Сопротивление качению для шин

Сопротивление качению для шин

Сопротивление качению — это совокупность сил, которые воздействуют на шину и препятствуют её свободному движению вперёд. На его преодоление необходима дополнительная энергия, поэтому 5-15% топлива автомобиль расходует лишь на то, чтобы просто катиться вперёд.

Чтобы понять как это работает на практике, представьте: вы разгоняете автомобиль, затем отпускаете педаль газа и просто катитесь вперёд. Спустя какое-то время машина останавливается. На одних шинах это произойдет через 15 метров, на других через 18м, на третьих через 20м. Шины, которые проедут дальше всех, обладают самым низким сопротивлением качению и лучшей топливной экономичностью. Класс экономичности обычно указан на этикетке шины и обозначается латинскими буквами от A до G, где A — лучшая экономичность, G — худшая.

Разберём, что влияет на экономичность шины и производители работают над её улучшением.

Видео:Что такое сопротивление качению шинСкачать

Что такое сопротивление качению шин

От чего зависит сопротивление качению шины

Есть два основных фактора, которые влияют на сопротивление качению покрышки:

  • Во время движения боковины и блоки протектора постоянно деформируются и возвращаются в исходное положение. На такие короткие, но регулярные циклы приходится до 90% потери энергии.
  • Также на шину также воздействует аэродинамическое сопротивление, которое отнимает ещё от 0 до 15% энергии.

Видео:Сопротивление качению шин что это такоеСкачать

Сопротивление качению шин что это такое

Как производители снижают сопротивление качению

Изменение практически каждого элемента шины имеет потенциал к повышению её топливной экономичности. Вот что делают производители:

  • Облегчают массу шины, без ущерба для её прочности.
  • Уменьшают высоту протектора, чтобы снизить деформации блоков во время движения. Но при этом важно сохранить устойчивость шины к аквапланированию и её ресурс.
  • Оптимизируют боковину, расположение и форму блоков протектора таким образом, чтобы они меньше деформировались при езде.
  • Улучшают состав резиновой смеси за счет специальных добавок и соединений, которые снижают нагрев покрышки и её силу трения.
  • Оптимизируют рисунок протектора, чтобы ему оказывалось меньшее аэродинамическое сопротивление.

Видео:Понимание сопротивления качению!Скачать

Понимание сопротивления качению!

У топливоэкономичных шин худшее сцепление с дорогой?

Есть мнение, что высокая топливная экономичность шины вредит её тормозным качества. Ведь с одной стороны покрышка должна испытывать меньшую силу трения, чтобы легко катиться и потреблять меньше топлива. С другой стороны, сила трения должна быть большой, чтобы у шины было надежное сцепление с асфальтом. Это подтверждают и многие тесты, в которых «зелёные» шины занимают первые места по расходу топлива, но слабо тормозят на асфальте.

Это справедливо лишь в отношении дешевых шин или старых моделей. Ежегодно компании вроде Michelin, Continental, Goodyear и другие премиум-производители вкладывают огромные деньги в разработку новых шин. Современные материалы и технологии моделирования позволяют выпускать максимально сбалансированные покрышки, которые обладают высокой топливной экономичностью и отличными сцепными качествам. Но и являются такие шины самыми дорогими в своём классе.

Видео:Расход топлива: какие шины купить, чтобы сэкономить. Примеры в цифрах и советыСкачать

Расход топлива: какие шины купить, чтобы сэкономить. Примеры в цифрах и советы

Сопротивление качению шины — что это и от чего зависит

Сопротивление качению для шин

Мало кто из автомобилистов уделял должное внимание такой характеристике покрышек, как сопротивление качению шины. А зря. Автомобильная резина настолько сложный технический элемент, что от неё зависит не только проходимость и безопасность при вождении, но и экономия топлива. В этом случае, выигрывают и автовладельцы, и природозащитники, так как сокращение выхлопных газов приводит к меньшей степени антропогенного загрязнения окружающей среды.

Сопротивление качению для шин

Видео:Сопротивление качениюСкачать

Сопротивление качению

Что такое сопротивление качению шины

Чтобы коротко и доходчиво объяснить, что такое сопротивление качению колеса, необходимо представить покрышку в пятне контакта с автодорогой. В этом месте, резина расширяется под нагрузкой машины. В совокупности с инерцией движения автомобиля, резина нагревается и растрачивает часть энергии, передаваемой от мотора, это явление и получило название — сопротивление качению шины. Оно измеряется по формуле Pf = Q х f, где «Q» – обычная нагрузка авто, а «f» коэффициент трения качения.

Сопротивление качению для шин

Для каждого дорожного покрытия, коэффициент «f» имеет своё значение, например, для асфальтобетона 0,01, а для щебёночного покрытия 0,025. Всего используется 6 значений «f» для расчёта формулы колёсной технике. Все значения и наименование покрытий, можно найти в соответствующей таблице.

Видео:Сниженное сопротивление качениюСкачать

Сниженное сопротивление качению

Каким нагрузкам подвержена шина

В движение, автошина подвержена многочисленным нагрузкам и деформациям. Все они влияют на степень сопротивления качения шины. К таким нагрузкам относятся:

  • аэродинамика кузова машины;
  • инерция автомобиля;
  • вес транспортного средства;
  • состояние амортизаторов и повестки;
  • тип привода авто.

Сопротивление качению для шин

Если автомобиль наезжает на неровность при малой скорости, то он способен остановиться. Чтобы создать кинетическую энергию для преодоления препятствия, необходимо обеспечить машине более высокую скорость, а это дополнительная энергия от ДВС.

Видео:Сопротивление качениюСкачать

Сопротивление качению

От чего зависит сопротивление качению

Сопротивление качению для шин

Степень явления сопротивления качения шины, зависит от множества факторов. Среди самых известных можно выделить такие, как:

  • Конструкция колеса. Именно состав каучука и дополнительных материалов, влияет на степень сопротивления качения резины. Например, один и тот же автомобиль с покрышками разной конструкции и мягкости, может обеспечить расхождение до ½ в показателях;
  • Коэффициент скорости покрышки. Чтобы обеспечить колесу заявленные характеристики на определённых скоростях, конструкция шин может иметь различные усиления. Все они оказывают влияние на твёрдость изделия, что понижает сопротивление качения;
  • Габарит колеса. Большое колесо имеет меньшее сопротивление качению. С каждым дополнительным 1 см радиуса, степень сопротивления снижается на 1%;
  • Тип протектора. Чем глубже канавки протектора, тем выше сопротивление. Например, увеличенная глубина на 50%, обеспечивает дополнительные 12% сопротивления. К окончанию ресурса колеса, степень качения ухудшается на 25 %, в соотношении с новой покрышкой;
  • Давление в баллонах. Слабо накаченная шина, обеспечивает неравномерное пятно контакта. Увеличивается амплитуда деформаций, что приводит к дополнительному нагреву и как следствие, потери энергии. В совокупности, это увеличивает степень качения колеса.
  • Тип дорожного полотна и его температура. Чем ровнее дорога, тем ниже резина подвержена сопротивлению. Чем выше температура окружающей среды и дорожного покрытия, тем меньше степень сопротивления. С каждым 10-градусным шагом в сторону повышения, качение уменьшается на 6 %.

Читайте также: Шины легковые в оренбурге

Видео:Как шины влияют на расход топливаСкачать

Как шины влияют на расход топлива

Особенности экошин

В свете продолжающейся борьбы за экологию, многие производители шин примкнули к движению защитников окружающей среды. Это проявилось в разработке «зелёных» покрышек, выпускаемых с 1992 года. Постепенно, характеристики колёс повышаются. Смысл «зелёных» покрышек в том, что «обутый» автомобиль в резину с пониженным сопротивлением качению расходует меньше топлива, примерно на 20 %. Таким образом, в атмосферу попадает меньшее число вредных веществ, содержащихся в выхлопных газах.

Сопротивление качению для шин

Согласно исследованиям, каждые 45 000 пробега на шинах с низким сопротивлением качению, владельцы экономят сумму, равную ¼ от стоимости всего комплекта колёс. Кроме экономии, водители меньше загрязняют воздух, внося личный вклад в экологию, заботясь о своём потомстве. Чтобы информировать покупателя, производитель наносит на боковой профиль резины соответствующие маркировки: Green X или Reduces CO2.

Видео:Летние шины PIRELLI CINTURATO P7 (P7C2 NEW) - обзор 2023Скачать

Летние шины PIRELLI CINTURATO P7 (P7C2 NEW) - обзор 2023

Характеристики автомобильных шин

Шины проектируются для обеспечения оптимальных характеристик в определенных условиях применения и для каждого типа автомобиля подбираются шины с наиболее приемлемыми характеристиками для данных рабочих условий.

Чтобы научиться правильному обслуживанию шин, необходимо знать общие характеристики шин. Поэтому в этой главе будут рассмотрены следующие вопросы:

• Сопротивление качению л Выделение тепла шинами

• Тормозные характеристики шин

• Волнообразная устойчивая деформация протектора шины

• Характеристики при движении на повороте

1. СОПРОТИВЛЕНИЕ КАЧЕНИЮ ШИН

Значительная часть мощности двигателя расходуется на преодоление следующих сопротивлений движению автомобиля:

• Трение в силовой передаче — в коробке передач, шестернях дифференциала, подшипниках и других составных частях, а также сопротивление, вызываемое маслом

• Инерционное сопротивление при ускорении

• Сопротивление преодолению подъема на уклоне из-за действия силы тяжести и т.д.

• Сопротивление качению шин

На графике ниже показано, как эти сопротивления меняются с изменением скорости движения. При низких скоростях сопротивление качению шин является самым значительным фактором сопротивления движению автомобиля и оно возрастает с ростом скорости автомобиля.

Сопротивление качению для шин

ПРИЧИНЫ СОПРОТИВЛЕНИЯ КАЧЕНИЮ

Сопротивление качению вызывается двумя главными факторами:

1. Сопротивлением трения между шиной и поверхностью дороги

Сопротивление трения создается при движении протектора шины по поверхности дороги. Это сопротивление, составляющее от 5 до 10% от общего сопротивления качению, изменяется в зависимости от состояния дороги, рисунка протектора и других факторов.

2. Сопротивлением, связанным с деформацией шины

При движении автомобиля часть протектора, входящая в контакт с поверхностью дороги, непрерывно изменяется, создавая цикл деформации за каждый оборот колеса, действующую на протектор, боковины и т.д. Этот цикл потребляет часть энергии, требуемой для вращения шины, и создает сопротивление.

Сопротивление качению для шин

Таким образом, энергия, поглощаемая шиной, преобразуется в тепло, которое увеличивает температуру внутри шины и сокращает ее срок службы. Сопротивление, обусловленное деформацией шины, составляет до 90% или более от общего сопротивления качению шины.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СОПРОТИВЛЕНИЕ КАЧЕНИЮ

Сопротивление качению шины определяется по следующей формуле:

где R : Сопротивление качению шины
k : Коэффициент сопротивления качению
W : Нагрузка на шину

Коэффициент сопротивления качению шины меняется с изменением состояния дороги, скорости автомобиля, давления воздуха в шине, типа шины, устройства, рисунка протектора и других факторов:

1. Поверхность дороги

Коэффициент сопротивления качению шины меняется с изменением состояния дорожной поверхности, по которой движется автомобиль:

Сопротивление качению для шин

2. Скорость автомобиля

Коэффициент сопротивления качению постепенно увеличивается вплоть до скорости 100 км/ч, а затем начинает резко возрастать. Это резкое увеличение обусловлено волнообразной деформацией шины (см. стр. 46), создаваемой деформацией протектора шины при более высоких скоростях автомобиля.

Сопротивление качению для шин

3. Давление воздуха в шине

Коэффициент сопротивления качению снижается с увеличением давления воздуха в шине. Это происходит потому, что уменьшается радиальный прогиб и теряется меньше энергии на деформацию шины и сопровождаемое ее внутреннее трение.

Сопротивление качению для шин

4. Отношение высоты профиля шины к его ширине

Уменьшение этого отношения увеличивает жесткость шины. Это, в свою очередь, снижает прогиб шины, тем самым уменьшая коэффициент сопротивления качению.

Сопротивление качению для шин

5. Устройство шины

Радиальная шина имеет меньшее сопротивление качению, чем диагональная шина, поскольку радиальная шина прогибается в основном в радиальном направлении, тогда как каркас диагональной шины подвержен изгибанию, а протектор — деформации.

Сопротивление качению для шин

Сопротивление качению и расход топлива

Расход топлива автомобилем изменяется с изменением сопротивления движению автомобиля. Следовательно, нельзя не учитывать имеющееся сопротивление качению. Вообще, автомобиль, оснащенный радиальными шинами, расходует примерно на 18% меньше топлива, чем автомобиль с диагональными шинами.

Читайте также: Зимние шипованные шины с асимметричным рисунком протектора

2. ВЫДЕЛЕНИЕ ТЕПЛА ШИНАМИ

Поскольку резина, слои корда и другие основные части не являются полностью эластичными, они подвержены увеличенным гистерезисным потерям*, поскольку поглощают энергию при прогибе шины и преобразуют ее в тепло. Так как эти материалы являются плохими проводниками тепла, они не способны быстро рассеять выделяемое тепло, поэтому тепло накапливается внутри материала шины, вызывая рост внутренней температуры шины. Чрезмерное накопление тепла ослабляет связи между слоями резины и корда, в итоге приводя к разделению слоев или даже к разрыву шины. Накопление тепла внутри шины меняется с изменением таких факторов, как давление воздуха в шине, нагрузка, скорость автомобиля, глубина канавок протектора и устройство шины.

При деформировании под нагрузкой не полностью эластичного материала внутреннее трение преобразует часть энергии в тепло, вызывая потерю энергии, известную как «гистерезисная потеря”.

Поскольку шина более эластична при меньшем давлении в ней, чрезмерно низкое давление вызывает больший прогиб шины и увеличение внутреннего трения, повышая внутреннюю температуру шины.

Увеличение нагрузки аналогично снижению давления воздуха в шине: внутренняя температура шины возрастает, поскольку она больше прогибается. В то же время к бортам и плечам прилагаются дополнительные нагрузки, которые могут привести к расслоению корда или разрыву шины.

Внутренняя температура растет с ростом скорости автомобиля, поскольку шина вынуждена деформироваться с большей частотой.

Радиальная шина имеет жесткие пояса, которые прочно удерживают каркас, поэтому протектор, контактируя с поверхностью дороги, менее подвержен деформации. Поскольку пояса снижают прогиб протектора, шина выделяет меньше тепла и температура шины остается ниже, чем у диагональной шины. Радиальные шины со стальным кордом также излучают больше тепла, поскольку слои стального корда обладают большей теплопроводностью.

Более того, бескамерные шины остаются более холодными, чем камерные, потому что воздух внутри «шины находится в непосредственном контакте с ободами и, следовательно, им легче излучать тепло.

Данные, приведенные выше, характерны для шин грузовых автомобилей и автобусов, имеющих более толстые протекторы и слои каркасного корда. Поскольку составные части этих шин являются плохими проводниками тепла, то чем толще слои корда, тем больше они препятствуют излучению тепла, а это вызывает рост темпера-туры шины.

Сопротивление качению для шин

3. ТОРМОЗНАЯ ХАРАКТЕРИСТИКА

Автомобили замедляются и останавливаются путем создания трения между шинами и поверхностью дороги. Величина создаваемого тормозного усилия зависит от состояния поверхности дороги, типа шины, устройства шины и других условий, при которых работает шина. Тормозная характеристика шины оценивается коэффициентом трения. Чем меньше его величина, тем меньшую силу трения создает шина и тем больше тормозной путь (расстояние, которое проходит автомобиль от момента нажатия на педаль тормоза до полной остановки автомобиля).

Сопротивление качению для шин

ИЗНОС ШИН И ТОРМОЗНОЙ ПУТЬ

Износ шин не сильно влияет на тормозной путь на сухой поверхности дороги. Однако, на мокрых дорогах тормозной путь значительно увеличивается. Тормозная характеристика становится плохой, потому что рисунок протектора изношен до такой степени, что он не в состоянии удалять воду между протектором и поверхностью дороги, что приводит к аквапланированию.

Сопротивление качению для шин

4. ШУМНОСТЬ ПРОТЕКТОРА

Шумность протектора является наиболее характерным рабочим шумом шины. Канавки протектора, контактирующие с поверхностью дороги, содержат воздух, который улавливается и сжимается между канавками и дорожной поверхностью. Когда протектор покидает поверхность дороги, сжатый воздух вырывается из канавок, создавая шум.

Сопротивление качению для шин

Шум возрастает, если конструкция протектора такова, что воздух более подвержен улавливанию в канавках. Блочный или грун-тозацепный рисунок протектора, например, более склонны создавать шум, чем ребристый рисунок. Частота шума возрастает с ростом скорости автомобиля. Поскольку шум-ность протектора зависит от рисунка протектора, протектор может быть спроектирован так, чтобы свести к минимуму шум. Простой повторяющийся грунтозацепный или зигзагообразный рисунок протектора, например, может содержать едва различимые вариации в расположении элементов рисунка протектора.

5. ВОЛНООБРАЗНАЯ ДЕФОРМАЦИЯ ШИНЫ

При движении автомобиля шина непрерывно прогибается, когда новый участок протектора входит в контакт с поверхностью дороги. Позднее, когда этот участок покидает поверхность дороги, давление воздуха в шине и эластичность шины стремятся возвратить протектор и каркас шины в первоначальное состояние. Однако, при более высоких скоростях шина вращается слишком быстро, чтобы обеспечить достаточное время для этого возврата. Этот процесс, непрерывно повторяющийся с такими короткими интервалами, вызывает рост колебаний в протекторе. Эти колебания, которые называются волнообразной деформацией шины, непрерывно распространяются по окружности шины. Большая часть энергии, заключенной в волнообразной деформации, преобразуется в тепло, которое резко повышает температуру шины. При некоторых условиях это нарастание тепла может даже разрушить шину в течение нескольких минут, приводя к отделению протектора от каркаса (разрыву).

Сопротивление качению для шин

Вообще, максимально допустимая скорость для шин легковых автомобилей определяется скоростью автомобиля, при которой возникают волнообразные деформации шины — например, около 150 км/ч для диагональной шины. Эта величина, однако, меньше, если давление воздуха в шине понижено. С другой стороны, радиальная шина может выдерживать более высокие скорости автомобиля, поскольку ее каркас, прочно удерживаемый жесткими поясами, менее подвержен деформации. Шины для автобусов, грузовых автомобилей и грузовиков малой грузоподъемности имеют мало проблем из-за волнообразной деформации, поскольку такие автомобили движутся с более низкими скоростями и их шины имеют более высокое давление воздуха.

Читайте также: Шины 215 75 16с для грузовых

6. АКВАПЛАНИРОВАНИЕ

Автомобиль скользит по мокрой дороге, если его скорость слишком велика, чтобы дать протектору достаточное время для удаления воды с поверхности дороги с тем, чтобы достичь плотного сцепления шины с дорогой. Причина этого состоит в том, что при возрастании скорости автомобиля сопротивление воды соответственно возрастает, заставляя шину ’’плавать” по поверхности воды. Это явление известно как аквапланирование. Его эффект аналогичен водным лыжам: водный лыжник погружается в воду при низких скоростях, но начинает скользить по поверхности воды, когда его скорость возрастает. Протектор, входящий в контакт с поверхностью дороги, может быть разделен на три следующие зоны:

Сопротивление качению для шин

Выталкивает воду в стороны или нагнетает ее через зигзагообразные канавки и каналы в протекторе.

Оставшаяся водная пленка удаляется сайпами.

С: Зона сцепления (зона трения)

Протектор сцепляется с оставшейся частью осушенного участка контакта.

При меньших скоростях зона С самая широкая и поэтому шина прочно сцепляется с дорогой, создавая достаточное трение между протектором и поверхностью дороги. Однако, при разгоне автомобиля трение шины снижается, поскольку зона А постепенно увеличивается за счет зон В и С. Автомобиль все более уподобляется гидросамолету с увеличением слоя воды от 2,5 до 10 мм.

Этап 1: Протектор находится в полном контакте с поверхностью дороги.

Сопротивление качению для шин

Этап 2: Клинообразная пленка воды постепенно проникает между протектором и поверхностью дороги (частичное аквапланирование).

Сопротивление качению для шин

Этап 3: Протектор полностью приподнимается над поверхностью дороги (полное аквапланирование).

Сопротивление качению для шин

Аквапланирование может не только вызывать потерю управляемости автомобиля, но может снизить или свести к нулю эффективность торможения, вызывая потерю водителем контроля над автомобилем. Нет нужды говорить, что это крайне опасно, поэтому следует соблюдать следующие предосторожности, чтобы исключить аквапланирование:

1. Не используйте шины с изношенным протектором. При износе шины канавки протектора не в состоянии удалить воду между шиной и поверхностью дороги настолько быстро, чтобы исключить аквапланирование.

2. Снижайте скорость на мокрой дороге, потому что более высокие скорости увеличивают сопротивление воды и вызывают аквапланирование.

3. Повышайте давление в шинах. Более высокое давление противодействует давлению воды, стремящейся попасть под протектор и, тем самым, замедляет начало аквапланирования.

7. ХАРАКТЕРИСТИКА ПРИ ДВИЖЕНИИ НА ПОВОРОТЕ

Поворот всегда сопровождается центробежной силой, которая стремится повернуть автомобиль по большей дуге, чем задается водителем, если автомобиль не может создавать достаточной противодействующей силы — т.е., центростремительной силы -чтобы уравновесить ее. Эта центростремительная сила вызывается деформацией и боковым скольжением протектора, что обусловлено трением между шиной и поверхностью дороги. Ее называют направляющим усилием на повороте.

Сопротивление качению для шин

Это направляющее усилие на повороте стабилизирует автомобиль при повороте. Характеристики поворота автомобиля изменяются в зависимости от:

1. Технических характеристик шин (рисунок протектора, угол слоев корда, число слоев корда).

2. Нагрузки, приложенной к протектору в зоне контакта (направляющее усилие на повороте возрастает с увеличением нагрузки.

Сопротивление качению для шин

3. Размера шины (Усилие на повороте возрастает с увеличением размера шины).

4. Состояния дорожных поверхностей (Усилие на повороте быстро снижается на мокрой или заснеженной дороге).

5. Давления воздуха в шине (Усилие на повороте возрастает, так как шина становится более жесткой при более высоком давлении).

6. Развала колес относительно дороги (Уменьшение положительного угла развала, образуемого осью колеса и дорогой, увеличивает усилие на повороте).

Сопротивление качению для шин

7. Ширины обода (более широкие шины жестче и, следовательно, создают большее усилие на повороте).

8. ИЗНОС ШИНЫ

Износ шины — это полная потеря или повреждение протектора и других резиновых поверхностей из-за трения, возникающего при скольжении шины по дороге. Износ меняется с изменениями давления в шине, нагрузки, скорости автомобиля, торможения, состояния поверхности дороги, температуры и других факторов.

ДАВЛЕНИЕ В ШИНЕ

Недостаточное давление в шине ускоряет износ шины, позволяя протектору сильно прогибаться при контакте с дорогой.

Сопротивление качению для шин

Повышенная нагрузка ускоряет износ шины по существу так же, как снижение давления в шине. Шина также быстрее изнашивается при повороте тяжело нагруженного автомобиля, потому что большая центробежная сила вызывает большее усилие на повороте, тем самым создавая большее трение между шиной и поверхностью дороги.

Сопротивление качению для шин

СКОРОСТЬ АВТОМОБИЛЯ

Приводная и тормозная силы, центробежная сила при повороте и другие силы, действующие на шину, увеличиваются пропорционально квадрату скорости автомобиля. Поэтому увеличение скорости автомобиля многократно увеличивает эти силы, увеличивает трение, возникающее между протектором и поверхностью дороги и, следовательно, ускоряет износ шин.

Сопротивление качению для шин

Кроме этих факторов, на износ большое влияние оказывает состояние дороги: неровная дорога будет быстрее изнашивать шину, чем гладкая дорога.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле

    📺 Видео

    CONTINENTAL ContiPremiumContact 5 | Комфорт и низкое сопротивление качениюСкачать

    CONTINENTAL ContiPremiumContact 5 | Комфорт и низкое сопротивление качению

    Michelin Energy Saver - Сопротивление качениюСкачать

    Michelin Energy Saver - Сопротивление качению

    ТОП-7 | КАКИЕ ШИНЫ ВЫБРАТЬ НА ЛЕТО? БЫСТРО И ЛЕГКОСкачать

    ТОП-7 | КАКИЕ ШИНЫ ВЫБРАТЬ НА ЛЕТО? БЫСТРО И ЛЕГКО

    Шины с низким сопротивлением качению 1Скачать

    Шины с низким сопротивлением качению 1

    2.1.14. KAMAZ-54901. Сопротивление качению. Обучение экономичному вождениюСкачать

    2.1.14. KAMAZ-54901. Сопротивление качению. Обучение экономичному вождению

    Лови плюсы и минусы популярных летних вариантов шинСкачать

    Лови плюсы и минусы популярных летних вариантов шин

    Топ шин для лета. Как выбрать шины?Скачать

    Топ шин для лета. Как выбрать шины?

    Что нужно знать, прежде чем клевать на TreadwearСкачать

    Что нужно знать, прежде чем клевать на Treadwear

    Continental о правильном давлении в шинах на 4 точки. Шины и диски 4точки - Wheels & TyresСкачать

    Continental о правильном давлении в шинах на 4 точки. Шины и диски 4точки - Wheels & Tyres

    Этикетки на шинах: полный разбор европейской маркировкиСкачать

    Этикетки на шинах: полный разбор европейской маркировки

    Купить летние шины KUMHO Solus KH17 (в магазине шин и дисков "Garazh" (Киев)Скачать

    Купить летние шины KUMHO Solus KH17 (в магазине шин и дисков "Garazh" (Киев)
Поделиться или сохранить к себе:
Технарь знаток