера pci express

Отключаем поэтапно память у RTX 3090 и 3060 и измеряем разницу в производительности.Скачать

Отключаем поэтапно память у RTX 3090 и 3060 и измеряем разницу в производительности.

CAN шина👏 Как это работаетСкачать

CAN шина👏 Как это работает

Урок №18. Цифровые интерфейсы современного автомобиля: шины данных CAN и LINСкачать

Урок №18. Цифровые интерфейсы современного автомобиля: шины данных CAN и LIN

АПС Л19. ШиныСкачать

АПС Л19.  Шины

Как работает процессор: частоты, шины и т.д.Скачать

Как работает процессор: частоты, шины и т.д.

Лекция 281. Шина ISAСкачать

Лекция 281. Шина ISA

Лекция 4. Искажение сигналов. Шумы. Затухания. Пропускная способность. Формула НайквистаСкачать

Лекция 4. Искажение сигналов. Шумы. Затухания. Пропускная способность. Формула Найквиста

Про жидкости и скорость. Факторио.Скачать

Про жидкости и скорость. Факторио.
Поделиться или сохранить к себе:
Технарь знаток