в Компьютеры 27.05.2017 0 313 Просмотров
Скорость шины системной платы не влияет на скорость установленного процессора. В компьютере, материнская плата и процессор – это две отдельные составляющие. Тем не менее, пользовательский опыт измерений заключается в том, насколько хорошо они работают вместе.
Процессор
Процессор, или основной процессор компьютера, имеет определенную скорость. На некоторых компьютерах скорость процессора может быть изменена через настройки BIOS материнской платы. Ошибки совместимости оборудования в сторону скорости процессора не меняются из-за любой другой части компьютера. Но процессор является самой быстрой частью компьютера и часто другое оборудование не может за ним угнаться. Процессор обрабатывает всю вычислительную работу компьютера за пределами крупной графической работы которая выполняется с помощью GPU.
Шина материнской платы
Шина материнской платы – это часть устройства, которая передает данные между деталями. Термин “скорость шины” относится к тому, как быстро системная шина может перемещать данные с одного компонента компьютера к другому. Чем быстрее шина, тем больше данных она может передвигать в течение определенного количества времени. К системной “шине” подключается процессор для компьютера через “северный мост”, который организует обмен данными между оперативной памятью компьютера и процессором. Это самая быстрая часть шины материнской платы и обрабатывает наиболее жизненно важную нагрузку компьютера.
Шина для процессора
Сам процессор не будет иметь смысла, если для обработки данных он будет использовать шину материнской платы чтобы получить данные. Шина материнской платы не может увеличивать или уменьшать скорость процессора для получения потока данных в и из устройств, и играет ключевую роль в том, как хорошо будет работать процессор. Это та точка, где скорость шины материнской платы может повлиять на производительность процессора — процессор работает в режиме циклического процесса, с данными получаемыми в или из устройства через определенные промежутки времени. Если процессор не имеет каких-либо данных для работы с циклом, он теряет цикл и не обрабатывает какие-либо другие данные.
Недостаточная скорость шины материнской платы
Недостаточная скорость шины материнской платы может оставить процессор компьютера висящий в ожидании большего количества информации для обработки. Это создает “узкое место”, или точку, в которой одна часть компьютера, замедляет производительность для другой части системы. Если скорость шины материнской платы слишком медленная, то центральный процессор будет тратить значительное количество циклов и компьютер пользователя будет воспринимать это как снижение производительности.
Достаточная скорость шины материнской платы
Материнская плата, которая имеет достаточную или избыточную скорость шины процессора предложит оптимальную скорость работы. Если скорость шины материнской платы достаточно быстрая, то центральный процессор будет постоянно иметь новые данные в процессе, и будет готов обрабатывать новые данные, когда он завершает цикл. Пока процесс не идеален и всегда есть неиспользуемые циклы, достаточная скорость шины материнской платы поможет максимально использовать эти циклы.
- Скорость работы системной шины
- Частота шины процессора
- Частота шины процессора
- Front Side Bus
- Влияние на производительность компьютера
- Частота процессора
- Память
- Контроллер памяти в системном контроллере
- Периферийные шины
- Центральный процессор
- Основные шины компьютера
- Что такое шина компьютера
- Виды системных шин
- Шина ISA
- Шина MCA
- Шина EISA
- Шина VESA
- Шина PCI
- Шина AGP
- PCI-Express
- PC Card
- Шина SCSI
- Шина USB
- Выводы
- 📽️ Видео
Видео:Частота процессора, множитель и системная шинаСкачать
Скорость работы системной шины
Технологии шагнули очень далеко вперед
Видео:Частота процессора или частота системной шины?Скачать
Частота шины процессора
Видео:Системная шина процессораСкачать
Частота шины процессора
Видео:CAN шина👏 Как это работаетСкачать
Front Side Bus
Front Side Bus (FSB, системная шина) — шина, обеспечивающая соединение между x86/x86-64-совместимым центральным процессором и внутренними устройствами.
Как правило, современный персональный компьютер на базе x86- и x64-совместимого микропроцессора устроен следующим образом:
- Микропроцессор через FSB подключается к системному контроллеру, который обычно называют «северным мостом», (англ. Northbridge).
- Системный контроллер имеет в своём составе контроллер ОЗУ (в некоторых современных персональных компьютерах контроллер ОЗУ встроен в микропроцессор), а также контроллеры шин, к которым подключаются периферийные устройства.
Получил распространение подход, при котором к северному мосту подключаются наиболее производительные периферийные устройства, например, видеокарты с шиной PCI Express x16, а менее производительные устройства (микросхема BIOS’а, устройства с шиной PCI) подключаются к «южному мосту» (англ. Southbridge), который соединяется с северным мостом специальной шиной. Набор из «южного» и «северного» мостов называют набором системной логики, но чаще применяется калька с английского языка «чипсет» (англ. chipset).
Таким образом, FSB работает в качестве магистрального канала между процессором и чипсетом.
Некоторые компьютеры имеют внешнюю кэш-память, подключённую через «заднюю» шину (англ. back side bus), которая быстрее, чем FSB, но работает только со специфичными устройствами.
Каждая из вторичных шин работает на своей частоте (которая может быть как выше, так и ниже частоты FSB). Иногда частота вторичной шины является производной от частоты FSB, иногда задаётся независимо.
Видео:Влияние шин PCI-e и внутренней шины видеокарты на производительностьСкачать
Влияние на производительность компьютера
Частота процессора
Частоты, на которых работают центральный процессор и FSB, имеют общую опорную частоту, и в конечном счёте определяются, исходя из их коэффициентов умножения (частота устройства = опорная частота * коэффициент умножения).
Память
Следует выделить два случая:
Контроллер памяти в системном контроллере
До определённого момента в развитии компьютеров частота работы памяти совпадала с частотой FSB. Это, в частности, касалось чипсетов на сокете LGA 775, начиная с 945GC и вплоть до X48.
Основная статья: Список чипсетов Intel
То же касалось и чипсетов NVIDIA для платформы LGA 775 (NVIDIA GeForce 9400, NVIDIA nForce4 SLI/SLI Ultra и др.)
Читайте также: Rezina cc шины диски
Основная статья: Сравнение чипсетов Nvidia Основная статья: nForce 700 Основная статья: nForce 600
Спецификации стандартов системной шины чипсетов на сокете LGA 775 и оперативной памяти DDR3 SDRAM
Стандартное название | Частота памяти, МГц | Время цикла, нс | Частота шины, МГц | Эффективная (удвоенная) скорость, млн. передач/с | Название модуля | Пиковая скорость передачи данных при 64-битной шине данных в одноканальном режиме, МБ/с |
---|---|---|---|---|---|---|
DDR3‑800 | 100 | 10,00 | 400 | 800 | PC3‑6400 | 6400 |
DDR3‑1066 | 133 | 7,50 | 533 | 1066 | PC3‑8500 | 8533 |
DDR3‑1333 | 166 | 6,00 | 667 | 1333 | PC3‑10600 | 10667 |
DDR3‑1600 | 200 | 5,00 | 800 | 1600 | PC3‑12800 | 12800 |
DDR3‑1866 (O.C.) | 233 (O.C.) | 4,29 (O.C.) | 933 (O.C.) | 1866 (O.C.) | PC3‑14900 (O.C.) | 14933 (O.C.) |
O.C. — в режиме overclocking (разгона)
Поскольку процессор работает с памятью через FSB, то производительность FSB является одним из важнейших параметров такой системы.
На современных персональных компьютерах, начиная с сокета LGA 1366 частоты компьютерной шины, которая называется QuickPath Interconnect, и шины памяти могут различаться.
Периферийные шины
Существуют системы, преимущественно старые, где FSB и периферийные шины ISA, PCI, AGP имеют общую опорную частоту, и попытка изменения частоты FSB не посредством её коэффициента умножения, а посредством изменения опорной частоты приведёт к изменению частот периферийных шин, и даже внешних интерфейсов, таких как Parallel ATA. На других системах, преимущественно новых, частоты периферийных шин не зависят от частоты FSB.
В системах с высокой интеграцией контроллеры памяти и периферийных шин могут быть встроены в процессор, и сама FSB в таких процессорах отсутствует принципиально. К таким системам можно отнести, например, платформу Intel LGA1156.
Видео:Индекс скорости и Индекс нагрузки - что это такое?Скачать
Центральный процессор
Центральный процессор – устройство, непосредственно осуществляющее процесс обработки данных. Основная задача процессора – это интерпретация команд и рассылка соответствующих управляющих сигналов к другим устройствам. Процессоры в ПЭВМ выполнены в виде одной микросхемы и потому называются такжемикропроцессорами.
Основные характеристики процессора:
Тактовая частотапроцессора число элементарных операций — тактов, выполняемых в течение одной секунды. В современных ПЭВМ под тактовой частотой понимается внутренняя частота. Обмен данными с внешним миром осуществляется на частоте системной шины, которая всегда меньше внутренней частоты процессора. Тактовая частота грубо характеризует скорость работы процессора.
Длина слова(разрядность процессора) – это максимальное количество разрядов двоичного кода, которые могут передаваться или обрабатываться одновременно за один такт. Все современные микропроцессоры 32 или 64 разрядные.
Применительно к ПЭВМ понятие «разрядность» включает:
разрядность внутренних регистров (внутренняя длина слова);
разрядность шины данных (внешняя длина слова);
Разрядность внутренних регистров определяет формат команд процессора и размер данных, с которыми можно оперировать в командах.
Разрядность шины данных определяет скорость передачи информации между процессором и другими устройствами.
Разрядность шины адреса определяет размер адресного пространства, т.е. максимальное число байтов, к которым можно осуществить доступ. Например, если разрядность шины адреса равна 16, то возможный размер памяти в ЭВМ равен 216=65536 или 65 Кб.
Архитектура процессора – это очень ёмкое понятие, в составе которого можно рассматривать следующие элементы:
способ организации вычислительного процесса;
Система команд – полный список кодов операций, которые способен выполнять процессор. По составу команд различают: CISC-архитектуру и RISC-архитектуру .
Большинство ЭВМ использует CISC-архитектуру. Основная идеяRISC– так упростить команды процессора, чтобы они могли быть выполнены за один такт. Это позволяет спроектировать очень эффективный конвейер команд.
Набор команд процессора определяет его функциональное назначение, в соответствии с которым различают универсальные и специализированные процессоры.
Универсальный процессор способен реализовать любой алгоритм и используется в качестве центрального процессора. Специализированный процессор служит для решения задач определённого класса. Среди таких сопроцессоров можно выделить математические и графические процессоры.
С системой команд связано такое важное свойство, как совместимость. Два процессора называются совместимыми, если их системы команд одинаковы.
Программу ускорения клавиатуры можно записать в машинном языке:
B8 05 03 BB-00 00 CD 16-CD 20
или в переводе на автокод
Данная программа использует систему команд процессора Intel8086 и без изменений может быть перенесена на процессорыIntel80286, 80386, 80486,PentiumI,PentiumII,PentiumIII. Поэтому все эти процессоры называются совместимыми снизу вверх. Сверху вниз эти процессоры несовместимы, так как, например,PentiumIIIимеет команды, которые не поддерживаются процессоромPentiumI.
Для повышения эффективности вычислительного процесса в современных микропроцессорах применяется конвейернаяисуперскалярнаяобработки данных.
Процессор может иметь устройства, которые позволяют использовать его в многопроцессорной конфигурации. Работа в мультипроцессорномрежиме обеспечивается как архитектурой процессора, так и возможностями операционной системы. Например,Windows95 не имеет такой поддержки, аWindowsNTServerподдерживает четыре процессора.
Архитектура микропроцессора Pentiumимеет следующие особенности:
суперскалярная конвейерная архитектура;
конвейерное вычисление с плавающей точкой;
повышенная разрядность внешней шины данных.
Разрядность регистров – 32 бит, шины адреса — 32 бит, шины данных — 64 бит. Производительность микропроцессора PentiumIс тактовой частотой 66 МГц оценивается в 112MIPS.
Оценка производительности различных микропроцессоров приведена в табл. 2.3.
Видео:Разгон кольцевой шины и кэша L3 процессораСкачать
Основные шины компьютера
Компьютер состоит из множества различных компонентов, это центральный процессор, память, жесткий диск, а также огромное количество дополнительных и внешних устройств, таких как экран, мышка клавиатура, подключаемые флешки и так далее. Всем этим должен управлять процессор, передавать и получать данные, отправлять сигналы, изменять состояние.
Читайте также: Шина кумхо давление шин
Для реализации этого взаимодействия все устройства компьютера связаны между собой и с процессором через шины. Шина — это общий путь, по которому информация передается от одного компонента к другому. В этой статье мы рассмотрим основные шины компьютера, их типы, а также для соединения каких устройств они используются и зачем это нужно.
Видео:Кан шина, что это? Поймет школьник! принцип работыСкачать
Что такое шина компьютера
Как я уже сказал — шина — это устройство, которое позволяет связать между собой несколько компонентов компьютера. Но к одной шине могут быть подключены несколько устройств и у каждой шины есть свой набор слотов для подключения кабелей или карт.
Фактически, шина — это набор электрических проводов, собранных в пучок, среди них есть провода питания, а также сигнальные провода для передачи данных. Шины также могут быть сделаны не в виде внешних проводов, а вмонтированы в схему материнской платы.
По способу передачи данных шины делятся на последовательные и параллельные. Последовательные шины передают данные по одному проводнику, один бит за один раз, в параллельных шинах передача данных разделена между несколькими проводниками и поэтому можно передать большее количество данных.
Видео:Шина компьютера, оперативная память, процессор и мостыСкачать
Виды системных шин
Все шины компьютера можно разделить за их предназначением на несколько типов. Вот они:
- Шины данных — все шины, которые используются для передачи данных между процессором компьютера и периферией. Для передачи могут использоваться как последовательный, так и параллельный методы, можно передавать от одного до восьми бит за один раз. По размеру данных, которые можно передать за один раз такие шины делятся на 8, 16, 32 и даже 64 битные;
- Адресные шины — связаны с определенными участками процессора и позволяют записывать и читать данные из оперативной памяти;
- Шины питания — эти шины питают электричеством различные, подключенные к ним устройства;
- Шина таймера — эта шина передает системный тактовый сигнал для синхронизации периферийных устройств, подключенных к компьютеру;
- Шина расширений — позволяет подключать дополнительные компоненты, такие как звуковые или ТВ карты;
В то же время, все шины можно разделить на два типа. Это системные шины или внутренние шины компьютера, с помощью которых процессор соединяется с основными компонентами компьютера на материнской плате, такими как память. Второй вид — это шины ввода/вывода, которые предназначены для подключения различных периферийных устройств. Эти шины подключаются к системной шине через мост, который реализован в виде микросхем процессора.
Также к шинам ввода/вывода подключается шина расширений. Именно к этим шинам подключаются такие компоненты компьютера, как сетевая карта, видеокарта, звуковая карта, жесткий диск и другие и их мы более подробно рассмотрим в этой статье.
Вот наиболее распространенные типы шин в компьютере для расширений:
- ISA — Industry Standard Architecture;
- EISA — Extended Industry Standard Architecture;
- MCA — Micro Channel Architecture;
- VESA — Video Electronics Standards Association;
- PCI — Peripheral Component Interconnect;
- PCI-E — Peripheral Component Interconnect Express;
- PCMCIA — Personal Computer Memory Card Industry Association (также известна как PC bus);
- AGP — Accelerated Graphics Port;
- SCSI — Small Computer Systems Interface.
А теперь давайте более подробно разберем все эти шины персональных компьютеров.
Шина ISA
Раньше это был наиболее распространенный тип шины расширения. Он был разработан компанией IBM для использования в компьютере IBM PC-XT. Эта шина имела разрядность 8 бит. Это значит что можно было передавать 8 бит или один байт за один раз. Шина работала с тактовой частотой 4,77 МГц.
Для процессора 80286 на базе IBM PC-AT была сделана модификация конструкции шины, и теперь она могла передавать 16 бит данных за раз. Иногда 16 битную версию шины ISA называют AT.
Из других усовершенствований этой шины можно отметить использование 24 адресных линий, что позволяло адресовать 16 мегабайт памяти. Эта шина имела обратную совместимость с 8 битным вариантом, поэтому здесь можно было использовать все старые карты. Первая версия шины работала на частоте процессора — 4,77 МГц, во второй реализации частота была увеличена до 8 МГц.
Шина MCA
Компания IBM разработала эту шину в качестве замены для ISA, для компьютера PS/2, который вышел в 1987 году. Шина получила еще больше усовершенствований по сравнению с ISA. Например, была увеличена частота до 10 МГц, а это привело к увеличению скорости, а также шина могла передавать 16 или 32 бит данных за раз.
Также была добавлена технология Bus Mastering. На плате каждого расширения помещался мини-процессор, эти процессоры контролировали большую часть процессов передачи данных освобождая ресурсы основного процессора.
Одним из преимуществ этой шины было то, что подключаемые устройства имели свое программное обеспечение, а это значит что требовалось минимальное вмешательство пользователя для настройки. Шина MCA уже не поддерживала карты ISA и IBM решила брать деньги от других производителей за использование этой технологии, это сделало ее непопулярной с сейчас она нигде не используется.
Шина EISA
Эта шина была разработана группой производителей в качестве альтернативы для MCA. Шина была приспособлена для передачи данных по 32 битному каналу с возможностью доступа к 4 Гб памяти. Подобно MCA для каждой карты использовался микропроцессор, и была возможность установить драйвера с помощью диска. Но шина все еще работала на частоте 8 МГц для поддержки карт ISA.
Читайте также: Можно ли ставить шины 225 вместо 205
Слоты EISA в два раза глубже чем ISA, если вставляется карта ISA, то она использует только верхний ряд разъемов, а EISA использует все разъемы. Карты EISA были дорогими и использовались обычно на серверах.
Шина VESA
Шина VESA была разработана для стандартизации способов передачи видеосигнала и решить проблему попыток каждого производителя придумать свою шину.
Шина VESA имеет 32 битный канал передачи данных и может работать на частоте 25 и 33 МГц. Она работала на той же тактовой частоте, что и центральный процессор. Но это стало проблемой, частота процессора увеличивается и должна была расти скорость видеокарт, а чем быстрее периферийные устройства, тем они дороже. Из-за этой проблемы шина VESA со временем была заменена на PCI.
Слоты VESA имели дополнительные наборы разъемов, а поэтому сами карты были крупными. Тем не менее сохранялась совместимость с ISA.
Шина PCI
Peripheral Component Interconnect (PCI) — это самая новая разработка в области шин расширений. Она является текущем стандартом для карт расширений персональных компьютеров. Intel разработала эту технологию в 1993 году для процессора Pentium. С помощью этой шины соединяется процессор с памятью и другими периферийными устройствами.
PCI поддерживает передачу 32 и 64 разрядных данных, количество передаваемых данных равно разрядности процессора, 32 битный процессор будет использовать 32 битную шину, а 64 битный — 64 битную. Работает шина на частоте 33 МГц.
В PCI можно использовать технологию Plug and Play (PnP). Все карты PCI поддерживают PnP. Это значит, что пользователь может подключить новую карту, включить компьютер и она будет автоматически распознана и настроена.
Также тут поддерживается управление шиной, есть некоторые возможности обработки данных, поэтому процессор тратит меньше времени на их обработку. Большинство PCI карт работают на напряжении 5 Вольт, но есть карты, которым нужно 3 Вольта.
Шина AGP
Необходимость передачи видео высокого качества с большой скоростью привела к разработке AGP. Accelerated Graphics Port (AGP) подключается к процессору и работает со скоростью шины процессора. Это значит, что видеосигналы будут намного быстрее передаваться на видеокарту для обработки.
AGP использует оперативную память компьютера для хранения 3D изображений. По сути, это дает видеокарте неограниченный объем видеопамяти. Чтобы ускорить передачу данных Intel разработала AGP как прямой путь передачи данных в память. Диапазон скоростей передачи — 264 Мбит до 1,5 Гбит.
PCI-Express
Это модифицированная версия стандарта PCI, которая вышла в 2002 году. Особенность этой шины в том что вместо параллельного подключения всех устройств к шине используется подключение точка-точка, между двумя устройствами. Таких подключений может быть до 16.
Это дает максимальную скорость передачи данных. Также новый стандарт поддерживает горячую замену устройств во время работы компьютера.
PC Card
Шина Personal Computer Memory Card Industry Association (PCICIA) была создана для стандартизации шин передачи данных в портативных компьютерах.
Шина SCSI
Шина SCSI была разработана М. Шугартом и стандартизирована в 1986 году. Эта шина используется для подключения различных устройств для хранения данных, таких как жесткие диски, DVD приводы и так далее, а также принтеры и сканеры. Целью этого стандарта было обеспечить единый интерфейс для управления всеми запоминающими устройствами на максимальной скорости.
Шина USB
Это стандарт внешней шины, который поддерживает скорость передачи данных до 12 Мбит/сек. Один порт USB (Universal Serial Bus) позволяет подключить до 127 периферийных устройств, таких как мыши, модемы, клавиатуры, и другие устройства USB. Также поддерживается горячее удаление и вставка оборудования. На данный момент существуют такие внешние шины компьютера USB, это USB 1.0, USB 2.0, USB 3.0, USB 3.1 и USB Type-C.
USB 1.0 был выпущен в 1996 году и поддерживал скорость передачи данных до 1,5 Мбит/сек. Стандарт USB 1.1 уже поддерживал скорость 12 Мбит/сек для таких устройств, как жесткие диски.
Более новая спецификация — USB 2.0 появилась в 2002 году. Скорость передачи данных выросла до 480 Мбит/сек, а это в 40 раз быстрее чем раньше.
USB 3.0 появился в 2008 году и поднял стандарт скорости еще выше, теперь данные могут передаваться со скоростью 5 Гбит/сек. Также было увеличено количество устройств, которые можно питать от одного порта. USB 3.1 был выпущен в 2013 и тут уже поддерживалась скорость до 10 Гбит/с. Также для этой версии был разработан компактный разъем Type-C, к которому коннектор может подключаться любой стороной.
Видео:Как понять, когда протектор износился и шины пора менятьСкачать
Выводы
В этой статье мы рассмотрели основные шины компьютера, историю их развития, назначение шин компьютера, их типы и виды. Надеюсь эта статья была для вас полезной и вы узнали много нового.
На завершение небольшое видео про шины и интерфейсы компьютера:
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
📽️ Видео
Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать
Системная шина персонального компьютера AGPСкачать
Подробно про CAN шинуСкачать
Главный недостаток системы заземления ТТ. Опыт на стендеСкачать
Nokian Tyres Экспертное мнение Индексы скорости и нагрузки на 4 точки. Шины и диски 4точкиСкачать
Системные шины персонального компьютера для ...Скачать
Как работает LIN шина автомобиля. K-Line L-Line шины данных. Лин шина автомобиля. Lin-bus networkСкачать
Системная шина персонального компьютера ISAСкачать
Как разогнать процессор и память? Гоним по шине и множителю.Скачать
Хождение по гвоздям и мукам: чем хороши и плохи шины Run-FlatСкачать