Сколько разрядов имеет наиболее популярная шина передачи данных

Видео:На чём ездить? Шины на лето 2023Скачать

На чём ездить? Шины на лето 2023

Сколько разрядов имеет наиболее популярная шина передачи данных

Если процессор – это сердце персонального компьютера, то шины – это артерии и вены по которым текут
электрические сигналы. Строго говоря, это каналы связи, применяемые для организации взаимодействия между устройствами
компьютера. Кстати, если Вы думаете, что те разъемы, куда вставляются платы расширения и есть шины, то Вы жестоко
ошибаетесь. Это интерфейсы (слоты, разъемы), с их помощью осуществляется подключение к шинам, которых, зачастую, вообще
не видно на материнских платах.

Существует три основных показателя работы шины. Это тактовая частота, разрядность и скорость передачи
данных. Начнем по порядку.

Тактовая частота

Работа любого цифрового компьютера зависит от тактовой частоты, которую определяет
кварцевый резонатор. Он представляет собой оловянный контейнер в который помещен кристалл кварца. Под воздействием
электрического напряжения в кристалле возникают колебания электрического тока. Вот эта самая частота колебания и
называется тактовой частотой. Все изменения логических сигналов в любой микросхеме компьютера происходят через
определенные интервалы, которые называются тактами. Отсюда сделаем вывод, что наименьшей единицей измерения времени для
большинства логических устройств компьютера есть такт или еще по другому – период тактовой частоты. Проще говоря – на
каждую операцию требуется минимум один такт (хотя некоторые современные устройства успевают выполнить несколько операций
за один такт). Тактовая частота, применительно к персональным компьютерам, измеряется в МГц, где Герц – это одно колебание
в секунду, соответственно 1 МГц – миллион колебаний в секунду. Теоретически, если системная шина Вашего компьютера
работает на частоте в 100 МГц, то значит она может выполнять до 100 000 000 операций в секунду. К слову сказать,
совсем не обязательно, что бы каждый компонент системы обязательно что-либо выполнял с каждым тактом. Существуют так
называемые пустые такты (циклы ожидания), когда устройство находится в процессе ожидания ответа от какого либо другого
устройства. Так, например, организована работа оперативной памяти и процессора (СPU), тактовая частота которого значительно
выше тактовой частоты ОЗУ.

Разрядность

Шина состоит из нескольких каналов для передачи электрических сигналов. Если говорят,
что шина тридцатидвухразрядная, то это означает, что она способна передавать электрические сигналы по тридцати двум каналам
одновременно. Здесь есть одна фишка. Дело в том, что шина любой заявленной разрядности (8, 16, 32, 64) имеет, на самом
деле, большее количество каналов. То есть, если взять ту же тридцатидвухразрядную шину, то для передачи собственно данных
выделено 32 канала, а дополнительные каналы предназначены для передачи специфической информации.

Скорость передачи данных

Название этого параметра говорит само за себя. Он высчитывается по формуле:

тактовая частота * разрядность = скорость передачи данных

Сделаем расчет скорости передачи данных для 64 разрядной системной шины, работающей на тактовой частоте
в 100 МГц.

Но полученное число не является реальным. В жизни на шины влияет куча всевозможных факторов:
неэффективная проводимость материалов, помехи, недостатки конструкции и сборки а также многое другое. По некоторым
данным, разность между теоретической скоростью передачи данных и практической может составлять до 25%.

За работой каждой шины следят специально для этого предназначенные контроллеры. Они входят в состав
набора системной логики (чипсет).

Теперь поговорим конкретно о тех шинах, которые присутствуют на материнской плате. Основной
считается системная шина FSB (Front Side Bus). По этой шине передаются данные между процессором и оперативной памятью,
а также между процессором и остальными устройствами персонального компьютера. Вот тут вот есть один подводный камень.
Дело в том, что работая над материалом этой статьи, я столкнулся с одной неразберихой – существует такая фигня, как шина
процессора. По одним данным системная шина и шина процессора это есть одно и тоже, а по другим – нет. Я перерыл кучу книг
и пересмотрел кучу схем. Вывод: поначалу процессор подключался к основной системной шине через собственную, процессорную,
шину, в современных же системах эти шины стали одним целым. Мы говорим – системная шина, а подразумеваем процессорную, мы
говорим — процессорная шина, а подразумеваем системную. Двинемся дальше. Фраза: «Моя материнская плата работает на частоте
100 МГц» означает, что именно системная шина работает на тактовой частоте в 100 МГц. Разрядность FSB равна разрядности
CPU. Если Вы используете 64 разрядный процессор, а тактовая частота системной шины 100 МГц, то скорость передачи данных
будет равна 800 Мбайт/сек.

Кроме системной шины на материнской плате есть еще шины ввода/вывода, которые отличаются друг от друга
по архитектуре. Перечислю некоторые из них:

Читайте также: Шины 170 70 r13 лето

Видео:ТОП-5 Летних шин 2024 / цена-качествоСкачать

ТОП-5 Летних шин 2024 / цена-качество

Шины в микропроцессорной системе

В предыдущей главе я рассказывал про цифровую электронику и общее устройство микроконтроллера (МК). А также, что он состоит из процессора, устройств ввода-вывода (УВВ) и устройства памяти. Но я практически ничего не сказал о том, как они общаются между собой. А это весьма важная тема, в которую я и посвящу тебя в этот раз.

Видео:Главные ошибки при выборе летних шин | Как правильно выбрать летние шиныСкачать

Главные ошибки при выборе летних шин | Как правильно выбрать летние шины

Шины и разряды

Как ты уже знаешь, вся информация в цифровой технике стараниями инженеров и математиков представляется в виде двоичных чисел, которые записываются с помощью всего двух цифр: «0» и «1». Обычное десятичное число «3» в двоичной записи будет выглядеть как «11», т.е. 310 = 112. Нижние индексы указывают в какой системе счисления записано число, т.е. 10 – десятичная, а 2 – двоичная. Одна цифра в двоичном числе называется разрядом. У разрядов есть старшинство. Самый правый разряд называется младшим, а самый левый – старшим. Старшинство разряда растет справа налево:

Сколько разрядов имеет наиболее популярная шина передачи данных

Двоичное число, состоящее из 8 разрядов называется 8-ми разрядным, из 16 – шестнадцатиразрядным и т.д. Разрядность двоичного числа имеет самое прямое отношение к взаимодействию между процессором, памятью и устройствами ввода-вывода.

Дело в том, что в твоем МК бегают такие же двоичные числа. Они ходят от памяти к процессору, от процессора назад к памяти или УВВ, а от последних к процессору. Бегают они естественно по проводам (в МК эти шины спрятаны внутри микросхемы). Каждый провод в определённый момент времени может передавать только один разряд со значением «0» или «1». Поэтому, чтобы передать, к примеру, 8-ми разрядное число от процессора к памяти или назад понадобится минимум 8 таких поводов.

Несколько таких проводов, объединенных вместе называются шиной. Шины бывают нескольких видов: шина адреса, шина данных и шина управления. По шине адреса бегают числа, которые обозначают адрес ячейки памяти или устройства ввода-вывода, откуда ты хочешь получить или куда хочешь записать данные. А сами данные будут передаваться уже по шине данных. Это похоже на почтовую посылку. У посылки есть адрес и есть содержание. Так вот в микропроцессорной системе, каковой МК также является, адрес и данные передаются по разным путям, именуемым шинами.

Сколько проводов должно быть в шине?

Это напрямую зависит от конструкции процессора. Процессор может иметь 32-разрядную шину данных и 16-ти разрядное АЛУ. Такие случаи в истории процессоров и МК встречаются многократно. Поэтому разрядность процессора не определяет 100% разрядность шин данных и шин адреса. Всё зависит от конкретной конструкции.

На что влияет разрядность шины адреса

Самым главным, на что она влияет, является количество адресов, которые можно по ней передавать. Например, в 4-разрядной системе это будет всего 2 4 = 16 адресов, в 64-разрядной числов сдресов будет уже 2 64 =18 446 744 073 709 551 616. Таким образом, чем выше разрядность шины адреса, тем к больше объем памяти и больше устройств ввода-вывода, с которыми может работать процессор. Это важно.

На что влияет разрядность шины данных

Её разрядность определяет сколько данных процессор может считать за один раз. Чем выше разрядность, тем больше данных можно считывать за один раз. Её разрядность, как и разрядность шины адреса целиком определяется конструкцией конкретного процессора или МК. Но при этом всегда кратна восьми. Связано это с тем, что практически во всех устройствах памяти минимальной единицей информации является байт, т.е. двоичное число из 8-ми разрядов.

Зачем было нужно вводить ещё одно название: байт? Оно служит для обозначения количества информации. Если количество разрядов говорит просто о длине двоичного числа, то битность говорит о количестве информации, которую это число несет. Считается, что один разряд двоичного числа может передавать 1 бит информации. При этом биты группируются в байты, килобайты, мегабайты, гигабайты, терабайты и т.д.

Кстати, 1 байт = 8 бит, 1 килобайт = 1024 байтам, 1 мегабайт = 1024 килобайтам и т.д. Почему именно 1024? Все это связано с тем, что размер памяти всегда кратен степени двойки: 2 3 = 8, 2 10 =1024. В свою очередь кратность двойке была выбрана благодаря тому, что она упрощает техническую реализацию устройств памяти. Устройство памяти представляет.

Видео:ТИХИЕ ШИНЫ ЭТОГО НЕ ЗНАЮТ БОЛЬШИНСТВО АВТОМОБИЛИСТОВСкачать

ТИХИЕ ШИНЫ ЭТОГО НЕ ЗНАЮТ БОЛЬШИНСТВО АВТОМОБИЛИСТОВ

Алгоритм работы микроконтроллера

Давай теперь попробуем посмотреть как взаимодействует процессор с памятью и разберёмся зачем нужна шина управления. Любой процессор помимо выполнения арифметических и логических команд умеет делать ещё несколько важных операций: чтение из ячейки памяти, запись в ячейку памяти, чтение из порта ВВ, запись в порт ВВ:

  • чтение из ячейки памяти
  • запись в ячейку памяти
  • чтение из порта ВВ
  • запись в порта ВВ

Читайте также: Снять шину с челюсти больно

Для того, чтобы указывать какую из этих операций производить используется шина управления. По этой шине от процессора к памяти или портам ввода-вывода передаются сигналы:

RD (read)сигнал на чтение
WR (write)сигнал на запись
MREQ (memory request)запрос обращения к памяти
IORQ (input/output request)запрос обращения к портам в/в
READYсигнал готовности
RESETсигнал сброса

Когда процессору требуется обратиться к памяти он выставляет на шине управления сигнал MREQ, при этом будет выставлен одновременно с ним сигнал RD/WR. Если процессор будет писать в память, то выставляется сигнал WR, если чтение – RD. Тоже самое происходит, если процессор обращается к портам ввода-вывода.

А вот сигнал READY нужен для того, чтобы сообщить процессору, что чтение/запись завершены. Всё довольно просто. Если тебя одолевают вопросы почему несмотря на то, что и память и порты ввода-вывода, через которые подключены внешние устройства, не конфликтуют, то разгадка будет довольно простой. В каждый момент времени процессор обращается только к одному конкретному устройству: либо памяти, либо через порты к портам ввода-вывода. И шина управления обеспечивает правильное разделение доступа.

Все описанное – упрощенная модель микропроцессорной системы, каковой является и персональный компьютер, и микроконтроллер.

Теперь вырисовывается уточнение к алгоритму работу микроконтроллера, который я описывал в прошлой главе. Когда ты подаёшь питание на МК, то он выставляет сигнал на шине управления MREQ, RD, а на шине адреса адрес, по которому в ячейке памяти программ должна находиться первая команда его программы (чаще всего это нулевой адрес памяти программ). Затем МК её выполнит и в зависимости от этой и последующих команд на шине управления, адреса и данных будут появляться соответствующие сигналы и данные.

Видео:НИЗКОПРОФИЛЬНЫЕ ШИНЫ ЭТО ДОЛЖЕН ЗНАТЬ КАЖДЫЙ АВТОМОБИЛИСТСкачать

НИЗКОПРОФИЛЬНЫЕ ШИНЫ ЭТО ДОЛЖЕН ЗНАТЬ КАЖДЫЙ АВТОМОБИЛИСТ

Подведу итоги:

  1. Процессор, память и порты ввода-вывода общаются между собой с помощью шин.
  2. Основные шины бывают нескольких видов: шина данных, шина адреса, шина управления
  3. Разрядность шины адреса и шины данных определяется конструкцией процессора

Теперь ты продвинулся ещё на шаг в понимании того, как работает цифровая техника и в частности микропроцессорные системы. В следующий раз мы продвинемся еще на шаг к нашей цели — пониманию как устроен мир электроники

Видео:Жёсткость шины и высота профиля. Размеры шин. Как выбрать.Скачать

Жёсткость шины и высота профиля. Размеры шин. Как выбрать.

Шина данных. разрядность шины

Шину данных образуют линии, служащие для передачи данных между отдельными структурными группами ПК. Исходным пунктом линий данных является центральный процессор. Он определяет разрядность шины данных, т.е. число линий, по которым передаются данные. Чем выше разрядность шины данных, тем больший объем данных можно передать по ней за некоторый определенный промежуток времени и тем выше быстродействие компьютера.

В первых ПК использовался процессор Intel 8088. Этот 16-разрядный процессор имел всего лишь 8 внешних линий данных (этим объясняется его низкая стоимость). Для внутренних операций было задействовано 16 линий данных, благодаря чему процессор мог одновременно обрабатывать два восьмиразрядных числа. Но на внешнем уровне к нему присоединялась дешевая восьмиразрядная шина данных. Эти 8 линий обеспечивали связь со всеми микросхемами на системной плате, выполняющими функции обработки данных, и всеми платами расширения, установленными в гнездах. Таким образом осуществлялась передача данных между платами расширения и процессором.

Современные процессоры допускают внешнее подключение большего числа линий данных: процессор 80286 — 16 линий данных, процессоры 80386 DX и 80486 DX — 32 линии, а процессор Pentium — 64 линии данных.

Адресная шина. Разрядность шины

Другая группа линий образует адресную шину. Эта шина используется для адресации. Каждая ячейка памяти и устройство ввода-вывода компьютера имеет свой собственный адрес.

При считывании или записи данных процессор должен сообщать, по какому адресу он желает прочитать или записать данные, для чего необходимо указать этот адрес.

В отличие от шины данных шина адреса является однонаправленной.

Разрядность адресной шины определяет максимальное число адресов, по которым может обратиться процессор, т. е. число линий в адресной шине показывает, каким объемом памяти может управлять процессор. Учитывая, что одна адресная линия обеспечивает представление одного разряда двоичного числа, формулу для максимального объема адресуемой памяти можно записать в следующем виде:

максимальное число адресов = 2n,

где n — разрядность адресной шины.

Процессор 8088 имел 20 адресных линий, что в соответствии с приведенной формулой обеспечивало адресацию памяти объемом:

220 =1 048 576 байт = 1024 Кбайт = 1 Мбайт.

Это тот самый предельный объем памяти, который все еще имеет силу в операционной системе DOS.

Совсем иная ситуация с процессором 80286. Он имеет 24 адресных линии и поэтому в состоянии управлять памятью объемом:

Читайте также: Шины для шкода карок 2020

224= 16 777 216 байт =16 Мбайт.

Для обеспечения связи с микросхемами памяти число адресных линий процессора должно равняться числу адресных линий на системной плате.

Процессоры 80386, 80486 и Pentium имеют 32 адресных линии, что обеспечивает адресацию свыше 4 млрд. ячеек памяти. На системной плате с такими процессорами должно быть 32 линии, обеспечивающие обмен адресами между центральным процессором и всеми важными периферийными микросхемами.

Линии шины управления на системной плате служат для управления различными компонентами ПК. По выполняемой ими функции их можно сравнить с переводной стрелкой на железнодорожных путях.

С помощью небольшого числа линий шина управления обеспечивает такое функционирование системы, чтобы в каждый данный момент времени только одна структурная единица ПК пересылала данные по шине данных или осуществляла адресацию памяти.

К шине может быть подключено много приемных устройств. Сочетание управляющих и адресных сигналов определяет, для кого именно предназначаются данные на шине. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю, когда ему следует принимать данные.

Управляющая логика активизирует в каждый конкретный момент только одно устройство, которое становиться ведущим. Когда устройство активизировано, оно помещает свои данные на шину. Все другие микросхемы в этот промежуток времени должны блокироваться с помощью соответствующего сигнала на линии управления.

Микропроцессор взаимодействует с внешней средой с помощью шины адреса/данных/состояния и нескольких управляющих сигналов. Собственно взаимодействие заключается в выполнении одной из двух операций: МП либо выводит (записывает) данные, либо вводит (считывает) данные или команды. В каждой из этих операций процессор должен указывать то устройство, с которым он будет взаимодействовать; другими словами, процессор должен адресовать ячейку памяти либо порт ввода или вывода.

Для передачи данных или выборки команды процессор инициирует так называемый цикл шины. Кроме процессора, цикл шины могут инициировать и другие устройства, например, арифметический сопроцессор.

Цикл шины представляет собой последовательность событий, в течение которой процессор выдает адрес ячейки памяти или периферийного устройства, а затем формирует сигнал записи или считывания, а также выдает данные в операции записи. Выбранное устройство воспринимает данные с шины в цикле записи или помещает данные на шину в цикле считывания. По окончании цикла шины устройство фиксирует записываемые данные или снимает считываемые данные.

Рассмотрим цикл шины микропроцессора 8086, который имеет совмещенную 20-разрядную шину адреса/данных/состояния и шину управления (рис. 4).

Рис. 4. Шины микропроцессора 8086

Цикл шины микропроцессора 8086 состоит минимум из четырех тактов синхронизации, называемых также состояниями T, которые идентифицируются спадающим фронтом сигнала синхронизации CLC. В первом такте (T1) процессор выдает на шину адреса/данных/состояния AD20-AD0 адрес устройства, которое будет источником или получателем информации в текущем цикле шины. Во втором такте (T2) процессор снимает адрес с шины и либо переводит тристабильные буферы линий AD15-AD0 в высокоимпедансное состояние, подготавливая их к выводу информации в цикле считывания, либо выдает на них данные в цикле записи.

Управляющие сигналы, инициирующие считывание, запись или подтверждение прерываний, всегда выдаются в такте T2. В максимальной конфигурации системы сигнал записи формируется в такте T3, чтобы гарантировать стабилизацию сигналов данных до начала действия этого сигнала.

В такте T2 старшие четыре линии адреса/состояния переключаются с режима выдачи адреса на режим выдачи состояния. Сигналы состояния предназначены в основном для диагностических целей, например, идентифицируют сегментный регистр, который участвует в формировании адреса памяти.

В течение такта T3 процессор сохраняет информацию на линиях состояния. На шине данных в цикле записи сохраняются выводимые данные, а в цикле считывания производится опрос вводимых данных.

Тактом T4 заканчивается цикл шины. В этом такте снимаются все управляющие сигналы и выбранное устройство отключается от шины.

Таким образом, цикл шины для памяти или периферийного устройства представляет собой асинхронное действие. Устройство может управлять циклом шины только путем введения состояний ожидания.

Процессор выполняет цикл шины в том случае, когда ему необходимо осуществить запись или считывание информации. Если циклы шины не требуются, шинный интерфейс реализует холостые состояния Ti, в течение которых процессор сохраняет на линиях состояния сигналы состояния от предыдущего цикла шины.

Статьи к прочтению:

Как выбрать видеокарту. Или почему шина 256 бит — не рулит. (см. описание)

Похожие статьи:

Современные устройства радиоэлектронной техники используют большое число микросхем, что требует много линий для адресации, выбора и управления их…

Шины микропроцессорной системы и циклы обмена Самое главное, что должен знать разработчик микропроцессорных систем — это принципы организации обмена…

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле
    • Правообладателям
    • Политика конфиденциальности

    Автоподбор © 2023
    Информация, опубликованная на сайте, носит исключительно ознакомительный характер

    📽️ Видео

    5 ошибок ПРИ ПОКУПКЕ летней резиныСкачать

    5 ошибок ПРИ ПОКУПКЕ летней резины

    Как шины влияют на расход топливаСкачать

    Как шины влияют на расход топлива

    ТИХИЕ ШИНЫ - ПОСМОТРИ ПЕРЕД ПОКУПКОЙСкачать

    ТИХИЕ ШИНЫ - ПОСМОТРИ ПЕРЕД ПОКУПКОЙ

    ТОП БЮДЖЕТНЫХ ЛЕТНИХ ШИН НА 2024 ГОД/ЧТО КУПИТЬ НЕДОРОГО ИЗ ШИН?/Большой Обзор/ЗамерыСкачать

    ТОП БЮДЖЕТНЫХ ЛЕТНИХ ШИН НА 2024 ГОД/ЧТО КУПИТЬ НЕДОРОГО ИЗ ШИН?/Большой Обзор/Замеры

    Всесезонная резина - кому она подойдет и сколько денег сэкономит?Скачать

    Всесезонная резина - кому она подойдет и сколько денег сэкономит?

    ТОП-7 | КАКИЕ ШИНЫ ВЫБРАТЬ НА ЛЕТО? БЫСТРО И ЛЕГКОСкачать

    ТОП-7 | КАКИЕ ШИНЫ ВЫБРАТЬ НА ЛЕТО? БЫСТРО И ЛЕГКО

    ТИХИЕ ШИНЫ ЭТОГО НЕ ЗНАЮТ БОЛЬШИНСТВО АВТОМОБИЛИСТОВСкачать

    ТИХИЕ ШИНЫ ЭТОГО НЕ ЗНАЮТ БОЛЬШИНСТВО АВТОМОБИЛИСТОВ

    Подробно про CAN шинуСкачать

    Подробно про CAN шину

    ✅САМЫЕ ИЗНОСОСТОЙКИЕ ШИНЫ‼️РЕЗИНА КОТОРАЯ ДОЛГО ХОДИТ‼️ЭТИ ШИНЫ БЫСТРО НЕ СОТРУТЬСЯ‼️💰💵💸💁🏽‍♂️Скачать

    ✅САМЫЕ ИЗНОСОСТОЙКИЕ ШИНЫ‼️РЕЗИНА КОТОРАЯ ДОЛГО ХОДИТ‼️ЭТИ ШИНЫ БЫСТРО НЕ СОТРУТЬСЯ‼️💰💵💸💁🏽‍♂️

    Выбор шин, все, что нужно знать о резинеСкачать

    Выбор шин, все, что нужно знать о резине

    ТОП 5 КОМФОРТНЫХ ЛЕТНИХ ШИН 2020Скачать

    ТОП 5 КОМФОРТНЫХ ЛЕТНИХ ШИН 2020

    ТОП-7 Лучших шин 2022 /// по мнению автора ВоКолесоСкачать

    ТОП-7 Лучших шин 2022 /// по мнению автора ВоКолесо

    ТОП-10 Самых Тихих Шин /// 2021Скачать

    ТОП-10 Самых Тихих Шин /// 2021

    Урок №18. Цифровые интерфейсы современного автомобиля: шины данных CAN и LINСкачать

    Урок №18. Цифровые интерфейсы современного автомобиля: шины данных CAN и LIN
Поделиться или сохранить к себе:
Технарь знаток