Справочник по коленчатым валами

Справочник по коленчатым валами

Коленчатый вал является одной из важных деталей двигателя. Он преобразует поступательное движение поршня во вращательное движение, которое в дальнейшем, через трансмиссию, передается к колесам.

Справочник по коленчатым валами

Видео:Строение и функция коленчатого вала (3D анимация) - Motorservice GroupСкачать

Строение и функция коленчатого вала (3D анимация) - Motorservice Group

Кинематика привода коленчатого вала

Кинематика привода коленчатого вала (для одного цилиндра) может быть определена из геометрического расположения осей поршня и поршневого пальца, шатуна и коленчатого вала (радиус коленчатого вала равен половине рабочего хода поршня) (см. рис. «Кривошипно-шатунный механизм поршневого двигателя» ).

Справочник по коленчатым валами

Если ход поршня х в верхней мертвой точке принять равным нулю, при радиусе кривошипа r и длине шатуна l получаем (см. рис. «Разложение на составляющие силы воздействующей на поршень» ):

х = r ( 1 — cosa) + l (1 — cosβ),

x = r (1 — cosa + 1/λ (1- √‾1-λ 2 ·sin 2 a))

Некоторые производители применяют компо­новку со смещенным поршневым пальцем. За счет изменения положения поршня и в зави­симости от положения шатуна можно ожидать снижения трения и уровня шума. Смещение может осуществляться путем сдвига поршне­вого пальца относительно центрального поло­жения или смещения коленчатого вала.

Справочник по коленчатым валами

Если принять смещение для положительных углов поворота коленчатого вала положи­тельным и ввести величину

δ = смещение / длина шатуна

это дает следующее соотношение для хода поршня:

x=r (1 — cosa + 1/λ (1- √‾1-(λ·sin a-δ) 2 ).

На рис. «График зависимости положения поршня от угла поворота коленчатого вала» показано влияние отношения хода поршня к длине шатуна и смещения. Однако различия по сравнению с нормальными зна­чениями смещения в миллиметровом диапа­зоне (δ х = r(1+1/4·λ+3/64·λ 3 +…- cosa-(1/4λ+3/64·λ 3 +…)cos2a+(3/64·λ 3 +…)cos4a+…)

Это выражение демонстрирует присутствие высших гармоник, обусловленных кинематикой привода коленчатого вала, которые также назы­ваются колебаниями двигателя высшего порядка (кратные частоты вращения коленчатого вала).

Поскольку нормальные значения λ состав­ляют около 0,3, членами λ высшего порядка можно пренебречь и в дальнейших расчетах ис­пользовать следующее упрощенное выражение:

Однако это упрощение не может быть ис­пользовано, если необходимо выполнить детальный анализ вибрации и резонанса.

Из упрощенного уравнения получаются следующие соотношения для скорости поршня v и ускорения поршня а, где была введена угловая скорость da/dt=ω= 2πn (п частота вращения):

Здесь также имеют место высшие гармоники, которые не следует игнорировать при иссле­довании явлений резонанса.

Видео:Как проводится дефектовка коленчатых валовСкачать

Как проводится дефектовка коленчатых валов

Динамика коленчатого вала

Силы, воздействующие на узел коленчатого вала, и результирующие моменты первона­чально можно определить следующим обра­зом без учета сил инерции (рис.»Разложение на составляющие силы воздействующей на поршень» ).

Сила на поршневом пальце возникает под действием давления газов в камере сгорания, передающегося на поршень. Имеет место следующее:

FG = (P -PKGH) Apiston

Сила на шатуне определяется посредством векторного анализа силы на поршневом пальце в направлении шатуна. Имеет место следующее:

Нормальная сила поршня FN — это векторная составляющая силы на поршневом пальце, перпендикулярная к стенке цилиндра и урав­новешивающая силу на шатуне:

FN=FG·tanβ=FG·λ sina/√¯1-λ 2 ·sin 2 a

Эта сила вносит значительный вклад в соз­дание трения между поршнем и стенкой цилиндра. Сторона, с которой соприкаса­ется поршень после верхней мертвой точки под действием давления газов, называется большой упорной поверхностью, а противо­положная сторона — малой упорной поверх­ностью. Следовательно, наибольшее трение имеет место вскоре после прохождения ВМТ на большой упорной поверхности.

Тангенциальная сила на шатунной шейке коленчатого вала вызывает ускорение ко­ленчатого вала и, следовательно, увеличение крутящего момента коленчатого вала. Она определяется путем векторного анализа силы на шатуне:

Подкоренное выражение может быть упро­щено следующим образом:

Читайте также: Цилиндр с валами это

Радиальная сила FR на шатунной шейке ко­ленчатого вала:

Силы инерции можно разделить на коле­бательные и вращательные составляющие. Массы поршня, поршневых колец и поршне­вого пальца mк относятся к колебательной составляющей и могут быть виртуально со­средоточены в поршневом пальце.

Щека коленчатого вала с шатунной шейкой относятся к вращательной составляющей. Здесь масса обычно сосредотачивается на радиусе кривошипа, на центральной оси ша­тунной шейки. Применимо следующее:

где ml масса соответствующего компонента (щека, палец и т.д.), а rsl — соответствующий радиус центра массы.

В связи с колебательным движением ша­туна целесообразно разделить массу шатуна на колебательную и вращательную составляю­щие. Это может быть сделано, если известно точное положение центра тяжести и момента инерции шатуна, предполагая наличие двух динамически идентичных отдельных масс ма­лой и большой головок шатуна, и определяя Условие равновесия сил, моментов и инерци­онных масс. Обычно предполагается, что одна треть массы шатуна тpl является колебатель­ной, а две трети — вращательной. Затем при т0 = mK + 1/3 тРl, как колебательной массы и со­ответствующем ускорении поршня (см. ниже) колебательная сила инерции выражается как:

Таким образом, колебательная сила инерции возрастает пропорционально квадрату ча­стоты вращения двигателя (ω = 2π·п) и имеет составляющую первого порядка и меньшую составляющую второго порядка.

Вращательная сила инерции выводится, как центробежная сила из уменьшенной массы mr = mw + 2/3 тРl и скорости враще­ния как:

Точно так же вращательная сила инерции воз­растает пропорционально квадрату частоты вращения двигателя, но не имеет составляю­щих высших порядков. Вращательная сила инерции, следовательно, может быть легко уравновешена противовесами, вращающимися со скоростью, равной частоте вращения двига­теля. Неравномерности вращения коленчатого вала столь малы по сравнению с этими силами, что в балансе масс ими можно пренебречь.

Как было показано выше в кинематике узла коленчатого вала, высшие гармоники (колебания высшего порядка) возникают за счет геометрии кривошипно-шатунного ме­ханизма. Амплитуда колебаний 4-го и выше порядков быстро снижается, и в балансе масс этими колебаниями, как правило, пре­небрегают.

Видео:Коленчатые валы #ВасилийШукшин #Шукшин #джахангирабдуллаев #аудиокнига #читаювслух #рассказСкачать

Коленчатые валы #ВасилийШукшин #Шукшин #джахангирабдуллаев #аудиокнига #читаювслух #рассказ

Уравновешивание масс в одноцилиндровом двигателе

Компонент вращающейся массы в одноци­линдровом двигателе может быть полностью уравновешен при помощи соответствующего противовеса. Противовесы обычно преду­сматриваются на обеих сторонах, и массы должны быть сбалансированы относительно радиуса вращения центра масс. Колебания сил можно представить в виде векторов силы (рис. «Полностью уравновешенные массы 1-го и 2-го порядков» ), когда они моделируются как вращающиеся в противоположных направле­ниях, и имеющие в каждом случае половин­ную величину.

Справочник по коленчатым валами

Следовательно, для уравновешивания коле­бательных сил инерции могут быть использо­ваны два вращающихся в противоположном направлении вала. Горизонтальная составля­ющая исчезает и, как минимум составляющая колебательной силы инерции первого порядка может быть скомпенсирована.

Для практически полного уравновешивания масс требуются дополнительные уравновешивающие валы, которые должны вращаться со скоростью в два раза выше частоты вращения двигателя, чтобы полностью уравновесить со­ставляющую колебаний второго порядка.

Часто конструкторам приходится идти на ком­промисс вследствие того, что системы с противо­положно вращающимися валами являются до­рогостоящими, и уже для уравновешивания сил инерции первого порядка требуются значитель­ные массы. Например, масса противовеса может быть равна половине колеблющейся массы. При этом неуравновешенные силы инерции, дей­ствующие наружу в направлении продольной оси цилиндра, уменьшаются наполовину, однако за счет больших масс, вращающихся компонен­тов возникают поперечные силы (см. табл. «Уравновешивание масс в одноцилиндровом двигателе, в зависимости от степени уравновешивания» ). Такая частичная компенсация называется 50% — ной балансировкой. Обычными цифрами явля­ются 100% уравновешивание вращающихся масс и 50% уравновешивание колеблющихся масс.

Читайте также: Ремонт коленчатого вала двигателя metalhunters

Справочник по коленчатым валами

Видео:Проверка коленчатого вала на радиальное биение.Скачать

Проверка коленчатого вала на радиальное биение.

Уравновешивание масс в многоцилиндро­вых двигателях

В многоцилиндровом двигателе силы инер­ции состоят из сил инерции каждого отдель­ного цилиндра, которые накладываются друг на друга. Кроме того, за счет промежутков между цилиндрами создаются неуравнове­шенные моменты инерции. Все возможные поперечные и продольные отклоняющие моменты, и неуравновешенные силы инерции показаны в табл. «Поперечные и продольные отклоняющие моменты и неуравновешенные силы инерции в многоцилиндровых двигателях» .

Справочник по коленчатым валами

Взаимное уравновешивание сил инерции яв­ляется одним из главных факторов, определя­ющих выбор конфигурации коленчатого вала, а, следовательно, и конструкции самого дви­гателя. В многоцилиндровых двигателях силы инерции могут быть уравновешены, если об­щий центр тяжести всех деталей кривошипно-шатунного механизма располагается в средней точке коленчатого вала, т.е., если коленчатый

вал является симметричным (глядя спереди). Это представлено полярными диаграммами сил 1-го и 2-го порядка (см. табл. «Полярная диаграмма сил для рядных двигателей» ).

Справочник по коленчатым валами

Диаграмма 2-го порядка для четырех­цилиндрового рядного двигателя является асимметричной, указывая на то, что этот порядок характеризуется наличием больших неуравновешенных сил инерции. Эти силы могут быть уравновешены двумя балансир­ными валами, вращающимися в противопо­ложных направлениях, но с удвоенной часто­той (система Ланчестера).

В табл. «Неуравновешенные силы и моменты 1-го и 2-го порядка и интервалы между моментами зажигания для наиболее распространенных моделей двигателей» приведена сводка неуравнове­шенных сил и моментов для различного числа цилиндров и конфигураций кривошипно-шатунных механизмов.

Справочник по коленчатым валами

Справочник по коленчатым валами

Видео:Уроки Компас 3D.Коленчатый валСкачать

Уроки  Компас 3D.Коленчатый вал

Крутящая сила

Массы в двигателе движутся с постоянно из­меняющимся ускорением, что приводит к возникновению сил инерции. Циклически из­меняющиеся давления в цилиндрах называ­ются силами газообразных продуктов сгора­ния смеси. Те и другие силы по отношению к двигателю имеют как внутренние, так и внеш­ние составляющие. Внутренние силы и мо­менты должны поглощаться компонентами двигателя, в особенности коленчатым валом и картером двигателя, в то время как внешние силы через опоры двигателя передаются на шасси автомобиля.

На поршень действуют циклические уси­лия, создаваемые при сгорании топливовоздушной смеси, а циклические инерционные усилия действуют на поршень, шатун и ко­ленчатый вал. Все эти силы в сумме создают тангенциальную составляющую силы, дей­ствующую на шейку коленчатого вала. Эта сила, умноженная на радиус кривошипа, дает крутящий момент, также изменяющийся по периодическому закону.

В многоцилиндровых двигателях кривые тангенциального давления для отдельных ци­линдров суммируют в соответствии с числом цилиндров двигателя, их расположением, кон­струкцией коленчатого вала и порядком ра­боты цилиндров. Полученная результирующая кривая является характеристикой двигателя (с точки зрения его конструкции) и включает весь рабочий цикл (т.е., для четырехтактных двига­телей два оборота коленчатого вала) (см. рис. «Полностью уравновешенные массы 1-го и 2-го порядков» ). Этот процесс можно проиллюстрировать диаграммой крутящих сил. Эта переменная крутящая сила и результирующий крутящий момент, в зависимости от момента инерции J, создают переменную скорость вращения ω:

с учетом всех наложенных и вновь создан­ных порядков колебаний (в том числе по­ловинных порядков). Это отклонение от постоянной скорости вращения называется коэффициентом циклического изменения скорости вращения и определяется следую­щим образом:

Этот коэффициент циклического измене­ния может быть уменьшен до приемлемого уровня при помощи механизмов, запасаю­щих энергию, таких как, например, маховики. Крутильные колебания, которые можно от­следить назад к описанным выше крутящим силам, также называются крутильными колебаниями 1-го порядка. Эти колебания нельзя смешивать с высокочастотными ко­лебаниями, возникающими вследствие упру­гих деформаций и собственного резонанса коленчатого вала, называемыми колебаниями 2-го порядка.

Видео:А вы знали как делают коленвал ? Изготовление коленвала в ГерманииСкачать

А вы знали как делают коленвал ? Изготовление коленвала в Германии

Коленчатый вал

Справочник по коленчатым валами

Коленчатый вал — деталь (или узел деталей в случае составного вала) сложной формы, имеющая шейки для крепления шатунов, от которых воспринимает усилия и преобразует их в крутящий момент. Составная часть кривошипно-шатунного механизма (КШМ).


💥 Видео

Как устроен коленвал двигателя и для чего он нуженСкачать

Как устроен коленвал двигателя и для чего он нужен

Датчики коленвала и распредвала: принцип работы, неисправности и способы диагностики. Часть 11Скачать

Датчики коленвала и распредвала: принцип работы, неисправности и способы диагностики. Часть 11

Изготовление коленчатого вала на WFL M60Скачать

Изготовление коленчатого вала на WFL M60

# 502 Autodesk Inventor Proessional 2021 Tutorial Вал коленчатый Пустоты. Пошаговая инструкцияСкачать

# 502 Autodesk Inventor Proessional 2021 Tutorial Вал коленчатый Пустоты. Пошаговая инструкция

Как замерить зазор между вкладышем и коленвалом ВЕК ЖИВИ ВЕК УЧИСЬ @user-fc5yc8os8bСкачать

Как замерить зазор между вкладышем и коленвалом  ВЕК ЖИВИ ВЕК УЧИСЬ @user-fc5yc8os8b

Ремонт коленвала двигателя. Шлифовка коленвала на станке AMC-SCHOU (K1500-U)Скачать

Ремонт коленвала двигателя. Шлифовка коленвала на станке AMC-SCHOU (K1500-U)

14) Коленчатый вал раскеп один из вопросов МКК УСТНОГО ЭКЗАМЕНАСкачать

14) Коленчатый вал раскеп один из вопросов МКК УСТНОГО ЭКЗАМЕНА

Крутильные колебания коленчатого вала ДВССкачать

Крутильные колебания коленчатого вала ДВС

Фрагмент мастер-класса в ЮУрГАУ. Шлифовка коленвала и хонинговка гильзСкачать

Фрагмент мастер-класса в ЮУрГАУ. Шлифовка коленвала и хонинговка гильз

Дефектовка коленчатых валовСкачать

Дефектовка коленчатых валов

Производство Коленвала)Скачать

Производство Коленвала)

Модели коленвалов Камаз. Как определить и какой выбрать?Скачать

Модели коленвалов Камаз. Как определить и какой выбрать?

# 501 Autodesk Inventor Professional 2021 Tutorial Вал коленчатый ГАЗ 66 НачалоСкачать

# 501 Autodesk Inventor Professional 2021 Tutorial Вал коленчатый ГАЗ 66 Начало

ЯПОНСКИЙ YAMAHA-КОЛЕНВАЛ в ЖИГУ - ЧТО БУДЕТ С ДВИГАТЕЛЕМ?Скачать

ЯПОНСКИЙ YAMAHA-КОЛЕНВАЛ в ЖИГУ - ЧТО БУДЕТ С ДВИГАТЕЛЕМ?
Поделиться или сохранить к себе:
Технарь знаток