Спиральные блоки для компрессоров

Данный материал посвящён воздушным спиральным компрессором.

Краткое содержание статьи и какие вопросы мы сегодня рассмотрим:

  • краткая история спиральных компрессоров от возникновения идеи до производства первых коммерческих моделей;
  • конструкции принцип действия спиральных компрессоров (сделаем акцент на работе спирального блока);
  • области применения (озвучим основные);
  • преимущества и недостатки спиральных компрессоров;
  • в конце мы подведём итог.

Спиральные блоки для компрессоров

Спиральный компрессор — это машина объемного сжатия, то есть повышение давления газа происходит за счет уменьшения объема рабочих полостей. Основные технические принципы и идеи, на базе которых можно было приступить к производству спиральных компрессоров проскальзывали уже в конце 19 века, но непосредственно до производства первой коммерческой модели дело дошло только в 1983 году. Японская компания Hitachi выпустила первый спиральный компрессор, который был использован в воздушном кондиционере. То есть сжимал компрессор не воздух, а хладагент.

Речи о масштабном производстве тогда не стояло, так как, несмотря на несложную с первого взгляда конструкцию спирального компрессора, для их массового изготовления требуется высокий уровень технологической подготовки производства. Поэтому между появлением идеи и ее реализацией прошло около века, так как лишь в начале 2000-х годов появилось оборудование, которое позволило с необходимой точностью обрабатывать детали для создания рабочих элементов в промышленных масштабах.

Сегодня же, ситуация выглядит совсем иначе, и эти аппараты производятся по несколько миллионов штук в год. Чаще всего речь идет о холодильных спиральных компрессорах, которые используются в кондиционерах, холодильниках и так далее. Но дальше говорить будем только о воздушных компрессорах. И хотя сжатие и хладагента и воздуха осуществляется по одному принципу, конструкции воздушного и холодильного компрессоров значительно отличаются. Поэтому давайте посмотрим из каких же узлов и элементов у нас состоит воздушный спиральный компрессор и как он вообще работает.

В качестве примера мы выбрали установку, которая нам отлично подходит с точки зрения наглядности. Итак, что мы тут видим: электродвигатель, крутящий момент от которого, с помощью ременного привода, мы передаем на спиральный блок, где и происходит сжатие воздуха. Здесь расположены воздушные фильтры, которые устанавливаются на режим всасывания, концевой охладитель, панель управления, обратный клапан и, в нашем случае, есть ресивер, хотя некоторые спиральные компрессоры поставляются без него.

Спиральные блоки для компрессоров

Основным элементом, конечно же, является спиральный блок не только потому что здесь происходит сжатие воздуха, но и потому что он составляет около 60 процентов стоимости всего компрессора. Состоит он из двух спиралей: подвижной и неподвижной, уплотнения, корпуса, коленчатого вала, пальцев кривошипа, вентилятора охлаждения, приводного шкива и защитного кожуха. В собранном виде мы уже можем рассмотреть те самые полости, в которых воздух сжимается, когда подвижная спираль осуществляет орбитальное движение.

Принцип действия спирального блока мы разберём на основе холодильного спирального компрессора, так как сжатие хладагента происходит таким же образом, как и сжатие воздуха. Итак, после того как воздух прошел через воздушный фильтр, он попадает спиральный блок, где у нас имеется сразу две свободные полости. После небольшого пути подвижной спирали эти полости закрываются и начинают уменьшать, перемещаясь от периферии к центру, где у нас находится нагнетательное окно. В это время в блок попадает новая порция воздуха, таким образом мы имеем сразу несколько полостей с различными давлениями: атмосферное, промежуточное и давление нагнетания. И это даёт нам очень важное преимущество. Дело в том что у нас нет ярко выраженных границ между областью с высоким давлением и низким. Как, например, в случае с поршневым компрессором, где с одной стороны поршня давление нагнетания, а с другой — атмосферное, что может стать причиной значительных перетечек воздуха из области высокого давления в область с низким.

Спиральные блоки для компрессоров

Благодаря отсутствию такой большой разницы давлений между полостями, в спиральных компрессорах удаётся значительно снизить нежелательные радиальные и тангенциальные перетечки. Радиальные — это между спиралями, а тангенциальные — между спиралями и корпусом. Чем меньше перетечек, тем выше КПД блока, соответственно ниже затраты на
электроэнергию.

Продолжая тему перетечек напомним, что в обычных компрессорах эта проблема решается при помощи масла, например, как в масслозаполненных винтовых или поршневых установках. Масло уплотняет зазоры и уменьшает перетекание воздуха по полостям сжатия. Но в нашем спиральном компрессоре сжатие сухое. С одной стороны — это очень хорошо, т.к. мы получаем безмасляный воздух хорошего качества, за что спиральные компрессоры и ценят. С другой стороны, без использования охлаждающей жидкости, то есть масла, мы не можем эффективно отводить тепло, которое выделяется при сжатии воздуха. Поэтому температура воздуха на выходе спирального блока может достигать 200 градусов. В качестве основного инструмента по отводу тепла у нас вступают разве что охлаждающие рёбра на крышке спирального блока и на этом всё, и в этом проблема.

Если вы просматривали характеристики спиральных компрессоров, то наверное заметили, что максимальное давление обычно ограничивается 10 барами. Именно этим и объясняются ограничение в давлении, так как без использования охлаждающей жидкости производить сжатый воздух до более высоких давлений в одной ступени нецелесообразно. Кроме этого, при давлении свыше 10 бар у нас значительно увеличится нагрузка мы подшипники, которые и так работают в тяжелых условиях, особенно подшипник на эксцентрике.

После спирального блока воздух через нагнетательное окно подает на концевой охладитель, после него — либо в ресивер, либо сразу потребителю. В целом, спиральный компрессор очень похож на привычный нам всем поршневой, только вместо поршневой головы у нас стоит спиральный блок.

Переходим к областям применения. Чаще всего спиральные компрессоры используются там, где необходим строго безмасляный сжатый воздух: медицина, стоматология, интенсивная терапия, анестезия, хирургия и так далее, достаточно серьезные области, где речь идет о здоровье, а иногда и жизни человека. Пищевое производство — область, где используются различное пневмооборудование, которое осуществляет такие действия как: фасовка продуктов, сортировка, смешивание, просеивание и упаковка. Разумеется, что в этих процессах возможен контакт сжатого воздуха с продуктами и наличие масляных примесей категорически запрещено. Также отметим, что спиральные компрессоры широко используются в полиграфии, фармацевтической и химической промышленностях.

Читайте также: Компрессор embraco для pozis

Переходим к преимуществам и недостаткам. Преимущества производства безмасляного сжатого воздуха:

  • именно благодаря этому спиральные компрессоры получили широкое применение даже несмотря на высокую стоимость;
  • низкий уровень шума — очень важный аспект, который позволяет устанавливать спиральные компрессоры практически везде без ограничений, даже рядом с рабочим персоналом, в различных павильонах и так далее;
  • относительно небольшое количество деталей по сравнению с другими типами компрессоров, например поршневыми, роторно-пластинчатыми или винтовыми, а как мы знаем, чем меньше деталей и прочих механизмов, тем выше надежность;
  • малая масса и габариты;
  • простота монтажа;
  • относительно недорогое обслуживание (так как у нас нет масляного контура и нам не нужно менять масло, масляный фильтр, сепаратор как у винтовых компрессорных станций);
  • высокая эффективность спирального блока из-за небольшого количества перетечек;
  • возможность круглосуточной работы с небольшими перерывами.
  • высокая стоимость (самый дешевый спиральный компрессор стоит около четырех с половиной тысячи евро, что сегодняшнему курсу приблизительно 400 тысяч рублей, по сути за эту сумму можно взять недорогой винтовой компрессор с системой подготовки сжатого воздуха, осушители и магистральные фильтры. Хотя получить технически безмасляный сжатый воздух не получится, но мы все равно получим воздух очень хорошего качества, поэтому цена спирального компрессора — основной аспект, который существенно замедляет выход оборудование этого типа в широкие массы);
  • низкая ремонтопригодность (здесь речь идёт о спираль на блоке — если с ним что-то случится, то отремонтировать его не всегда удается и остается вариант только с полной заменой, однако, стоимость у него около 60 процентов стоимости всего компрессора.

Итог: спиральный воздушный компрессор — это достаточно специфическое и дорогое оборудование, которое целесообразно использовать в ситуациях, когда необходим технический безмасляный сжатый воздух хорошего качества, но в определенном небольшом интервале производительности и давления. Напоминаем, что серийное производство спиральных компрессоров началось относительно недавно и этот тип оборудования можно считать одним из самых молодых, поэтому мы можем предположить, что весь потенциал спиральных компрессоров с точки зрения энергоэффективности ещё не раскрыт.

Если в ближайшее время появится новое оборудование, которое бы могло хотя бы частично снизить затраты при изготовлении спиральных компрессоров, тем самым уменьшив окончательную стоимость, нам кажется, что альтернатив для производства безмасляного сжатого воздуха при давлении до 10 бар и производительность до трех кубов в минуту у спиральных компрессоров просто не будет.

Видео:Спиральный компрессор: устройство и принцип работы.Скачать

Спиральный компрессор: устройство и принцип работы.

Спиральные компрессоры. Маслозаполненные и безмасляные компрессоры спирального типа

Если говорят «поршневой компрессор» ─ ищи поршень и точно найдешь его. Если «винтовой компрессор» ─ значит, в нем есть винт и, скорее всего, не один. Ну, а когда речь заходит о спиральных компрессорах, очевидно, что важнейшей их деталью является спираль, а, точнее, две спирали.

Спиральные блоки для компрессоров

Что такое спираль, большинству понятно без дополнительных объяснений. Первыми на ум приходят раскаленные докрасна спирали нагревательных элементов тепловых электроприборов или имеющие форму спирали заводные пружинки детских игрушек и взрослых часов. Хотя в Природе есть примеры куда более масштабных спиралей. Млечный Путь ─ спиральная галактика с перемычкой, диаметром 100 тыс. световых лет, ближе к окраине которой расположена Солнечная система с планетой Земля. Млечный Путь ─ не единственная спиральная галактика. Такими же являются ее спутники ─ Большое и Малое Магеллановы Облака, а также Галактика Андромеды, Галактика Треугольника и другие.

Спиралью называют кривую, обходящую точку, и в зависимости от того, скручивается она или раскручивается, ─ приближающуюся к этой точке или удаляющуюся от нее.

Рабочие органы спиральных компрессоров, как правило, выполнены в виде архимедовых или эвольвентных спиралей. Возможны и другие варианты, например, кривые, образованные дугами окружностей.

Архимедову спираль можно уподобить следу, оставляемому точкой, равномерно движущейся по лучу, начинающемуся из центра О, который сам при этом равномерно вокруг него вращается. Эвольвента окружности в отличие от классической алгебраической спирали, каковой является архимедова спираль, относится к т. н. псевдоспиралям или спиралевидным кривым. Ее можно представить как след от точки, расположенной на конце прямой нити, сворачиваемой с цилиндрической катушки или закручиваемой вокруг нее; при этом нить всегда расположена по касательной к окружности ─ поперечному сечению цилиндра катушки.

Что-то даже на интуитивном уровне объединяет винтовые и спиральные компрессоры. И не случайно. «Родство» их проявляется даже в лексике. Ведь согласно Большому энциклопедическому словарю винтовая линия ─ это «пространственная спиральная кривая». А винт ─ не что иное, как «стержень со спиральной нарезкой».

Видео:Спиральные компрессоры DSH и DSF | Cooling United Live 2020Скачать

Спиральные компрессоры DSH и DSF | Cooling United Live 2020

Из истории спиральных компрессоров

Винтовой и спиральный компрессоры объединяет не только лексика, но и закономерности биографий. Изобретения, содержавшие принципы работы этих машин, появились намного раньше, чем их удалось реализовать не то чтобы в промышленных масштабах, но даже изготовить экспериментальные образцы. Оба были открыты, как принято говорить, «на кончике пера». И эти открытия на многие десятилетия опередили свое время, а точнее, существовавший тогда уровень металлообработки. Станки, способные изготавливать детали с точностью, требуемой для рабочих элементов спиральных компрессоров, появились совсем недавно.

Идеи, развивавшие устройство спирального компрессора, появились еще в XIX веке. А свое стройное оформление нашли в самом начале века двадцатого, в 1905 году. Во французском и американском патентах, полученных французским инженером и писателем, автором научно-фантастических романов «Путешествие Изабеллы к центру Земли» и «Секрет Доурады» Леоном Круа (Léon Creux). В этих патентах речь шла о роторном паровом двигателе, но одновременно с этим они содержали основные принципы устройства машины, которая сегодня носит название спиральный компрессор или компрессор спирального типа. Потребовалось почти целое столетие, прежде чем в 80-х годах XX века удалось организовать промышленное производство спиральных компрессоров. За это время «от нуля» до сверхзвуковых скоростей разогналась авиация, человечество полетело в космос и сумело раскрыть тайны получения атомной энергии. А наладить промышленное производство спиральных компрессоров никак не получалось. Одним из первых, кому это удалось, стала японская компания Hitachi Ltd, с 1983 г. начавшая устанавливать спиральные компрессоры в системах кондиционирования воздуха. У истоков нового сегмента компрессорной техники стояла также американская компания Copeland Corp. Спиральные компрессоры Copeland начали разрабатывать в 1979 году, а в 1987-м приступили к их серийному выпуску. Сначала на шести производственных линиях завода в Сиднее (шт. Огайо). Затем был построен завод в шт. Миссури, и организовано производство на европейских предприятиях компании в Бельгии и Северной Ирландии. Сегодня Copeland Corp изготавливает ежегодно примерно 5 млн спиральных компрессоров холодопроизводительностью от 5 до 170 кВт. Всего же в мире установлено свыше ста миллионов компрессоров Copeland Scroll (компрессор спиральный на английском звучит как scroll compressor). Одна из знаковых разработок компании ─ компрессор спиральный ZR ─ серия машин, применяемых в оборудовании для климат-контроля, а также в промышленных, в т. ч. прецизионных, системах охлаждения.

Читайте также: Компрессор для шахтного электровоза

А ведь еще в середине 90-х во всем мире насчитывалось всего несколько миллионов спиральных компрессоров…

Косвенным подтверждением молодости спиральных компрессоров является тот факт, что в отечественном нормативном документе «ГОСТ 28567-90 Компрессоры. Термины и определения» о них не сказано ни слова. Хотя это вовсе не означает, что российские инженеры не работали в этом направлении. Исследования велись в Москве, Санкт-Петербурге, Казани.

В столице ─ во Всесоюзном научно-исследовательском проектно-конструкторском и технологическом институте холодильного машиностроения (ВНИИхолодмаш). Там был изготовлен образец спирального компрессора СК-16 для морской холодильной машины МХМ25.

В Санкт-Петербурге, начиная с 80-х, исследования проводились в Ленинградском институте холодильной промышленности. Затем его название менялось: Санкт-Петербургская Государственная Академия холода и пищевых технологий, Государственный Университет низкотемпературных и пищевых технологий, а ныне ─ мегафакультет биотехнологий и низкотемпературных систем Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики.

В Казани спиральные компрессоры разрабатывали в «НИИ турбокомпрессор им. В. Б. Шнеппа» ─ стратегическом партнере Казанского завода компрессорного машиностроения (ОАО «Казанькомпрессормаш»).

Видео:Спиральный компрессор CopelandСкачать

Спиральный компрессор Copeland

Спиральный компрессор ─ сложный в производстве, простой в эксплуатации

Спиральные компрессоры ─ машины объемного сжатия, как правило, имеющие среднюю и малую производительность (0,05-1,5 м 3 /мин), ─ продукт высокотехнологичный. Производство, а также разработка и проектирование спиральных компрессоров и сегодня остаются сложными задачами, а потому представлены преимущественно в странах с высоким технологическим уровнем машиностроения. (Что совсем не отменяет простоту их конструкции и удобство в эксплуатации и обслуживании). Спиральные компрессоры можно уподобить «лакмусовой бумажке», позволяющей судить об уровне развития научно-технического потенциала страны происхождения фирмы-производителя.

Основная сложность заключается в организации экономически конкурентоспособного производства качественных спиралей с точными размерами. Экономический аспект чрезвычайно важен. Компрессор спиральный, цена которого намного выше стоимости, скажем, винтового компрессора, не сумеет победить его в технологической конкурентной борьбе.

Необходимо уметь изготовить спиральный компрессор, купить который сможет широкий круг потребителей, а не единицы избранных.

В процессе проектирования спиральных компрессоров ─ разработки конфигураций и размеров, а также моделировании рабочих процессов ─ широко используют аналитические методы. В поисках наилучшего решения инженерам приходится сталкиваться с задачами, включающими множество неизвестных и переменных, принимать во внимание большое число взаимосвязанных между собой механических и термодинамических факторов. Например, зависимость объемов рабочих полостей, температуры и давления рабочей среды от геометрии спиралей. Очень важно найти оптимальные размеры зазоров, определяющих объемы рабочей среды, перетекающей между полостями. С одной стороны, обеспечивающие наилучшие энергетические параметры, а с другой, исключающие заклинивание спиралей в результате механических и тепловых деформаций.

Рабочая среда в спиральном компрессоре не только испытывает сжатие, но и находится в постоянном движении, перетекая из полостей сжатия во всасывающую полость. Наблюдается движение рабочей среды из областей сжатия с более высоким давлением в области сжатия с более низким давлением и т. д. Все эти перемещения не могут не оказывать влияния на потребляемую мощность, коэффициент полезного действия и производительность спирального компрессора. Вследствие газодинамических потерь процесс сжатия практически перестает быть адиабатическим.

Нельзя упускать из виду вопросы прочности, отчетливо понимая, какие величины сил и моментов способны выдержать рабочие элементы компрессора. Серьезную технологическую задачу представляют сборка и наладка спирального компрессора.

Видео:Как работает спиральный компрессорСкачать

Как работает спиральный компрессор

Спиральный компрессор: устройство и принцип работы

Спиральные блоки для компрессоров

Работа спирального компрессора возможна благодаря рабочему блоку, установленному внутри корпуса и состоящему из двух спиралей, ─ одной неподвижной и другой, совершающей циклические движения. Оси спиралей, будучи параллельными между собой, смещены на величину, равную эксцентриситету вала, обеспечивающего перемещения подвижной спирали. Его вращение происходит за счет контакта с валом электродвигателя ─ напрямую через муфту или через ременную передачу. Неподвижная спираль, имеющая в центральной части отверстие для выхода сжатого воздуха, жестко прикреплена к корпусу.

Благодаря наличию противоповоротного устройства (его функции может выполнять специальная муфта или шестеренчатый механизм) подвижная спираль не вращается, а совершает движения, больше похожие на колебания. Поскольку она словно перемещается по некоей орбите, эти движения иногда называют орбитальными. В результате такой траектории между спиралями образуются замкнутые полости серповидной формы. При перемещении к центру их объем уменьшается, а давление воздуха (воздушный спиральный компрессор) или газа возрастает. В каждый момент времени существует несколько полостей: всасывающая, промежуточная полость, из которой сжатая рабочая среда уходит в нагнетательное отверстие. Работа спирального компрессора представляет совокупность нескольких циклов: всасывания, сжатия, рабочего. Приуроченный к внешним частям спиралей процесс всасывания, и к внутренним ─ процесс сжатия, происходят одновременно. Наполненные газом серповидные области находятся на различных этапах сжатия, что предопределяет плавность работы спирального компрессора.

Читайте также: Компрессор harrison a6 запчасти

Две спирали ─ одна стационарная, другая подвижная ─ не аксиома. Возможны конструктивные решения с двумя подвижными спиралями. Используют спиральные компрессоры, принцип работы которых предполагает наличие четырех спиралей: двух неподвижных и двух подвижных, расположенных на одном эксцентриковом валу.

Эффективный способ управления производительностью спирального компрессора ─ изменяющий скорость вала частотный преобразователь. Возможно регулирование с помощью изменения взаимного положения спиралей, вплоть до холостого хода, когда замкнутые серповидные зоны сжатия не образуются.

Единый принцип работы объединяет все спиральные компрессоры; особенности конструкции служат поводом для их классификации. По расположению вала различают вертикальные и горизонтальные спиральные компрессоры. По числу ступеней ─ одно-, двух- и многоступенчатые. Герметичный спиральный компрессор (в отличие от открытого или полугерметичного) исключает попадание газа из окружающей среды в компрессор и утечки сжимаемого газа из него.

Особенности конструкции рабочего блока спиральных компрессоров позволяют отказаться от всасывающего и нагнетательного клапанов. И это не единственное их преимущество.

Видео:Спиральный компрессор - устройство, принцип работыСкачать

Спиральный компрессор - устройство, принцип работы

Преимущества и область применения спиральных компрессоров

Возможность обойтись без всасывающего и нагнетательного клапанов, как и целого ряда деталей и узлов, обязательных для других типов компрессоров, означает повышенную надежность. Минимизация числа движущихся деталей способствует упрощению сервиса и повышению сроков эксплуатации.

По сравнению с поршневым компрессором аналогичной производительности у спирального суммарное число деталей меньше в два раза. А масса и габаритные размеры ─ на 20-50%.

Еще одно достоинство спиральных компрессоров ─ более высокие энергетические показатели по сравнению с компрессорами других типов, в т. ч. объемный и эффективный коэффициент полезного действия. Спиральный компрессор даже в одной ступени способен достигнуть отношения давления нагнетания к давлению сжатия выше 10.

К числу достоинств спиральных компрессоров относятся невысокая нагрузка на электродвигатель, не исключая момент пуска, и низкие уровни шума и вибрации.

Благодаря многочисленным преимуществам спрос на спиральные компрессоры на мировом рынке постоянно растет, и их производство каждый год увеличивается на несколько процентов. Поскольку изготовление спиральных компрессоров является технологически сложным, изначально основная часть производственных мощностей была сосредоточена в США, Японии, Германии, Франции. Сегодня можно говорить о диверсификации производства. Выпуск спиральных компрессоров налажен в Южной Корее (с 2004 г. их изготавливает компания Kyungwon Machinery под брендом COAIRE) и Таиланде. Важным игроком на рынке ─ и не только в качестве потребителя, но и производителя ─ стал Китай.

Первой и до сих пор остающейся одной из важнейших областей применения спиральных компрессоров является кондиционирование воздуха: коммерческое, промышленное, в жилых помещениях. Спиральные компрессоры используют в чиллерах, крышных кондиционерах, моноблоках.

Еще одна знаковая для этого вида компрессоров сфера использования ─ охлаждение ─ холодильная и криогенная техника. Спиральные холодильные компрессоры, обеспечивающие движения хладагента, устанавливают в холодильниках, морозильниках, охлаждаемых прилавках и витринах для замороженных продуктов.

Спиральные компрессоры нашли широкое применение в тепловых насосах. Учитывая их компактность, а для безмасляных моделей не принципиальность расположения в пространстве, они ─ привлекательное решение для установки в системах кондиционирования транспортных средств. Спиральные компрессоры небольшой мощности применяют в исследовательских лабораториях.

Их можно встретить в таких традиционных отраслях, в т. ч. тяжелой промышленности, как сталелитейное производство или автомобилестроение. Например, в пневматических системах, обслуживающих производственные линии металлургических заводов.

Еще в конце 80-х фирма Volkswagen использовала спиральный компрессор для наддува двигателей внутреннего сгорания.

При разговоре о спиральных компрессорах было бы неправильным обойти тему безмасляных компрессоров.

Видео:СПИРАЛЬНЫЙ КОМПРЕССОРСкачать

СПИРАЛЬНЫЙ КОМПРЕССОР

Безмасляные спиральные компрессоры

Значение масла для компрессорной техники хорошо известно. Во-первых, его впрыск в рабочие полости компрессора позволяет улучшить его энергетические показатели за счет уплотнения зазоров и уменьшения работы сжатия. Во-вторых, так удается снизить износ деталей в результате трения, а, значит, увеличить ресурс компрессора. В третьих, масло помогает регулировать температурный режим. Но сколь бы качественной не была очистка сжатого воздуха, полностью избавиться от масляных паров невозможно.

Не редкость ситуации, когда качество воздуха является критически важным, и над ответом на вопросы, какой ─ масляный или безмасляный ─ компрессор предпочесть, или какой компрессор лучше: масляный или безмасляный ─ думать не приходится. Правильный ответ один ─ компрессор воздушный безмасляный.

Известны безмасляный винтовой компрессор и безмасляный поршневой компрессор. Широкое распространение получил безмасляный спиральный компрессор.

Полностью исключить попадание даже следов масла в сжатый воздух принципиально необходимо при производстве лекарств, в медицине (компрессор стоматологический безмасляный обеспечивает подачу воздуха в стоматологический инструмент), пищевой промышленности, при переработке технологических газов, покрасочных работах, в научно-исследовательских лабораториях, когда выражение «чистота эксперимента» понимается буквально.

В большинстве случаев решая, какой компрессор ─ масляный или безмасляный ─ лучше, исходят из анализа суммы факторов, сугубо индивидуальной в каждой конкретной ситуации. Так, для промышленных компрессоров очень важен такой фактор как ресурс, который у маслозаполненных компрессоров выше. Но для периодического использования в бытовых целях электрический безмасляный компрессор купить может оказаться целесообразнее.

Безмасляные спиральные компрессоры предъявляют более жесткие требования к профильной и торцевой герметичности, чем компрессоры с впрыском жидкости, т. н. жидкостнозаполненные. Первую можно увеличить за счет высокой точности изготовления; вторую ─ использованием уплотнительных элементов. Учитывая, что рабочий процесс в безмасляном спиральном компрессоре сопровождается интенсивным теплообменом между рабочей средой и стенками спиральных элементов, необходимо организовать эффективный отвод тепла.

В какой-то степени все связанные с вышесказанным издержки позволяет уменьшить снижение затрат на эксплуатацию, обусловленное отказом от фильтров, а также сокращением расходов на техническое обслуживание и обработку масляного конденсата.

Производить спиральные компрессоры в промышленных масштабах научились сравнительно недавно. И до сих пор высокие требования к точности изготовления деталей и качеству сборки сдерживают рост их производительности и повышение давления. Но время играет на их стороне. Технологии производства постоянно совершенствуются, в ход идут новые конструкционные материалы. А это значит, что перспективы у спиральных компрессоров самые благоприятные.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    🎬 Видео

    Безмасляный спиральный компрессор LUPAMAT LSL-8K4/300 (Турция)Скачать

    Безмасляный спиральный компрессор LUPAMAT LSL-8K4/300 (Турция)

    Часть 2. Спиральные компрессоры Danfoss - модельный ряд, область работы и примеры примененияСкачать

    Часть 2. Спиральные компрессоры Danfoss - модельный ряд, область работы и примеры применения

    Холод спиральный компрессор Copeland ZR, вскрытие и постановка диагнозаСкачать

    Холод спиральный компрессор Copeland ZR, вскрытие и постановка диагноза

    Как выбрать шланг для воздушного компрессораСкачать

    Как выбрать шланг для воздушного компрессора

    Принцип работы спиральных компрессоровСкачать

    Принцип работы спиральных компрессоров

    Устройство и принцип работы винтового компрессораСкачать

    Устройство и принцип работы винтового компрессора

    Спиральный компрессор Performer серия PSHСкачать

    Спиральный компрессор Performer серия PSH

    Danfoss часть 3 - Спиральные компрессоры Danfoss серии MLZСкачать

    Danfoss часть 3 - Спиральные компрессоры Danfoss серии MLZ

    Обзор компрессоров рефрижераторных контейнеров. Чем отличается спиральный рефконтейнер от поршневогоСкачать

    Обзор компрессоров рефрижераторных контейнеров. Чем отличается спиральный рефконтейнер от поршневого

    Два вида спиральных компрессоровСкачать

    Два вида спиральных компрессоров

    Спиральный цифровой компрессор Digital Scroll Copeland.Скачать

    Спиральный цифровой компрессор Digital Scroll Copeland.

    Часть 3. Спиральные компрессоры Danfoss серии MLZ - номенклатура, конструкция и принцип работыСкачать

    Часть 3. Спиральные компрессоры Danfoss серии MLZ - номенклатура, конструкция и принцип работы

    Спиральный компрессор, что внутри?Скачать

    Спиральный компрессор, что внутри?

    Безмасляный спиральный компрессор SPRСкачать

    Безмасляный спиральный компрессор SPR
Поделиться или сохранить к себе:
Технарь знаток