Способы которыми шины выполняют прерывания два

Механизм прерываний поддерживается аппаратными средствами компьютера и программными средствами операционной системы. Аппаратная поддержка прерываний имеет свои особенности, зависящие от типа процессора и других аппаратных компонентов, передающих сигнал запроса прерывания от внешнего устройства к процессору (таких, как контроллер внешнего устройства, шины подключения внешних устройств, контроллер прерываний, являющийся посредником, между сигналами шины и сигналами процессора). Особенности аппаратной peaлизации прерываний оказывают влияние на средства программной поддержки прерываний, работающие в составе ОС.

Существуют два основных способа, с помощью которых шины выполняют прерывания: векторный (vectored) и опрашиваемый (polled). В обоих способах процессору предоставляется информация об уровне приоритета прерывания на шине подключения внешних устройств. В случае векторных прерываний в процессор передается также информация о начальном адресе программы обработки возникшего прерывания — обработчика прерываний.

Устройствам, которые используют векторные прерывания, назначается вектор прерываний. Он представляет собой электрический сигнал, выставляемый на соответствующие шины процессора и несущий в себе информацию об определенном, закрепленном за данным устройством номере, который идентифицирует соответствующий обработчик прерываний. Этот вектор может быть фиксированным, конфигурируемым (например, с использованием переключателей) или программируемым. Операционная система может предусматривать процедуру регистрации вектора обработки прерываний для определенного устройства, которая связывает некоторую подпрограмму обработки прерываний с определенным вектором. При получении сигнала запроса прерывания процессор выполняет специальный цикл подтверждения прерывания, в котором устройство должно идентифицировать себя. В течение этого цикла устройство отвечает, выставляя на шину вектор прерываний. Затем процессор использует этот вектор для нахождения обработчика данного прерывания. Примером шины подключения внешних устройств, которая поддерживает векторные прерывания, является шина VMEbus.

При использовании опрашиваемых прерываний процессор получает от запросившего прерывание устройства только информацию об уровне приоритета прерывания (например, номере IRQ на шине ISA или номере IPL на шине SBus компьютеров SPARC). С каждым уровнем прерываний может быть связано несколько устройств и соответственно несколько программ — обработчиков прерываний. При возникновении прерывания процессор должен определить, какое устройство из тех, которые связаны с данным уровнем прерываний, действительно запросило прерывание. Это достигается вызовом всех обработчиков прерываний для данного уровня приоритета, пока один из обработчиков не подтвердит, что прерывание пришло от обслуживаемого им устройства. Если же с каждым уровнем прерываний связано только одно устройство, то определение нужной программы обработки прерывания происходит немедленно, как и при векторном прерывании. Опрашиваемые прерывания поддерживают шины ISA, EISA, MCA, PCI и Sbus.

Механизм прерываний некоторой аппаратной платформы может сочетать векторный и опрашиваемый типы прерываний. Типичным примером такой реализации является платформа персональных компьютеров на основе процессоров Intel Pentium. Шины PCI, ISA, EISA или MCA, используемые в этой платформе в качестве шин подключения внешних устройств, поддерживают механизм опрашиваемых прерываний. Контроллеры периферийных устройств выставляют на шину не вектор, а сигнал запроса прерывания определенного уровня IRQ. Однако в процессоре Pentium система прерываний является векторной. Вектор прерываний в процессор Pentium поставляет контроллер прерываний, который отображает поступающий от шины сигнал IRQ на определенный номер вектора.

Вектор прерываний, передаваемый в процессор, представляет собой целое число в диапазоне от 0 до 255, указывающее на одну из 256 программ обработки прерываний, адреса которых хранятся в таблице обработчиков прерываний. В том случае, когда к каждой линии IRQ подключается только одно устройство, процедура обработки прерываний работает так, как если бы система прерываний была чисто векторной, то есть процедура не выполняет никаких дополнительных опросов для выяснения того, какое именно устройство запросило прерывание. Однако при совместном использовании одного уровня IRQ несколькими устройствами программа обработки прерываний должна работать в соответствии со схемой опрашиваемых прерываний, то есть дополнительно выполнить опрос всех устройств, подключенных к данному уровню IRQ.

Читайте также: Как накачать шины водой

Механизм прерываний чаще всего поддерживает приоритезацию и маскирование прерываний. Приоритезация означает, что все источники прерываний делятся на классы и каждому классу назначается свой уровень приоритета запроса на прерывание. Приоритеты могут обслуживаться как относительные и абсолютные. Обслуживание запросов прерываний по схеме с относительными приоритетами заключается в том, что при одновременном поступлении запросов прерываний из разных классов выбирается запрос, имеющий высший приоритет. Однако в дальнейшем при обслуживании этого запроса процедура обработки прерывания уже не откладывается даже в том случае, когда появляются более приоритетные запросы — решение о выборе нового запроса принимается только в момент завершения обслуживания очередного прерывания. Если же более приоритетным прерываниям разрешается приостанавливать работу процедур обслуживания менее приоритетных прерываний, то это означает, что работает схема приоритезации с абсолютными приоритетами.

Если процессор (или компьютер, когда поддержка приоритезации прерываний вынесена во внешний по отношению к процессору блок) работает по схеме с абсолютными приоритетами, то он поддерживает в одном из своих внутренних регистров переменную, фиксирующую уровень приоритета обслуживаемого в данный момент прерывания. При поступлении запроса из определенного класса его приоритет сравнивается с текущим приоритетом процессора, и если приоритет запроса выше, то текущая процедура обработки прерываний вытесняется, а по завершении обслуживания нового прерывания происходит возврат к прерванной процедуре.

Упорядоченное обслуживание запросов прерываний наряду со схемами приоритетной обработки запросов может выполняться механизмом маскирования запросов. Собственно говоря, в описанной схеме абсолютных приоритетов выполняется маскирование — при обслуживании некоторого запроса все запросы с равным или более низким приоритетом маскируются, то есть не обслуживаются. Схема маскирования предполагает возможность временного маскирования прерываний любого класса независимо от уровня приоритета.

Обобщенно последовательность действий аппаратных и программных средств по обработке прерывания можно описать следующим образом.

1. При возникновении сигнала (для аппаратных прерываний) или условия (для внутренних прерываний) прерывания происходит первичное аппаратное распознавание типа прерывания. Если прерывания данного типа в настоящий момент запрещены (приоритетной схемой или механизмом маскирования), то процессор продолжает поддерживать естественный ход выполнения команд. В противном случае в зависимости от поступившей в процессор информации (уровень прерывания, вектор прерывания или тип условия внутреннего прерывания) происходит автоматический вызов процедуры обработки прерывания, адрес которой находится в специальной таблице операционной системы, размещаемой либо в регистрах процессора, либо в определенном месте оперативной памяти.

2. Автоматически сохраняется некоторая часть контекста прерванного потока, которая позволит ядру возобновить исполнение потока процесса после обработки прерывания. В это подмножество обычно включаются значения счетчика команд, слова состояния машины, хранящего признаки основных режимов работы процессора (пример такого слова — регистр EFLAGS в Intel Pentium), а также нескольких регистров общего назначения, которые требуются программе обработки прерывания. Может быть сохранен и полный контекст процесса, если ОС обслуживает данное прерывание со сменой процесса. Однако в общем случае это не обязательно, часто обработка прерываний выполняется без вытеснения текущего процесса.

3. Одновременно с загрузкой адреса процедуры обработки прерываний в счетчик команд может автоматически выполняться загрузка нового значения слова состояния машины (или другой системной структуры, например селектора кодового сегмента в процессоре Pentium), которое определяет режимы работы процессора при обработке прерывания, в том числе работу в привилегированном режиме. В некоторых моделях процессоров переход в привилегированный режим за счет смены состояния машины при обработке прерывания является единственным способом смены режима. Прерывания практически во всех мультипрограммных ОС обрабатываются в привилегированном режиме модулями ядра, так как при этом обычно нужно выполнить ряд критических операций, от которых зависит жизнеспособность системы, — управлять внешними устройствами, перепланировать потоки и т. п.

Читайте также: Модели шин ханкук 2020 года

4. Временно запрещаются прерывания данного типа, чтобы не образовалась очередь вложенных друг в друга потоков одной и той же процедуры. Детали выполнения этой операции зависят от особенностей аппаратной платформы, например может использоваться механизм маскирования прерываний. Многие процессоры автоматически устанавливают признак запрета прерываний в начале цикла обработки прерывания, в противном случае это делает программа обработки прерываний.

5. После того как прерывание обработано ядром операционной системы, прерванный контекст восстанавливается и работа потока возобновляется с прерванного места. Часть контекста восстанавливается аппаратно по команде возврата из прерываний (например, адрес следующей команды и слово состояния машины), а часть — программным способом, с помощью явных команд извлечения данных из стека. При возврате из прерывания блокировка повторных прерываний данного типа снимается.

Программное прерывание реализует один из способов перехода на подпрограмму с помощью специальной инструкции процессора, такой как INT в процессорах Intel Pentium; trap в процессорах Motorola, syscal1 в процессорах MIPS или Ticc в процессорах SPARC. При выполнении команды программного прерывания процессор отрабатывает ту же последовательность действий, что и при возникновении внешнего или внутреннего прерывания, но только происходит это в предсказуемой точке программы — там, где программист поместил данную, команду.

Практически все современные процессоры имеют в системе команд инструкции программных прерываний. Одной из причин появления инструкций программных прерываний в системе команд процессоров является то, что их использование часто приводит к более компактному коду программ по сравнению с использованием стандартных команд выполнения процедур. Это объясняется тем, что разработчики процессора обычно резервируют для обработки прерываний небольшое число возможных подпрограмм, так что длина операнда в команде программного прерывания, который указывает на нужную подпрограмму, меньше, чем в команде перехода на подпрограмму. Например, в процессоре х86 предусмотрена возможность применения 256 программ обработки прерываний, поэтому в инструкции INT операнд имеет длину в один байт (а инструкция INT ), которая предназначена для вызова отладчика, вся имеет длину один байт). Значение операнда команды INT просто является индексом в таблице из 256 адресов подпрограмм обработки прерываний, один из которых и используется для перехода по команде INT. При использовании команды CALL потребовался бы уже не однобайтовый, а двух- или четырехбайтовый операнд. Другой причиной применения программных прерываний вместо обычных инструкций вызова подпрограмм является возможность смены пользовательского режима на привилегированный одновременно с вызовом процедуры — это свойство программных прерываний поддерживается большинством процессоров.

В результате программные прерывания часто используются для выполнения ограниченного количества вызовов функций ядра операционной системы, то есть системных вызовов.

Видео:Маркировка внедорожных шин: U/T, H/T, A/T, M/T – что это значитСкачать

Маркировка внедорожных шин: U/T, H/T, A/T, M/T – что это значит

Прерывания для самых маленьких

Сегодня мы поговорим о прерываниях процессоров семейства x86 (-64). Подробнее под катом.
Прерывания — это как бы сигнал процессору, что надо прервать выполнение (их поэтому и назвали прерываниями) текущего кода и срочно сделать то, что указано в обработчике.

Все адреса обработчиков прерываний хранятся в IDT. Это таблица, в которой хранятся 256 (можно больше или меньше, но большие значения просто игнорируются) ячеек (векторы прерываний) с типом и атрибутами прерывания, одним просто нулевым значением, собственно адресом обработчика прерываний и селектором кода в GDT или LDT, который будет использовать данный вектор прерываний. Теперь немного о типе и атрибутах.
Тип прерывания и атрибуты занимают 8 бит. Первые 4 бита занимают тип:

  • 0b0101: 32-битный гейт задачи, при появлении такого прерывания происходит хардверное переключение задачи (да-да, есть и такое, но его уже давно не используют)
  • 0b0110: 16-битный гейт прерывания
  • 0b0111: 16-битный гейт trap’a (я не знаю, как это перевести на русский язык, извините)
  • 0b1110: 32-битный гейт прерывания
  • 0b1111: 32-битный гейт trap’a

Читайте также: Металлическая шина при переломах

Далее идут атрибуты. Первым атрибутом является 1 бит, который задан в 0 для гейтов прерывания и в 1 для остальных. Далее идет уровень привилегий дескриптора — 2 бита, задающие минимальный уровень привилегий для вызова прерываний, и 1 бит, заданный в 0 для неиспользуемых прерываний.
Теперь о том, как процессор вызывает обработчики.
Допустим, что вы вызвали инструкцию int 0 в ассемблере. Это даст сигнал процессору, что надо вызвать прерывание 0, если это возможно. Вот последовательность действий, которые происходят при этом.

  1. Поиск вектора №0 в IDT.
  2. Сравнение уровня привилегий дескриптора и текущего уровня привилегий процессора.
  3. Если текущий уровень привилегий процессора меньше уровня привилегий дескриптора, то просто вызвать генеральную ошибку защиты и не вызывать прерывание.
  4. Происходит сохранение адреса возвращения, регистра (E)FLAGS и другой информации.
  5. Происходит переход на адрес, указанный в векторе №0 IDT.
  6. После выполнения обработчика инструкция iret возвращает управление прерванному коду.

Видео:Лекция 11: ПрерыванияСкачать

Лекция 11: Прерывания

Исключения

Еще есть прерывания, которые генерируются самим процессором при определенных обстоятельствах — исключения. Вот их список с краткими описаниями:

  • Деление на ноль. Генерируется при, собственно, делении на ноль.
  • Отладочное исключение. Генерироваться само не может, используется для, собственно, отладки.
  • Немаскируемое прерывание. Генерируется при ошибках ОЗУ и невосстановимых ошибках «железа». Их невозможно замаскировать с помощью PIC (Programmable Interrupt Controller — программируемый контроллер прерываний), так как оно идет сразу в процессор, минуя PIC, но можно просто отключить.
  • Точка останова. Тоже используется для отладки, потому что его опкод занимает всего 1 байт, в отличии от остальных INT N. Переназначалось DOS-отладчиками для своих целей.
  • Переполнение. Генерируется инструкцией INTO , если в (E)FLAGS включен бит переполнения.
  • Выход за пределы. Генерируется при ошибке инструкции BOUND.
  • Недопустимый опкод. Генерируется при попытке выполнения недопустимого кода операции.
  • Устройство недоступно. Сейчас не используется, генерировался при попытке использования операций с плавающей точкой на процессорах без FPU.
  • Double fault. Сложно перевести название. Ошибка невосстановима, происходит при невозможности вызвать обработчик исключения.
  • Переполнение сегмента сопроцессора. Больше не используется.
  • Недопустимый TSS. Сегмент состояния задачи задан неправильно.
  • Сегмент отсутствует. Возникает при попытке загрузки сегмента с битом Present == 0.
  • Ошибка сегмента стека. Возникает при попытке загрузки сегмента с битом Present == 0 или переполнении стека.
  • Общая ошибка защиты. Генерируется в очень большом числе случаев, среди них есть ошибка сегмента, попытка выполнения инструкции без необходимых прав, запись туда, куда не надо, попытка доступа к нулевому дескриптору GDT и многое другое.
  • Ошибка страницы. Происходит при чтении или записи в несуществующую страницу памяти, попытке доступа к данным без необходимых прав или другом.
  • Ошибка с плавающей точкой. Происходит при выполнении инструкции FWAIT или WAIT с битом №5 в CR0 == 0.
  • Ошибка при проверке на выравнивание. Происходит только в третьем кольце привилегий процессора, если эта ошибка, конечно, включена.
  • Ошибка при проверке машины. Генерируется процессором при обнаружении «железных» ошибок.
  • Исключение с плавающей точкой SIMD. Генерируется при ошибках с 128-битными числами с плавающей точкой.
  • Ошибка виртуализации.
  • Ошибка безопасности.
  • Тройная ошибка. По сути исключением не является, это даже не прерывание. Происходит при невозможности вызвать Double Fault. Вызывает немедленную перезагрузку компьютера.

Существует особый тип прерываний — IRQ (Interrupt ReQuest), или же аппаратные прерывания, но я буду их для краткости называть просто IRQ. Технически они почти не отличаются от любых других прерываний, но генерируются не процессором или самим кодом, а устройствами, подключенными к компьютеру. К примеру, IRQ №0 генерируется PIT (таймер с программируемым интервалом), IRQ 1 генерируется при нажатии клавиши на клавиатуре, а IRQ 12 — при действии с PS/2-мышью.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле

    🌟 Видео

    Виды износа протектора. ЧТО, КАК и ПОЧЕМУ?Скачать

    Виды износа протектора. ЧТО, КАК и ПОЧЕМУ?

    Одноэтапный ремонт боковой части грузовой шины 385/65 R 22.5 (метод горячей вулканизации)Скачать

    Одноэтапный ремонт боковой части грузовой шины 385/65 R 22.5 (метод горячей вулканизации)

    ЛУЧШАЯ РЕКЛАМА НАДУВНОГО МАТРАСА 😂Скачать

    ЛУЧШАЯ РЕКЛАМА НАДУВНОГО МАТРАСА 😂

    Полный гид по ротации колёс: схемы для разных приводов и рисунков протектораСкачать

    Полный гид по ротации колёс: схемы для разных приводов и рисунков протектора

    Проколол колесо вдали от дома? РешениеСкачать

    Проколол колесо вдали от дома? Решение

    Уроки Ардуино #16 - аппаратные прерыванияСкачать

    Уроки Ардуино #16 - аппаратные прерывания

    Слив ответов ВПР, ОГЭ, ЕГЭ в комментариях!Скачать

    Слив ответов ВПР, ОГЭ, ЕГЭ в комментариях!

    Что лучше: два комплекта резины на дисках или каждый раз бортировать?Скачать

    Что лучше: два комплекта резины на дисках или каждый раз бортировать?

    Прерывания в микроконтроллерах? Что это, и как с ними работать. Краткий ликбез.Скачать

    Прерывания в микроконтроллерах?  Что это, и как с ними работать.  Краткий ликбез.

    5 ошибок ПРИ ПОКУПКЕ летней резиныСкачать

    5 ошибок ПРИ ПОКУПКЕ летней резины

    Велосипед с колесами от БМВ.Кастом вело. Вело дрифтСкачать

    Велосипед с колесами от БМВ.Кастом вело. Вело дрифт

    Проверил, как вам?Скачать

    Проверил, как вам?

    Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать

    Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

    КАКУЮ РЕЗИНУ ВЫБРАТЬ – A/T или M/T ДЛЯ ВНЕДОРОЖНИКОВ. КАК ПОДОБРАТЬ РАЗМЕР КОЛЕС.Скачать

    КАКУЮ РЕЗИНУ ВЫБРАТЬ – A/T или M/T ДЛЯ ВНЕДОРОЖНИКОВ. КАК ПОДОБРАТЬ РАЗМЕР КОЛЕС.

    S1mple шалит с Аринян на стриме CSGO #s1mple #ксго #аринянСкачать

    S1mple шалит с Аринян  на стриме  CSGO #s1mple #ксго #аринян

    Чит код на крутую тачку 🚘#1win #гта #шортс #машина #gtaСкачать

    Чит код на крутую тачку 🚘#1win #гта #шортс #машина #gta

    STM32 CAN шина. Часть 2. Фильтрация и демонстрация работыСкачать

    STM32 CAN шина. Часть 2. Фильтрация и демонстрация работы

    Питерская пышечная как в СССРСкачать

    Питерская пышечная как в СССР
Поделиться или сохранить к себе:
Технарь знаток