Состояние хладагента в компрессоре

Состояние хладагента в компрессоре

Компрессор кондиционера сжимает фреон, перетекающий по трубкам холодильного контура, и поддерживает его движение. На вход компрессора из испарителя поступает газообразный фреон под низким давлением в 3 — 5 атмосфер и температурой 10 — 20°С. Компрессор сжимает фреон до давления 15 — 25 атмосфер, в результате чего фреон нагревается до 70 — 90°С, после чего поступает в конденсатор.

В кондиционерах сплит-системы (например, в самых распространенных настенных кондиционерах) компрессор находится во внешнем блоке — на улице. Это позволяет снизить шум, который кондиционер создает в помещении.

Основные характеристики компрессора — степень компрессии (сжатия) и объем хладагента, который он может нагнетать. Степень сжатия — это отношение максимального выходного давления паров хладагента к максимальному входному.

Какие бывают компрессоры?

В холодильных машинах используют компрессоры двух типов: с возвратно-поступательным движением поршней в цилиндрах — поршневые; с вращательным движением рабочих частей — ротационные, винтовые и спиральные.

Поршневые компрессоры

Чаще всего в кондиционерах используются герметичные поршневые компрессоры, в которых электродвигатель расположен внутри герметичного корпуса.

  • При движении поршня вверх по цилиндру компрессора хладагент сжимается. Поршень перемещается электродвигателем через коленчатый вал и шатун .
  • Под действием давления пара открываются и закрываются всасывающие и выпускные клапаны компрессора холодильной машины.
  • На схеме «а» показана фаза всасывания хладагента в компрессор. Поршень начинает опускаться вниз от верхней точки, при этом в камере компрессора создается разрежение и открывается впускной клапан. Парообразный хладагент низкой температуры и низкого давления попадает в рабочее пространство компрессора.
  • На схеме «б» показана фаза сжатия пара и его выхода из компрессора. Поршень поднимается вверх и сжимает пар. При этом открывается выпускной клапан компрессора и пар под высоким давлением выходит из компрессора.

+ Простая конструкция компрессора.

— Пульсации выходного давления хладагента приводят к высокому уровню шума. Большие нагрузки при запуске требуют большого запаса мощности и приводят к износу компрессора

Ротационные компрессоры вращения

Принцип работы ротационных компрессоров вращения основан на всасывании и сжатии газа при вращении пластин. Их преимущество перед поршневыми компрессорами состоит в низких пульсациях давления и уменьшении тока при запуске. Существуют две модификации ротационных компрессоров:

  • Компрессор со стационарными пластинами, в котором хладагент сжимается при помощи эксцентрика, установленного на ротор двигателя. При вращении ротора эксцентрик катится по внутренней поверхности цилиндра компрессора, и находящийся перед ним пар хладагента сжимается, а затем выталкивается через выпускной клапан компрессора. Пластины разделяют области высокого и низкого давления паров хладагента внутри цилиндра компрессора.
  • Компрессор с вращающимися пластинами, в котором хладагент сжимается при помощи пластин, закрепленных на вращающемся роторе. Ось ротора смещена относительно оси цилиндра компрессора. Края пластин плотно прилегают к поверхности цилиндра, разделяя области высокого и низкого давления. На схеме показан цикл всасывания и сжатия пара.

Спиральные (SCROLL) компрессоры

Видео:Почему нельзя смешивать масло для компрессора кондиционера. Хладагент R1234yf и R134a.Скачать

Почему нельзя смешивать масло для компрессора кондиционера. Хладагент R1234yf и R134a.

Спиральные компрессоры применяются в холодильных машинах малой и средней мощности. Такой компрессор состоит из двух стальных спиралей. Они вставлены одна в другую и расширяются от центра к краю цилиндра компрессора. Внутренняя спираль неподвижно закреплена, а внешняя вращается вокруг нее.

Спирали имеют особый профиль (эвольвента), позволяющий перекатываться без проскальзывания. Подвижная спираль компрессора установлена на эксцентрике и перекатывается по внутренней поверхности другой спирали. При этом точка касания спиралей постепенно перемещается от края к центру. Пары хладагента, находящиеся перед линией касания, сжимаются, и выталкиваются в центральное отверстие в крышке компрессора. Точки касания расположены на каждом витке внутренней спирали, поэтому пары сжимаются более плавно, меньшими порциями, чем в других типах компрессоров.
Пары хладагента поступают через входное отверстие в цилиндрической части корпуса, охлаждают двигатель, затем сжимаются между спиралей и выходят через выпускное отверстие в верхней части корпуса компрессора.

Винтовые компрессоры

В холодильных машинах большой мощности (150 — 3500 кВт), например, чиллерах, применяются винтовые компрессоры двух модификаций: с одинарным или двойным винтом.

Модели с одинарным винтом имеют одну или две шестерни-сателлита, подсоединенные к ротору с боков. Сжатие паров хладагента происходит с помощью вращающихся в разные стороны роторов. Их вращение обеспечивает центральный ротор в виде винта. Пары хладагента поступают через входное отверстие компрессора, охлаждают двигатель, затем попадают во внешний сектор вращающихся шестеренок роторов, сжимаются и выходят через скользящий клапан в выпускное отверстие. Винты компрессора должны прилегать герметично, поэтому используется смазывающее масло. Впоследствии масло отделяется от хладагента в специальном сепараторе компрессора.

Модели с двойным винтом отличаются использованием двух роторов — основного и приводного. Винтовые компрессоры не имеют впускных и выпускных клапанов. Всасывание хладагента постоянно происходит с одной стороны компрессора, а его выпускание — с другой стороны.

Неисправности компрессора и их причины

Стоимость компрессора составляет большую часть стоимости всего кондиционера, поэтому за его состоянием нужно тщательно следить. Как правило, замена отказавшего компрессора кондиционера связана с пренебрежением правилами монтажа и эксплуатации кондиционера. Зачастую недостаточно квалифицированные или ответственные работники сервисной службы не проводят необходимые работы, даже обнаружив потемнение теплоизоляции, масла кондиционера, или утечку хладагента. Если они ограничиваются установкой фильтра на жидкостную линию или устранением течи и дозаправкой кондиционера, то вскоре произойдет отказ компрессора. Расскажем, что нужно делать в таких случаях, когда компрессор кондиционера еще можно спасти.

Необходимость ремонта компрессора может выясниться не только в том случае, если компрессор уже не работает, но и по результатам профилактического осмотра кондиционера. Примеры:

  • По результатам анализа масла компрессора.
  • При нарушении герметичности фреонового контура кондиционера.
  • При попадании воды в фреоновый контур кондиционера.

В этих случаях, даже если компрессор кондиционера продолжает работать, все равно скоро возникнет неисправность, если не принять срочные меры.

Анализ масла

  • темный цвет масла и запах гари указывает на то, что компрессор кондиционера перегревался. Причины перегрева: утечка хладагента из кондиционера или работа кондиционера на обогрев при отрицательных температурах на улице. Масло при этом теряет свои смазочные свойства и разлагается с образованием смолистых веществ, которые вызывают отказ компрессора кондиционера.
  • зеленоватый оттенок масла указывает на наличие в нем солей меди. Причина — присутствие влаги в холодильном контуре кондиционера. Тест на кислотность такого масла, как правило, тоже положительный.
  • прозрачное масло с легким запахом, похожее по цвету на образец, указывает на то, что кондиционеру не нужна немедленная замена масла.

Фильтрация не позволяет полностью восстановить свойства масла, подвергшегося тепловому разложению. Поэтому лучше заменить его.

Нарушение герметичности контура

Нарушение герметичности фреонового контура может быть вызвано разными причинами и не всегда приводит к поломке. Важно место возникновения утечки, количество хладагента которое успело вытечь, промежуток времени между возникновением и обнаружением утечки, режим работы кондиционера и другие факторы. Утечка хладагента опасна тем, что компрессор кондиционера, охлаждаемый хладагентом, перегревается из-за уменьшения плотности хладагента. Температура нагнетания компрессора повышается, горячий газ может повредить четырех ходовой вентиль. Нарушается система смазки компрессора, масло перетекает в конденсатор. Признаки утечки хладагента:

Видео:Переохлаждение и Перегрев. Что это, для чего и зачем.Скачать

Переохлаждение и Перегрев. Что это, для чего и зачем.
  • Потемнение теплоизоляции компрессора.
  • Периодическое срабатывание термозащиты компрессора.
  • Обгорание изоляции на нагнетательном трубопроводе.
  • Масло темного цвета с запахом гари.

Читайте также: Клапана для газовых компрессоров

Если утечка обнаружена вовремя и хладагент не полностью утек из контура, кондиционер недолго работал без хладагента, то ремонт кондиционера в мастерской не обязателен.

Процент внезапных утечек, вызванных разрушением трубопроводов, очень мал. Чаще утечки происходят через небольшие неплотности на вальцовочных соединениях. Надо постоянно следить за работой кондиционера, тогда утечки можно обнаружить своевременно. Через 5 минут после включения кондиционер, в зависимости от выбранного режима, уже должен давать холодный или теплый воздух, в противном случае надо сразу выключить кондиционер и вызвать ремонтника. Если при работе кондиционера трубки на наружном блоке покрыты инеем — значит, происходит утечка хладагента.

Влага в контуре

Влага обычно попадает в фреоновый контур кондиционера, если монтаж выполнен с нарушением правил. Вакуумирование фреоновой магистрали в процессе монтажа нужно, чтобы удалить из смонтированной магистрали воздух и водяные пары. Продувка смонтированной магистрали хладагентом, которую иногда выполняют вместо вакуумирования, не позволяет удалить влагу, а лишь превращает ее в лед на стенках медных трубок. Впоследствии лед тает, образуя влагу внутри холодильного контура.

Опасность в том, что влага в системе часто никак не проявляет себя до момента отказа компрессора кондиционера. Дело в том, что все процессы в кондиционере, работающем на охлаждение (летом), происходят при положительных температурах, а вода проявляет себя лишь когда замерзает, вызывая нарушение работы капиллярной трубки или терморегулирующего вентиля. Однако по косвенным признакам определить наличие влаги в кондиционере можно.

Один из признаков наличия влаги в фреоновом контуре — зеленоватый оттенок масла и положительный тест на кислотность. При обнаружении этих признаков требуется срочное вмешательство, чтобы спасти компрессор от выхода из строя. На более ранних стадиях влага проявляет себя при работе кондиционера в режиме обогрева при низких температурах наружного воздуха или при утечке хладагента. В этих случаях влага превращается в лед и закупоривает капиллярную трубку или ТРВ. В результате давление всасывания кондиционера падает, растет температура компрессора и срабатывает термозащита. Этот цикл повторяется до тех пор, пока не сгорит компрессор. Удаление влаги из фреонового контура также может быть выполнено только в мастерской.

Пособие для ремонтника

Всем нам хорошо знакомо явление конденсации паров воды на наружной поверхности стакана с холодной водой или запотевание изнутри лобового стекла автомобиля в холодную погоду (понятие температуры точки росы см. раздел 72).

Эти явления конденсации влаги на холодных поверхностях становятся причиной множества проблем, встречающихся при работе холодильных установок, к пояснению существа которых мы сейчас приступаем.

А) Эксперимент Ватта с холодной стенкой

Состояние хладагента в компрессоре

Поместим отвакуумированный баллон из-под хладагента в холодильную камеру, температура в которой поддерживается на уровне, например, 0°С.
Затем соединим этот баллон трубопроводом с таким же баллоном, находящимся вне камеры и заполненным жидким хладагентом R22 при температуре 20°С (ел/, рис. 28.1).

Поскольку трубопровод, соединяющий оба баллона, расположен вверху, перетекание жидкости под действием силы тяжести невозможно.
Манометры, установленные на обоих баллонах, показывают давление 8 бар, что соответствует давлению насыщенного пара R22 при температуре 20°С.

Через какое-то время, зависящее главным образом от количества жидкости, разности температур и диаметра трубопровода, соединяющего оба баллона, можно заметить, что вся жидкость переместилась в холодный баллон, а манометры показывают одно и то же давление 4 бар, соответствующее давлению насыщенного пара R22 при температуре 0°С!
Что же произошло? (Прежде, чем читать дальше, вы можете попытаться сами найти объяснение).

Видео:Лайфхак/Как избежать замены Компрессора Кондиционера!Скачать

Лайфхак/Как избежать замены Компрессора Кондиционера!

Объяснение явления. Вначале нужно учесть, что все жидкости имеют весьма упорядоченную молекулярную структуру, молекулы жидкости касаются одна другой и скапливаются на дне сосуда, содержащего жидкость.

Состояние хладагента в компрессоре

Напротив, молекулы газа находятся в непрерывном движении и заполняют все свободное пространство (см. рис. 28.2). Молекулы газа беспрерывно сталкиваются между собой, отскакивают друг от друга, крайне беспорядочно двигаясь во всех направлениях, причем траектории их движения ограничены только стенками сосуда, в котором они находятся.
Вот почему в эксперименте Ватта, который мы только что описали, молекулы газа R22 без труда перемещаются из
баллона с температурой 20°С в баллон с температурой 0°С, хотя трубопровод, соединяющий
оба баллона, расположен вверху.

Состояние хладагента в компрессоре

В этот момент, точно также, как изнутри запотевает ветровое стекло автомобиля зимой, молекулы газа, пришедшие из горячего баллона с температурой 20°С, охлаждаются в контакте с холодным баллоном, а затем конденсируются, и вскоре в холодном баллоне появляется жидкость с температурой 0°С.
Но, поскольку пары конденсируются, их количество в свободном пространстве над жидкостью при температуре 20°С резко уменьшается.
В результате давление оставшихся паров
действующей сверху на свободную поверхность жидкости, находящейся при температуре 20°С (см. рис. 28.3). Равновесие между внешней Fe и внутренней Fi силами нарушается и часть жидкости, находящейся при температуре 20°С, вновь испаряется, образуя пары и восстанавливая равенство двух противоположных сил Fe и Fi (см. рис. 28.4. а также раздел 1. «Влияние температуры и давления на состояние хладагентов»).

Однако пары, образовавшиеся из жидкости с температурой 20°С, вновь будут таким же образом конденсироваться в баллоне с температурой 0°С, вызывая новое падение давления над жидкостью с температурой 20°С.
Этот процесс будет повторяться до тех пор, пока в баллоне с температурой 20°С будет находиться хотя бы одна молекула жидкости.
Поэтому через какое-то время жидкость полностью переместится в холодный баллон и будет находиться там при давлении, соответствующем соотношению между температурой холодного баллона и давлением насыщенного пара для данного хладагента (в нашем примере это 4 бар при 0°С для R22).

Состояние хладагента в компрессоре

Состояние хладагента в компрессоре

Б) Проблема перетекания жидкости в конденсатор
Это явление, обусловленное эффектом холодной стенки Ватта, может происходить во всех случаях, когда конденсатор (расположенный вне здания) будет находиться при более низкой температуре, чем температура жидкостного ресивера (расположенного внутри здания), особенно если холодильная установка должна работать при низких наружных температурах (например, кондиционеры машинных залов ЭВМ или холодильные камеры).
В момент, когда термостат-регулятор выключает компрессор, жидкий R22, находящийся в конденсаторе и ресивере, имеет температуру, соответствующую давлению конденсации в установке, с учетом переохлаждения (например, 38°С и 14 бар для R22-CM. рис. 28.5).

Поскольку компрессор остановлен, тепло в конденсатор не поступает и температура жидкости начинает падать вплоть
до наступления равновесия с температурой окружающей среды, то есть 20°С для ресивера и 0°С для конденсатора. Начиная с этого момента, в соответствии с эффектом холодной стенки Ватта, жидкость, находящаяся в ресивере при 20°С, будет перемещаться в конденсатор, температура которого 0°С (для R22 давление, показываемое манометром, будет, следовательно, медленно падать с 14 бар до 4 бар, см. рис. 28.6).
Что произойдет, когда термостат-регулятор вновь включит компрессор? Имея в виду, что с одной стороны ресивер больше не будет содержать жидкость, и с другой стороны, что давление конденсации будет очень низким, ТРВ и испаритель не смогут быть нормально запитанными и компрессор очень быстро отключится по команде предохранительного реле НД.

Читайте также: Золотниковый клапан для винтового компрессора

Таким образом, если есть опасность того, что в течение какого-то времени конденсатор может быть холоднее, чем ресивер, необходимо предусмотреть установку обратного клапана между выходом из конденсатора и ресивером, чтобы полностью исключить любую возможность перетекания жидкости из ресивера в конденсатор.

В) Проблема перетекания жидкости в нагнетающей полости головки блока компрессора при его остановках

Вначале поймем, что происходит, когда по какой-либо причине в полости нагнетания головки блока компрессора скапливается жидкость (хладагент или масло).

Состояние хладагента в компрессоре

Такая опасность существует только во время остановки компрессора, поскольку при его работе любые следы жидкости как правило увлекаются горячим газом, выходящим из цилиндра.
Если жидкость накапливается в нагнетающей полости головки блока над клапаном, часть этой жидкости может проникать в цилиндры под действием разности между давлением нагнетания и давлением всасывания с обеих сторон клапана при условии, что клапан не вполне герметичен.
При последующем запуске компрессора может возникнуть гидроудар (более или менее значительный в зависимости от количества находящейся в полости жидкости), при этом опасность поломки или разрушения клапана достаточно велика (см. рис. 28.7).
Рис. 28.7.
Опасности, вызываемые жидким хладагентом
Опасность перетекания жидкого хладагента в полость нагнетания головки блока возникает каждый раз, когда температура компрессора оказывается ниже температуры конденсатора.
Это может происходить, например, в разгаре лета в кондиционерах машинных залов ЭВМ, оснащенных конденсаторами с воздушным охлаждением, в период длительной остановки компрессора по каким бы то ни было причинам (см. рис. 28.8).

Видео:Как проверить ФРЕОН В КОНДИЦИОНЕРЕ без инструментовСкачать

Как проверить ФРЕОН В КОНДИЦИОНЕРЕ без инструментов

Состояние хладагента в компрессоре

В этом случае жидкий хладагент перетекает в головку блока (от В к А) в соответствии с эффектом холодной стенки Ватта.
Если опасность такого перетекания очень велика, необходимо либо между компрессором и конденсатором установить обратный клапан (как можно дальше от компрессора, чтобы не допустить хлопков этого клапана, вызванных возвратно-поступательным движением порш-
ней), либо поставить на магистрали нагнетания простую лирообразную маслоподъемную петлю соответствующих размеров, поместив ее в непосредственной близости от компрессора.

Заметим, что наличие электроподогрева картера не может эффективно противостоять перетеканию жидкости в нагнетающую полость головки блока, поскольку он нагревает только низ картера, в котором находится масло и ни в коем случае не головку блока.

Опасности, вызываемые маслом

Состояние хладагента в компрессоре

В силу того, что свойства масла для классических хладагентов и самих хладагентов очень похожи, при нормальной работе холодильной установки на каждом погонном метре внутренней поверхности трубопроводов содержится некоторое количество перемещающегося вместе с хладагентом масла.
При остановках компрессора это масло под действием силы тяжести стекает вниз. Следовательно, в вертикальных трубках количество стекающего вниз при остановках компрессора масла будет тем больше, чем больше разность уровней этих трубок.
Если конденсатор расположен над компрессором с разностью уровней (высота Н на рис. 28.9) более трех метров, то экспериментально показано, что количество стекающего в полость нагнетания при оста- Рис. 28.9. новках компрессора масла может оказаться достаточным для того, чтобы возник гидроудар, последствия которого, разрушительные для клапанов, будут аналогичны последствиям классического гидроудара, возникающим при повторном пуске компрессора с заполненной жидкостью полостью нагнетания.
Опасность этого еще более усугубляется, если во время остановки компрессора в нагнетающем патрубке происходит конденсация хладагента, который также стекает в головку блока.

Таким образом, чтобы предотвратить возможный возврат жидкости (масла или хладагента) в компрессор при его остановке, нужно внизу восходящего трубопровода, если его высота превышает 3 метра, установить маслоподъемную петлю (поз. 1), а также соблюдать при монтаже горизонтальных трубопроводов наклон от компрессора не менее 12 мм/метр.

Г) Проблема перетекания жидкого хладагента в картер компрессора при остановках

Эта проблема является причиной очень многих аварий. Поэтому следует очень хорошо представить себе опасность механических повреждений, которые могут происходить в компрессоре из-за накопления в картере жидкого хладагента по каким бы то ни было причинам.
Прежде всего, имея большое сходство с хладагентом, масло во время остановок сильно разбавляется г -яедхп-ш.
Заметим, что такое разбавление приводит к потере маслом значительной части своих смазывающих качеств, поскольку все обычно применяемые хладагенты являются, как правило, превосходными обезжиривателями.

Состояние хладагента в компрессоре

Более того, если количество хладагента в нижней части картера становится очень большим, смесь масло/хладагент может стать насыщенной, в результате чего произойдет разделение « двух жидкостей.
Компрессор может быть оснащен всасыванием через корпус (поз. 1) или через головку блока (поз. 2), но независимо от этого накопление хладагента в картере будет происходить одинаково (см. рис. 28.10).

Когда по команде управления компрессор запускается, внезапное падение давления в картере будет приводить к очень бурному вскипанию жидкого хладагента.
Первые пузырьки, порожденные этим бурным кипением, будут подниматься через слой масла, пробулькивая через его поверхность, полностью насыщаясь маслом и увлекая за собой большое количество масляных капелек в виде суспензии (см. рис. 28.11).
Это явление, в просторечии именуемое «вспенивание масла», можно легко видеть через окошко указателя уровня масла.
Эмульсия паров хладагента, насыщенных маслом, образовавшаяся в результате падения давления в картере после запуска компрессора, будет проникать в головку блока, вызывая сильный отток масла (проходя через клапаны, масло может также провоцировать иногда очень сильные гидроудары).
Если количество жидкого хладагента в картере действительно велико, отток масла при вскипании хладагента может стать настолько значительным, что в момент запуска компрессора наблюдатель зафиксирует в смотровом стекле указателя уровня масла совершенную пустоту.
К сожалению, отрицательное влияние присутствия хладагента в картере при остановках компрессора не ограничивается только проблемой оттока масла.
Действительно, так как смазка поршневых компрессоров обеспечивается за счет масла, находящегося в картере, присутствие в нем жидкого хладагента будет осложнять положение.

Состояние хладагента в компрессоре

Когда смазка компрессора обеспечивается с помощью масляного насоса, масло отбирается со дна картера через масляный фильтр и потом, пройдя через насос, нагнетается в смазочные канавки (см. рис. 28.12).
При запуске компрессора, если в картере имеется жидкий хладагент, вместо того, чтобы засосать только масло, масляный насос может засосать также и жидкий хладагент.
В этот момент могут произойти 2 следующих события:
1) Разрежение в зоне заборника масляного насоса при его запуске приводит к вскипанию хладагента в этой зоне. В результате насос всасывает только пары хладагента, начинается кавитация и масло вытекает из насоса, что полностью исключает подачу масла в смазочные канавки и, кроме того, создает опасность разрушения самого насоса.

2) Масло из насоса не вытекает и хладагент (являющийся превосходным растворителем) поступает в масляный контур. В этом случае не только не осуществляется смазка, но более того, хладагент смывает смазку со всех подвижных частей компрессора.
В обоих этих случаях компрессор работает без всякой смазки, так как жидкий хладагент совершенно нельзя удалить.
Легко понять, что повторные запуски в этих случаях совершенно недопустимы, поскольку могут стать причиной многочисленных механических поломок в компрессоре (цапфы и шейки коленчатых валов, подшипники, шатуны, клапаны. ).

Читайте также: Влагоотделитель для компрессора бауцентр

Видео:Вот что бывает когда жидкий фреон попадает в компрессорСкачать

Вот что бывает когда жидкий фреон попадает в компрессор

Почему жидкий хладагент попадает в картер ?

Чтобы содействовать возврату масла в компрессор, необходимо иметь всасывающий патрубок с наклоном в сторону компрессора. Но во время остановки компрессора жидкий хладагент, находящийся в испарителе, также может стекать в корпус компрессора (поз. 1 на рис. 28.13) (см. также раздел 43. «Подключение испарителя «).
Иногда, для исключения стекания жидкого хладагента под действием силы тяжести в картер компрессора, когда испаритель не запитывается снизу, на всасывающей магистрали устанавливают лирообразный затвор с маслоподъ-емной петлей (поз. 2). Верхняя точка затвора при этом должна оказаться выше уровня испарителя.

Состояние хладагента в компрессоре

Однако такой затвор хотя и может помешать стеканию жидкости под действием силы тяжести в картер при остановках компрессора, тем не менее, иногда он может оказаться причиной огромного выброса жидкости во всасывающую магистраль в момент запуска, что порождает опасность возникновения разрушительного гидроудара.
Более того, лирообразный затвор не обеспечивает защиты от перетекания жидкости в картер, обусловленного эффектом холодной стенки Ватта, когда температура компрессора становится ниже температуры испарителя (например, зимой, если компрессор находится на улице).
Заметим также, что большое количество жидкого хладагента в картере может искусственно поднимать уровень масла, создавая иллюзию благополучия при визуальном контроле уровня масла через смотровое стекло указателя уровня (см. рис. 28.14).

Наилучшим решением проблемы предотвращения перетекания жидкого хладагента в картер компрессора во время его остановок является, по нашему мнению, использование подогрева масла с помощью электронагревателя, устанавливаемого в картере (см. рис. 28.15).
Вместе с тем, тепловая мощность электронагревателя не должна быть слишком большой, чтобы масло не нагревалось до высоких температур. Дело в том, что при слишком высоких температурах масло начинает разлагаться или обугливаться, что приводит к потере его смазочных качеств.

Поэтому тепловая мощность электронагревателя (относительно небольшая) должна лишь обеспечивать нагрев масла до температуры, примерно на 10. 20 К превышающей температуру окружающей среды, главным образом для того, чтобы предотвратить перетекание в картер жидкого хладагента, обусловленное эффектом холодной стенки Ватта.
Следовательно, из-за малой мощности такие электронагреватели совершенно неспособны служить для испарения больших количеств жидкого хладагента, который может попадать в картер при остановках компрессора (пути решения этой проблемы мы будем рассматривать в разделе 29. «Остановка холодильных компрессоров»).
Заметим также, что если разработчик компрессора устанавливает электронагреватели повышенной мощности, он должен предусмотреть также и установку реле-терморегулятора, обеспечивающего контроль температуры масла и предотвращающего перегрев.

Однако, в связи с чисто экономическими соображениями этот способ контроля и поддержания температуры масла используется, как правило, только для больших компрессоров.

Каждый испаритель запитан через электромагнитный клапан, управляемый термостатом температуры (в камере) (поз. 1 и 2). Перед коллектором на магистрали всасывания от более теплой камеры (то есть камеры с температурой +4°С) установлен клапан постоянного давления для того, чтобы сохранять нужную температуру кипения в этой камере независимо от условий работы.
Что же может произойти, если камера № 1 работает, а камера № 2 остановлена?
Часть «теплых» паров, выходящих из клапана постоянного давления, может попасть в испаритель № 2, температура которого гораздо ниже, и там сконденсироваться.
Накопление большого количества жидкости в испарителе № 2 при включении этого испарителя может обусловить огромный приток жидкости во всасывающую магистраль компрессора и, следовательно, возникновение очень сильного гидроудара.

Во избежание такой опасности в подобных схемах всегда следует предусматривать установку обратного клапана на выходе из более холодных испарителей (поз. 5).

Примечание. Работа клапана постоянного давления (а также работа двух камер, работающих при одинаковой температуре, но различной влажности) рассмотрена ниже в разделе 61.

Д) Особенности решения проблемы предотвращения перетекания жидкости при использовании маслоотделителя

В традиционных кондиционерах маслоотделители в холодильном контуре используются не часто. Однако в промышленном и торговом холодильном оборудовании, особенно при очень низких температурах кипения, маслоотделители применяются гораздо чаще.

Состояние хладагента в компрессоре

Анализ различных конструкций маслоотделителей не является предметом настоящего руководства (существует много литературы, описывающей конструкцию, преимущества и недостатки этих устройств), напомним только, что маслоотделитель (поз. 1 на рис. 28.17) устанавливается на нагнетающей магистрали компрессора.
Горячие газы, выходящие из нагнетательного патрубка компрессора, поступают в кожух (поз. 2), окружающий накопительную камеру маслоотделителя, снабженную поплавковым клапаном (поз. 3). Когда уровень масла в ней повышается, поплавок всплывает, открывая сливное отверстие, через которое масло под действием давления нагнетания может возвращаться в картер компрессора (поз. 4).
Во время остановок компрессора часть газа высокого давления, находящаяся в маслоотделителе, может конденсироваться, так как температура воздуха, окружающего маслоотделитель, ниже температуры газа. Сконденсировавшаяся жидкость, попадая в накопительную камеру, поднимает уровень жидкости в ней и поплавковый клапан открывается, в результате чего жидкий хладагент может попасть в картер.
Если его количество велико (низкая окружающая температура, большая длина трубопроводов. ), при запуске компрессора мы столкнемся с теми же проблемами, которые описаны нами в части Г настоящего раздела.

Состояние хладагента в компрессоре

Среди возможных решений этой проблемы (теплоизолированный маслоотделитель, подогрев маслоотделителя при остановках компрессора. ) рассмотрим более подробно использование электроклапана, установленного на трубке возврата масла в картер (поз. 5).
Принципиальная схема управления электроклапаном возврата масла (EVH) представлена на рис. 28.18.
Во время остановки компрессора С (4-3) через контакты С (1-2) запитан электронагреватель картера RC (2-3), а электроклапан EVH (5-3) отключен контактами С (4-5). В результате слив жидкого хладагента из сепаратора, если он там есть, в компрессор невозможен

Видео:Как обнаружить (проверить) утечку фреона из кондиционера | Простой способСкачать

Как обнаружить (проверить)  утечку фреона из кондиционера | Простой способ

Когда компрессор вновь запускается, электронагреватель картера выключается, однако электроклапан EVH, управляемый через контакты реле времени компрессора С (4-5), не срабатывает.
В течение определенного промежутка времени с момента пуска компрессора, определяемого реле, горячие газы, проходящие через кожух маслоотделителя (поз. 2 на рис. 28.17), нагревают маслоотделитель, что приводит к испарению жидкого хладагента, который может находиться в накопительной камере. Примерно через 1-2 минуты контакты С (4-5) реле времени замыкаются, но в связи с тем, что маслоотделитель уже нагрет, опасность попадания большого количества жидкого хладагента в картер компрессора при этом практически исключена.

Поместим отвакуумированный баллон из-под хладагента в холодильную камеру, температура в которой поддерживается на уровне, например, 0°С.
Затем соединим этот баллон трубопроводом с таким же баллоном, находящимся вне камеры и заполненным жидким хладагентом R22 при температуре 20°С (ел/, рис. 28.1).
Поскольку трубопровод, соединяющий оба баллона, расположен вверху, перетекание жидкости под действием силы тяжести невозможно.
Манометры, установленные на обоих баллонах, показывают давление 8 бар, что соответствует давлению насыщенного пара R22 при температуре 20°С.
Через какое-то время, зависящее главным образом от количества жидкости, разности температур и диаметра трубопровода, соединяющего оба баллона, можно заметить, что вся жидкость переместилась в холодный баллон, а манометры показывают одно и то же давление 4 бар, соответствующее давлению насыщенного пара R22 при температуре 0°С!
Что же произошло? (Прежде, чем читать дальше, вы можете попытаться сами найти объяснение).

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    🔥 Видео

    ПРОВЕРКА КОНДИЦИОНЕРА ЗА 5 МИНУТСкачать

    ПРОВЕРКА КОНДИЦИОНЕРА ЗА 5 МИНУТ

    Принцип работы холодильника с компрессоромСкачать

    Принцип работы холодильника с компрессором

    ОПАСЕН ЛИ ФРЕОН? И ДЛЯ ЧЕГО НУЖЕН?Скачать

    ОПАСЕН ЛИ ФРЕОН? И ДЛЯ ЧЕГО НУЖЕН?

    НЕДОСТАТОК vs ИЗБЫТОК фреона в системе БЫТОВОГО холодильникаСкачать

    НЕДОСТАТОК vs ИЗБЫТОК фреона в системе БЫТОВОГО холодильника

    Диагностика кондиционера своими силамиСкачать

    Диагностика кондиционера своими силами

    Компрессор на R134A в место положенного на R12 последствияСкачать

    Компрессор на R134A в место положенного на R12 последствия

    Проверка давления фреона R-22 в кондиционереСкачать

    Проверка давления фреона R-22 в кондиционере

    Диагностика электромагнитной муфты компрессора кондиционера. Как самостоятельно проверить муфтуСкачать

    Диагностика электромагнитной муфты компрессора кондиционера. Как самостоятельно проверить муфту

    Как проверить компрессор холодильника.Позваниваем обмотки.Скачать

    Как проверить компрессор холодильника.Позваниваем обмотки.

    Зачем отделитель жидкости роторному компрессору.Скачать

    Зачем отделитель жидкости роторному компрессору.

    Как работает кондиционер в автомобиле?, Не работает кондиционер? основные неисправностиСкачать

    Как работает кондиционер в автомобиле?, Не работает кондиционер? основные неисправности

    Электромагнитная муфта компрессора кондиционера - принцип работы и проверка катушкиСкачать

    Электромагнитная муфта компрессора кондиционера - принцип работы и проверка катушки

    Эвакуатор хдадагента (фреона R-22) для сплит-систем своими рукамиСкачать

    Эвакуатор хдадагента (фреона R-22) для сплит-систем своими руками

    Как обманывают Холодильщики? Ремонт Холодильников - развод на замену компрессораСкачать

    Как обманывают Холодильщики? Ремонт Холодильников - развод на замену компрессора
Поделиться или сохранить к себе:
Технарь знаток