Соединение по последовательным шинам usb

Каналы связи могут использовать кабели или быть или быть беспроводными. У каждого канала связи имеются свои достоинства и недостатки, которые будут рассмотрены ниже. Общим недостатком для кабельных соединений является необходимость прокладки самого кабеля. Общим недостатком для беспроводных сетей — слабая защищенность передаваемой информации и, как следствие, возможность несанкционированного доступа к ней.

Соединение по последовательным шинам usb

Рис. 1. Каналы связи в простейших вычислительных сетях

По режиму работы кабельные и беспроводные соединения можно разделить на две группы:

1. «точка — точка»(англ.ad-hoc)—сеть состоит только из двух компьютеров,соединенных напрямую, без участия дополнительного сетевого оборудования (сетевых концентраторов, точек доступа и т.д.);

2. «инфраструктура»(англ.infrastructure)—сеть организуется с использованием

ТФУПД Занятие №4.Кабельные линии связи

специального сетевого оборудования (сетевых концентраторов, точек доступа и т.д.). Большинство соединений, отнесенных на рис.1 к категории «инфраструктура»,

также могут образовывать соединения в режиме «точка» — «точка».

Соединение по последовательным и параллельным портам

До недавнего времени соединение по последовательным и параллельным портам являлось наиболее распространенным способом объединения двух компьютеров в вычислительную сеть в режиме «точка» — «точка».

Для такого соединения используется нуль-модемный кабель. Максимальная длина кабеля ограничена расстоянием 15 м. Для передачи данных на обоих компьютерах необходимо запустить специальное ПО.

Пример.Для ОСDOSобычно используетсяNorton Commander;для ОСWindows

Видео:Лекция 310. Шина USB - функциональная схемаСкачать

Лекция 310.  Шина USB - функциональная схема

— входящая в состав ОС программа прямое кабельное соединение (англ. Direct Cable

Connection, DCC).

Для современных ОС такое соединение выглядит полноценным сегментом сети. Скорость передачи данных через последовательный порт ограничена 115 Кбит/с, параллельный порт — 1200 Кбит/с.

Пример. Рассчитайте минимальное время, необходимое для передачи 600 Кбайт данных через параллельный порт.

Т.к. в 1 байте содержится 8 бит, то необходимо переслать 600 * 8 = 4800 Кбит данных. Т.к. максимальная скорость передачи данных по параллельному порту составляет 1200Кбит/с,то минимальное время передачи составляет:Тмин=4800/1200 = 4 с. Ответ:

Достоинствамисоединения по последовательным и параллельным портамявляются малая цена, относительно большая длина кабеля, недостатком — малая скорость передачи данных.

Соединение по последовательным шинам USB и FireWire

Шины передачи данных USB (англ. Universal Serial Bus — универсальная последовательная шина) и IEEE 1394, известная также под названием Fire Wire (англ. огненный провод), спроектированные для работы с периферийным оборудованием,применяются и для организации компьютерных сетей.

Для USB максимальная длина соединительного кабеля равна 5 м. Максимальная скорость передачи данных:

• для стандарта USB 1.0 — 1,5 Мбит/с;

• для стандарта USB 1.1 — 12 Мбит/с;

• для стандарта USB 2.0 — 480 Мбит/с.

При работе с FireWire максимальная длина кабеля — 4.5 м. Максимальная скорость передачи данных:

• для стандарта IEEE 1394a — 400 Мбит/с;

Видео:лекция 313. Формирование пакетов на шине USBСкачать

лекция 313. Формирование пакетов на шине USB

• для стандарта IEEE 1394b — 800 Мбит/с.

Для обеих шин применяются схожие построения сетевой структуры: используется специфичный для шин транспортный протокол, поверх которого работают обычные прикладные сетевые протоколы. Поэтому компьютер, который помимо сети на базе FireWire или USB подключен к Ethernet-сети, необходимо настраивать как шлюз между физически различающимися сегментами. Для удлинения сегментов можно использовать аппаратные репитеры или специальный оптический кабель длиной до 100 м.

Достоинствомсоединений на базеFireWireиUSBявляется большая пропускнаяспособность каналов, недостатком — небольшая длина соединения.

ТФУПД Занятие №4.Кабельные линии связи

Соединение по технологии HomePlug PowerLine

Технология HomePlug PowerLine (англ. соединение по домашней электропроводке)позволяет соединять компьютеры,используя в качестве канала связисуществующую электропроводку. Эта технология используется, когда прокладка нового кабеля или использование беспроводных сетей невозможны или нецелесообразны.

Линии электросетей для передачи данных применяются уже давно. Низкоскоростная технология PLC (англ. PowerLine Communication — передача по силовым линиям) использовалась для передачи данных в энергосистемах и на железных дорогах.

При создании высокоскоростной технологии необходимо было решить ряд проблем:

1. Достичь приемлемого уровня помехоустойчивости;

2. Адаптировать протокол к коммуникационным параметрам (затухание сигнала, частотные и фазовые искажения и др.);

3. Увеличить дальность передачи данных для установленных стандартов напряженности поля в электросети;

4. Обеспечить электромагнитную совместимость приборов в частотном диапазоне 1.6-30 МГц, используемом для передачи данных по электросети и радиолюбительскими службами.

В 2000г. некоммерческая организация HomePlug Powerline Alliance, объединявшая

в то время 13 компаний, приступила к разработке стандарта, взяв за его основу технологию PowerPacket. В 2001 г. HomePlug Powerline Alliance представил спецификацию HomePlug 1.0, описывающую технологию и протокол организации высокоскоростной передачи данных по электросети. Стандарт предусматривает использование метода OFDM (англ. Orthogonal Frequency Division Multiplexing

Видео:Контроллер универсальной последовательной шины USBСкачать

Контроллер универсальной последовательной шины USB

ортогональное частотное разделение каналов с мультиплексированием). Производится частотное разделение канала на 84 полосы в диапазоне от 4.3 до 20.9 МГц. Для модуляции применяется относительная квадратурная фазовая модуляция со сдвигом (англ.

DQPSK).В качестве протокола доступа к среде используется коллективный доступ с обнаружением несущей и избежанием столкновений (англ. CSMA/CA).

Читайте также: Шина pen в шкафу

Помехоустойчивость соединения обеспечивается контролем коэффициента «сигнал/шум» на каждой из несущих частот и исключением «шумящих» каналов. Максимальная скорость передачи данных по электросети в соответствии со спецификацией HomePlug1.0 иболее поздней HomePlug 1.0.1 составляет14Мбит/с,а максимальная длина сегментамежду двумя устройствами — 300 м.

В разрабатываемой версии HomePlug AV скорость передачи данных возрастет до 100 Мбит/с, что откроет возможность их использования для передачи сигнала телевидения высокой четкости HDTV и VoIP.

Пример.АдаптерыHomePlugвыпускаются с интерфейсом подключенияUSB(напр. EDIMAX НР-1001) или разъемом RJ-45 (напр. EDIMAX HP-1002, работающим по сетевому протоколу lOBase-T/100Base-TX).

Адаптеры HomePlug подключаются к электропроводу с одной фазой, иначе приходится использовать специальные коммутаторы. Образуемая сеть имеет топологию «шина». Пересылаемые данные поступают на все адаптеры, но принимает их только тот адаптер, которому они адресованы. Работоспособность сети HomePlug и скорость передачи данных практически не зависят от скачков нагрузки электросети (включения или выключения нагревательных приборов, холодильников, стиральных машин и т.п.).

Достоинствотехнологии:никаких новых проводов,мобильность в зонепроложенной электропроводки. Недостаток этой технологии — возможность несанкционированного доступа.

ТФУПД Занятие №4.Кабельные линии связи

Последовательные шины USB и FireWire

Последовательные шины позволяют объединять множество устройств, используя всего 1-2 пары проводов. Функциональные возможности этих шин гораздо шире, чем у традиционных интерфейсов локальных сетей, — USB и FireWire способны передавать трафик аудио- и видеоданных. Последовательные шины по своей организации сильно отличаются от параллельных. В последовательных шинах нет отдельных линий для данных, адреса и управления — все протоколь­ные функции приходится выполнять, пользуясь одной или двумя (в FireWire) парами сигнальных проводов. Это накладывает отпечаток на построение шинно­го протокола, который в последовательных шинах строится на основе пересылок пакетов — определенным образом организованных цепочек бит. Заметим, что в терминологии USB пакеты и кадры имеют несколько иную трактовку, нежели в сетях передачи данных. В параллельных шинах имеются возможности явной синхронизации интерфейсной части ведущих и ведомых устройств; исполнение каждого шага протокола обмена может быть подтверждено, и, при необходимо­сти, некоторые фазы обмена могут продлеваться по «просьбе» не успевающего устройства. В последовательных шинах такой возможности нет — пакет пересы­лается целиком, а синхронизация возможна только по принимаемому потоку бит. Эти и другие особенности сближают последовательные шины с локальными сетя­ми передачи данных.

Наибольшую популярность имеют шины USB и FireWire, хотя последняя пока что в PC-совместимых компьютерах используется не повсеместно. Последователь­ные шины FireWire и USB, имея общие черты, являются, тем не менее, существен­но различными технологиями. Обе шины обеспечивают простое подключение большого числа ПУ (127 для USB и 63 для FireWire), допуская коммутации и вклю­чение/выключение устройств при работающей системе. По структуре топология обеих шин достаточно близка, но FireWire допускает большую свободу и простран­ственную протяженность. Хабы USB входят в состав многих устройств и для пользователя их присутствие зачастую незаметно. Обе шины имеют линии пита­ния устройств, но допустимая мощность для FireWire значительно выше. Обе шины поддерживают технологию PnP. Различаются пропускная способность и управление шинами.

Шина USBориентирована на периферийные устройства, подключаемые к PC. USB позволяют передавать цифровые аудиосигналы, а шина USB 2.0 способна нести и видеоданные. Все передачи управляются централизо­ванно, и PC является необходимым управляющим узлом, находящимся в корне древовидной структуры шины. Адаптер USB пользователи современных ПК по­лучают почти бесплатно, поскольку он входит в состав всех современных чипсе­тов системных плат. Непосредственное соединение нескольких PC шиной USB не пре­дусматривается.

USB (Universal Serial Bus — универсальная последовательная шина) является промышленным стандартом расширения архитектуры PC, ориентированным на интеграцию с телефонией и устройствами бытовой электроники. Версия 1.1, (которая поддерживается большинством ПУ) вышла осенью 1998 года. Весной 2000 года опубликована спецификация USB 2.0, в которой предусмотрено 40-кратное повышение пропускной способности шины. Первоначально шина обеспечивала две скорости передачи информации: полная скорость FS (full speed) — 12 Мбит/с и низкая скорость LS (Low Speed) — 1,5 Мбит/с. В версии 2.0 определена еще и высокая скорость HS (High Speed) — 480 Мбит/с, которая позволяет существенно расширить круг устройств, подключаемых к шине. В одной и той же системе могут присутство­вать и одновременно работать устройства со всеми тремя скоростями. Шина с ис­пользованием промежуточных хабов позволяет соединять устройства, удаленные от компьютера на расстояние до 25 м.

Видео:лекция 403 CAN шина- введениеСкачать

лекция 403  CAN шина- введение

USB обеспечивает обмен данными между хост-компьютером и множеством периферийных устройств (ПУ). Согласно спецификации USB, устройства (devices) могут являться хабами, функциями или их комбинацией. Устройство- (hub) только обеспечивает дополнительные точки подключения устройств к шине. Устройство- (function) USB предоставляет системе дополнительные функ­циональные возможности, например подключение к ISDN, цифровой джойстик, акустические колонки с цифровым интерфейсом и т. п. Комбинированное устрой­ство (compound device), содержащее несколько функций, представляется как хаб с подключенными к нему несколькими устройствами. Устройство USB должно иметь интерфейс USB, обеспечивающий полную поддержку протокола USB, выполнение стандартных операций (конфигурирование и сброс) и предоставление информации, описывающей устройство. Работой всей системы USB управляет хост-контроллер (host controller), являющийся программно-аппаратной подсис­темой хост-компьютера. Шина позволяет подключать, конфигурировать, исполь­зовать и отключать устройства во время работы хоста и самих устройств. Шина USB является хост-центрической: единственным ведущим устройством, которое управляет обменом, является хост-компьютер, а все присоединенные к ней периферийные устройства — исключительно ведомые. Физическая топология шины USB — многоярусная звезда. Ее вершиной является хост-контроллер, объе­диненный с корневым хабом (root hub). Хаб являет­ся устройством-разветвителем, он может являться и источником питания для подключенных к нему устройств. К каждому порту хаба может непосредственно подключаться периферийное устройство или промежуточный хаб; шина допус­кает до 5 уровней каскадирования хабов. Каждый промежуточный хаб имеет несколько нисходящих (downstream) портов для подключения периферийных устройств и один восходящий (upstream) порт для подключения к корневому хабу или нисходящему порту вышестоящего хаба. Логическая топология USB — про­сто звезда: для хост-контроллера хабы создают иллюзию непосредственного под­ключения каждого устройства. В отличие от шин расширения (ISA, PCI, PC Card), где программа взаимодействует с устройствами посредством обращений по фи­зическим адресам ячеек памяти, портов ввода-вывода, прерываниям и каналам DMA, взаимодействие приложений с устройствами USB выполняется только че­рез программный интерфейс. Этот интерфейс, обеспечивающий независимость обращений к устройствам, предоставляется системным ПО контроллера USB.

Читайте также: Шины выпускаемые в сербии

В отличие от громоздких дорогих шлейфов параллельных шин, ка­бельное хозяйство USB простое и изящное. Кабель USB содержит одну экрани­рованную витую пару с импедансом 90 Ом для сигнальных цепей и одну неэкранированную для подачи питания (+5 В), допустимая длина сегмента — до 5 м. Для низкой скорости может использоваться невитой неэкранированный кабель дли­ной до 3 м. Система кабелей и коннекторов USB не дает возможно­сти ошибиться при подключении устройств.

В шине используется дифференциальный способ передачи сигналов D+ и D- по двум проводам. Подключение устройства HS определяется на этапе обмена конфигурационной информацией — физически на первое время устройство HS должно подключаться как FS.

Введение высокой скорости требует тщательного согласования приемопередатчиков и линии связи. На этой скорости может работать только кабель с экранированной витой парой для сигнальных линий. Для высокой скорости аппаратура USB должна иметь дополнительные специальные приемопередатчики.

Скорость передачи данных (LS, FS или HS) выбирается разработчиком перифе­рийного устройства в соответствии с потребностями этого устройства. Реализа­ция низких скоростей для устройства обходится несколько дешевле (приемо­передатчики проще, а кабель для LS может быть и неэкранированной невитой парой).

Хабы USB 1.1 обязаны поддерживать скорости FS и LS, скорость подключенного к хабу устройства определяется автоматически по разности потенциалов сигналь­ных линий. Хабы USB 1.1 при передаче пакетов являются просто повторителями, обеспечивающими прозрачную связь периферийного устройства с контроллером. Передачи на низкой скорости довольно расточительно расходуют потенциальную пропускную способность шины: за то время, на которое они занимают шину, высоко­скоростное устройство может передать данных в 8 раз больше. Но ради упрощения и удешевления всей системы на эти жертвы пошли, а за распределением полосы между разными устройствами следит планировщик транзакций хост-контроллера.

В спецификации 2.0 скорость 480 Мбит/с должна уживаться с прежними, но при таком соотношении скоростей обмены на FS и LS «съедят» возможную полосу пропускания шины без всякого «удовольствия» (для пользователя). Чтобы этого не происходило, хабы USB 2.0 приобретают черты коммутаторов пакетов. Если к порту такого хаба подключено высокоскоростное устройство (или аналогичный хаб), то хаб работает в режиме повторителя, и транзакция с устройством на HS занимает весь канал до хост-контроллера на все время своего выполнения. Если же к порту хаба USB 2.0 подключается устройство или хаб 1.1, то по части канала до контроллера пакет проходит на скорости HS, запоминается в буфере хаба, а к старому устройству или хабу идет уже на его «родной» скорости FS или LS. При этом функции контроллера и хаба 2.0 (включая и корневой) усложняются, по­скольку транзакции на FS и LS расщепляются и между их частями вклиниваются высокоскоростные передачи. От старых (1.1) устройств и хабов все эти тонкости скрываются, что и обеспечивает обратную совместимость. Вполне понятно, что устройство USB 2.0 сможет реализовать высокую скорость, только если по пути от него к хост-контроллеру (тоже 2.0) будут встречаться только хабы 2.0. Если это правило нарушить и между ним и контроллером 2.0 окажется старый хаб, то связь может быть установлена только в режиме FS. Если такая скорость устройство и клиентское ПО устроит, то подключенное устройство работать будет, но появится сообщение о неоптимальной конфигурации соединений. Устройства и ПО, критичные к полосе пропуска­ния шины, в неправильной конфигурации работать откажутся и категорично по­требуют переключений. Если же хост-контроллер старый, то все преимущества USB 2.0 окажутся недоступными пользователю. В этом случае придется менять хост-контроллер (менять системную плату или приобретать PCI-карту контрол­лера). Контроллер и хабы USB 2.0 позволяют повысить суммарную пропускную способность шины и для старых устройств. Если устройства FS подключать к раз­ным портам хабов USB 2.0 (включая и корневой), то для них суммарная пропуск­ная способность шины USB возрастет по сравнению с 12 Мбит/с во столько раз, сколько используется портов высокоскоростных хабов.

Читайте также: Шины ханкук динапро 265

Шина FireWireориентирована на устройства бытовой электроники, которые с ее помощью могут быть объединены в единую домашнюю сеть. К этой сети может быть подключен компьютер, и даже не один. Принципиальным преимуществом шины 1394 является отсутствие необходимости в специальном контроллере шины (компьютере). Любое передающее устройство может получить полосу изохрон­ного трафика и начинать передачу по сигналу автономного или дистанционного управления — приемники «услышат» эту информацию. При наличии контролле­ра соответствующее ПО может управлять работой устройств, реализуя, например, цифровую студию нелинейного видеомонтажа или снабжая требуемыми мульти­медийными данными всех заинтересованных потребителей информации.

Стандарт 1394 определяет три возможные частоты передачи сигналов по кабелям: 98,304, 196,608 и 393,216 Мбит/с, которые округляют до 100, 200 и 400 Мбит/с. Частоты в стандарте обозначаются как S100, S200 и S400 соответственно.

Основные свойства шины FireWire перечислены ниже.

♦. Многофункциональность. Шина обеспечивает цифровую связь до 63 устройств без применения дополнительной аппаратуры (хабов). Устройства бытовой электроники — цифровые камкордеры (записывающие видеокамеры), камеры для видеоконференций, фотокамеры, приемники кабельного и спутникового телевидения, цифровые видеоплейеры (CD и DVD), акустические системы, цифровые музыкальные инструменты, а также периферийные устройства ком­пьютеров (принтеры, сканеры, устройства дисковой памяти) и сами компью­теры могут объединяться в единую сеть.

Высокая скорость обмена и изохронные передачи. Шина позволяет даже на на­
чальном уровне (S100) передавать одновременно два канала видео (30 кадров в секунду) широковещательного качества и стерео-аудиосигнал с качеством CD.

Видео:Как работает USB? Просто, доступно, с примерами.Скачать

Как работает USB? Просто, доступно, с примерами.

Низкая цена компонентов и кабеля.

Легкость установки и использования. FireWire расширяет технологию PnP. Си­стема допускает динамическое (горячее) подключение и отключение устройств. Устройства автоматически распознаются и конфигурируются при включении/отключении. Питание от шины (ток до 1,5 А) позволяет подключенным устрой­ствам общаться с системой даже при отключении их питания. Управлять шиной и другими устройствами могут не только PC, но и другие «интеллектуальные» устройства бытовой электроники.

FireWire по инициативе VESA позиционируется как шина «домашней сети», объе­диняющей всю бытовую и компьютерную технику в единый комплекс. Эта сеть является одноранговой (peer-to-peer), чем существенно отличается от USB.

Кабельная сеть 1394 собирается по простым правилам — все устройства соединя­ются друг с другом кабелями по любой топологии (древовидной, цепочечной, звез­дообразной). Каждое «полноразмерное» устройство (узел сети) обычно имеет три равноправных соединительных разъема. Некоторые малогабаритные устройства могут иметь только один разъем, что ограничивает возможные варианты их мес­тоположения. Стандарт допускает и до 27 разъемов на одном устройстве, которое будет играть роль кабельного концентратора. Допускается множество вариантов подключения устройств, но со следующими ограничениями:

♦ между любой парой узлов может быть не более 16 кабельных сегментов;

♦ длина сегмента стандартного кабеля не должна превышать 4,5 м;

♦ суммарная длина кабеля не должна превышать 72 м (применение более каче­ственного кабеля позволяет ослабить влияние этого ограничения);

♦ топология не должна иметь петель, хотя в последующих ревизиях предполагается автоматическое исключение петель в «патологических» конфигурациях.

Стандартный кабель 1394 содержит 6-проводов, заключенных в общий экран, и имеет однотипные разъемы на концах. Две витые пары используются для передачи сигналов (ТРА и ТРВ) раздельно для приемника и передатчика, два провода задействованы для питания устройств (8-40 В, до 1,5 А). В стандарте предусмотрена гальваническая развязка устройств, для чего исполь­зуются трансформаторы или конден­саторы.

Шина поддерживает динамическое реконфшурирование — возможность «горяче­го» подключения и отключения устройств. Когда устройство включается в сеть, оно широковещательно передает короткий асинхронный пакет самоидентификации. Все уже подключенные устройства, приняв такой пакет, фиксируют появление но­вичка и выполняют процедуру сброса шины. По сбросу производится определе­ние структуры шины, каждому узлу назначается физический адрес и производит­ся арбитраж мастера циклов, диспетчера изохронных ресурсов и контроллера шины. Через секунду после сброса все ресурсы становятся доступны­ми для последующего использования, и каждое устройство имеет полное пред­ставление обо всех подключенных устройствах и их возможностях. Отключение устройства от шины также обнаруживается всеми устройствами. Благодаря нали­чию линий питания интерфейсная часть устройства может оставаться подключен­ной к шине даже при отключении питания функциональной части устройства.

Принципиальным преимуществом шины 1394 является отсутствие необходимости в контроллере. Любое передающее устройство может получить полосу изохронно­го трафика и начинать передачу по сигналу автономного или дистанционного управления — приемник «услышит» эту информацию. Для шины 1394 наиболее привлекательна возможность соединения устройств бытовой электроники в «домаш­нюю сеть», причем как с использованием PC, так и без. При этом стандартные однотипные кабели и разъемы 1394 заменяют множество разнородных соединений устройств бытовой электроники с PC. Разнотипные цифровые сигналы (сжатые видеосигналы, цифровые аудиосигналы, команды MIDI и управления устройства­ми, данные) мультиплексируются в одну шину, проходящую по всем помещени­ям..

Адаптер FireWire, например АНА-8940 фирмы Adaptec, может устанавливаться в любой PC, имеющий свободный слот PCI.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле


    источники:

    Видео:Лекция "Интерфейсы (часть I). RS-232/422/485. SPI"Скачать

    Лекция "Интерфейсы (часть I). RS-232/422/485. SPI"

    https://fasad-adelante.ru/soedinenie-po-posledovatelnym-shinam-usb

    📸 Видео

    Лекция 311. Шина USB - кодирование сигналовСкачать

    Лекция 311. Шина USB - кодирование сигналов

    MCP2515, контроллер CAN шины с интерфейсом SPIСкачать

    MCP2515, контроллер CAN шины с интерфейсом SPI

    usb mach3 - подключение драйверовСкачать

    usb mach3 - подключение драйверов

    Так вот для чего нужен третий и четвертый вывод вентилятора.Это надо знатьСкачать

    Так вот для чего нужен третий и четвертый вывод вентилятора.Это надо знать

    Простая проверка CAN шины. Сканер не видит автомобиль через OBD2. Как правильно выбрать изоленту.Скачать

    Простая проверка CAN шины. Сканер не видит автомобиль через OBD2. Как правильно выбрать изоленту.

    USB и CAT подключения для Малахит-DSP/DSP2. USB and CAT connections for Malahit-DSP/DSP2.Скачать

    USB и CAT подключения для Малахит-DSP/DSP2. USB and CAT connections for Malahit-DSP/DSP2.

    4-х осевой USB контроллер ЧПУ BSMCE04U-PP Mach3 RnRMotion. Подключение #4axis #cnc #diyСкачать

    4-х осевой  USB контроллер  ЧПУ BSMCE04U-PP Mach3 RnRMotion. Подключение #4axis #cnc #diy

    IT 81. Шины PCIe, USB 1-3. 239 стр.Скачать

    IT 81. Шины PCIe, USB 1-3.  239 стр.

    ЭТО ГЕНИАЛЬНО! Как правильно соединить провода!Скачать

    ЭТО ГЕНИАЛЬНО! Как правильно соединить провода!

    Как присоединить проводники из меди и алюминия к оцинкованной шинеСкачать

    Как присоединить проводники из меди и алюминия к оцинкованной шине

    Параллельное соединение аккумуляторов электровелосипедаСкачать

    Параллельное соединение аккумуляторов электровелосипеда

    Как управлять автомобилем через CAN-шину?Скачать

    Как управлять автомобилем через CAN-шину?

    ДАТЧИКИ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ ЧЕРЕЗ USB К КРУТОЙ МАГНИТОЛЕ 10,2 ДЮЙМА из ALIEXPRESSСкачать

    ДАТЧИКИ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ ЧЕРЕЗ USB К КРУТОЙ МАГНИТОЛЕ 10,2 ДЮЙМА из ALIEXPRESS

    Последовательное и параллельное соединение аккумуляторов. Урок №3Скачать

    Последовательное и параллельное соединение аккумуляторов. Урок №3
Поделиться или сохранить к себе:
Технарь знаток