Конструкции машин содержат множество вращающихся деталей и узлов, работающих в различных условиях. Так, детали двигателей, редукторов, воздушные и корабельные винты, колеса автомобилей и шасси самолета движутся с большими угловыми скоростями, испытывая значительные динамические нагрузки и подвергаясь в некоторых случаях интенсивному нагреву.
Для поддержания вращающихся деталей и для передачи вращающего момента от одной детали к другой (в осевом направлении) в конструкциях используют детали, называемые валами (рис. 3.1, а – г).
Рис. 3.1. Эскизы валов и осей
В зависимости от вида испытываемой деформации условно различают:
— простые валы – работают в условиях кручения, изгиба, как, например, вал воздушного винта самолета, нагруженный силой веса винта и вращающим моментом, или вал привода агрегатов двигателя, несущий зубчатые колеса. Зубчатые колеса могут быть насажены на вал или изготовлены с ним как одно целое;
— торсионные валы – работают лишь в условиях кручения, т.е. передают только вращающий момент (валы приводов управления закрылками ВС);
— оси – поддерживающие невращающиеся валы, работающие лишь в условиях изгиба. Например, оси тормозных колес шасси, оси роликов тросовой системы управления, оси шарнирных соединений стоек шасси, элеронов, рулей, управляемых стабилизаторов не вращаются.
По геометрической форме валы бывают прямыми (рис. 3.1, б), коленчатыми (рис. 3.1, в) (в поршневых двигателях и компрессорах) гибкими (рис. 3.1, г), а оси только прямыми (рис. 3.1, а). Гибкие валы дают возможность передавать вращение с изменяющейся геометрией оси, их используют в переносных механизированных инструментах, в приборах и др.
В зависимости от расположения, быстроходности и назначения валы называют входными, промежуточными, выходными, тихо- или быстроходными, распределительными и т.п.
Конструктивные элементы. Опорные части валов, воспринимающие радиальные нагрузки (рис. 3.2, а), называют цапфами, а воспринимающие осевые нагрузки (рис. 3.2, б) – пятами. Концевые цапфы называют шипами (в подшипниках скольжения), а промежуточные – шейками. Шипы чаще всего бывают цилиндрическими (рис. 3.2, а), а также коническими и сферическими (рис. 3.2, в, г).
Рис. 3.2. Опорные части валов
Прямой вал ступенчатой формы более удобен для монтажа деталей и по профилю приближается к брусу равного сопротивления. Переход от одной ступени к другой может осуществляться канавкой для выхода шлифовального круга (рис. 3.3, а), однако это приводит к повышению концентрации напряжений, галтелью (рис. 3.3, б, в) – плавным переходом по дуге с постоянным или переменным радиусом (в этом случае снижается концентрация напряжений и повышается прочность вала).
Рис. 3.3. Переходные участки вала
Закрепление деталей на валах от осевого перемещения осуществляют с помощью буртиков (рис. 3.4, а), гаек (рис. 3.4, б), посадки с натягом (рис. 3.4, в), пружинных колец (рис. 3.4, г). Передачу вращающего момента осуществляют за счет устройства шпоночных, шлицевых и других соединений валов.
Рис. 3.4. Крепление деталей на валах
Оси и валы авиационных конструкций – пустотелые. Канал уменьшает массу вала, кроме того, в ряде случаев через полый вал проходят детали системы смазки или управления.
Технические условия на изготовление валов зависят от требований к конструкции. Наиболее жесткие требования по точности и шероховатости поверхности предъявляются к шейкам валов, на которые устанавливают подшипники качения.
Материалы валов.
Для изготовления валов используют углеродистые стали марок 20, 30, 40, 45 и 50, легированные стали марок 20Х, 40Х, 40ХН, 18Х2Н4МА и др., титановые сплавы ВТ3-1, ВТ6 и ВТ9.
Выбор материала, термической и химико-термической обработки определяется конструкцией вала и опор, условиями эксплуатации.
Видео:Основы работы в среде Solidworks Simulation. Кручение цилиндрического валаСкачать
Расчет валов и осей
Валы и оси рассчитывают на прочность, жесткость и колебания. Основной причиной выхода из строя валов является недостаточная их прочность при длительной работе, усталостное разрушение металла.
Нагрузки на валы создают силы и вращающие моменты, действующие в зубчатых, червячных, цепных и других передачах. Расчет ведут по наибольшей из длительно действующих нагрузок.
Проектирование вала включает три этапа: предварительное определение размеров, разработку конструкции и проверочный расчет.
При проектном расчете приближенно определяют из условия прочности при кручении диаметр вала и проводят его конструирование. Проверочный расчет ведут на статическую прочность вала и усталость материала, а при повышенных требованиях – на жесткость и колебания.
Расчет валов на прочность.
В предварительном (проектном) расчете при отсутствии данных об изгибающих моментах диаметр вала может быть найден по известному значению крутящего момента из условия прочности по сниженным допускаемым напряжениям:
где Т – крутящий момент в расчетном сечении вала;
[τK] – допускаемое напряжение на кручение, [τK] = 20…25 МПа под шкив, звездочку или муфту; для средних участков вала [τK] = 10…20 МПа;
Р – передаваемая мощность, кВт;
n – частота вращения вала, об./мин.
После определения расчетного диаметра вала определяют диаметры других ступеней, изменяя их на 2…5 мм. Независимо от результатов расчета диаметр выходного конца вала может быть принят равным 0,8…1,2 диаметра вала электродвигателя, с которым он будет соединен муфтой.
Наименьший диаметр промежуточного вала принимают обычно равным внутреннему диаметру подшипника.
Читайте также: Замена втулки рулевого вала уаз патриот
Видео:Расчет вала на прочность и жесткость. Эпюра крутящих моментовСкачать
Расчет валов на статическую прочность
Расчет ведут по наибольшей возможной кратковременной нагрузке, повторяемость которой мала и не может вызвать усталостного разрушения.
Валы работают в условиях изгиба и кручения, эквивалентное напряжение
где σ и τ – наибольшие напряжения от изгибающего момента Мх и крутящего момента Т
; ,
где WX и Wρ – соответственно осевой и полярный момент сопротивления сечения вала диаметром d, WX = 0,1d3; Wρ = 0,2d3, а т.к. Wρ = 2WX, то с учетом этих соотношений можно записать.
Запас прочности по пределу текучести.
Обычно принимают допускаемый запас прочности [nT] = 1,2…1,8.
Полагают, что имеет место симметричный цикл напряжений при изгибе вала и отнулевой цикл напряжений при его кручении.
Сопротивление материала детали усталости может быть повышено за счет ее поверхностного упрочнения: поверхностной закалки, обкатки роликом, наклепом.
Видео:9.1 Расчет валов приводаСкачать
Оси и валы. расчеты на прочность и жесткость
Видео:SolidWorks Simulation. Статический анализ прочности деталиСкачать
Оси и валы. расчеты на прочность и жесткость
- Ось и вал. Расчеты прочности и жесткости В механической передаче различные механические узлы предназначены для поддержки вращающихся элементов машины-шкивов, звездочек, зубчатых и червячных передач и др. По конструкции оси и прямые валы мало отличаются друг от друга, но характер их работы существенно отличается: оси поддерживают деталь и воспринимают только изгибающую нагрузку. Нагрузка, воспринимаемая осью и осью, передается на корпус, раму или раму машины через опорное устройство-подшипник. Части вала и оси носят общее название цапфы, непосредственно контактирующей с подшипником (рис. 11.1). Цапфа, расположенная на конце вала, называется шипом, а в центральной части вала-шейкой (рис. 11.1, а). Цапфы, передающие осевые нагрузки на опору, называются каблуками(рис. 11.1, 6). Ось
может быть неподвижной(рис. 11.2, а) или вращать с проколотыми на них деталями(рис. 11.2, б). В современном машиностроении роторные подшипники используются чаще, потому что их подшипники более доступны для обслуживания, ремонта и замены. 275(2.Пфф! Рис 11.1 Я ) Рис 11.2 Для риса. 11.2, и блок 1 шестерни можно вращать, опираясь на через неподвижную ось 2, подшипник 3, закрепленный на корпусе 4. Для риса. 11.2, B зубчатый блок 1 может быть закреплен на подвижной оси 2 винтом и вращаться с осью. Опорным устройством оси в корпусе является подшипник 3. Вал всегда вращается при включении механизма(рис. 11.2, б). Зубчатое колесо закреплено на валу 2 с помощью ключа / поворота от вала
2 через шестерню 3.To быть посланным. Вал вращается вместе с шестернями, Людмила Фирмаль
опирающимися на корпус через 4 подшипника. Признаками для классификации осей и осей являются их назначение, геометрия геометрических осей (только осей), их конструктивные особенности. По назначению различают вал трансмиссии (т. е. зубчатый, ременной, цепной и Т. Д.) и коренной вал машины, подшипник, трансмиссию кроме деталей, примером основного вала является вал турбины, насаженный на диск турбины; Ротор вала электродвигателя каретки. В курсе «механические детали» мы рассматриваем в основном трансмиссионные валы, примеры которых раскрывают общие характеристики всех валов. 276 стр. 11.3 В зависимости от геометрии геометрической оси, вал делится на прямой, коленчатый и гибкий. Коленчатые валы используются в двигателях машин и
станков, особенно в автомобильных двигателях и ковочно-штамповочных машинах. Их использование связано с преобразованием вращательных движений в возвратно-поступательные или наоборот. Гибкий вал используется в форме геометрической оси, механизированного привода инструмента, пульта дистанционного управления и др. Коленчатый вал и гибкий вал являются специальными частями, этот курс соответствует только прямой оси можно рассматривать. По форме и конструктивным особенностям различают оси и валы определенного поперечного сечения, например трансмиссионные валы (рис. 11.3, о); шаг
- переменного сечения (эта форма имеет большинство валов) (рис. 11.3, b); оси и валы (рис. 11.3, б). Существуют оси и оси переменного сечения, некоторые из которых имеют коническую форму(рис. 11.3, г). Особая группа состоит из вала зубчатого и вала червячного(зубчатого или червячного, выполненного одновременно с валом) (см. 11.3, г, д, е). Оси и валы могут быть сплошными или полыми(см. рис. 11.3, б). В большинстве случаев форма их поперечного сечения-круг или круговое кольцо, но на некоторых участках может иметь и другое поперечное сечение. Например, профиль широкой оси сплайна области сплайна определяется полученным профилем паза (§N. см. S). 2774/2 £ 77,7771 Один. Рис 11.4 Форма оси и оси по длине определяется характером изгибающего и крутильного (только по оси) момента и стремятся получить профиль оси или продольное направление оси
Читайте также: Прокладки для первичного вала
11.4); по конструкторским соображениям, особенно легкости сборки узла (возможность свободного перемещения детали в валу до места его посадки), необходимости в его установке на валу. При проектировании диаметра посадочной поверхности (на посадочной площадке-шестерни, звездочки, шкивы и др.).) Выберите стандарт (см. таблицу). 1.2) на поверхности седла под подшипником качения, а диаметр-по стандартному диаметру внутреннего кольца подшипника…。 Переходная область между осью и ступенью вала имеет различные конструктивные формы, обусловленные необходимыми конструктивными, техническими и прочностными факторами.
Например, шлифование часто используется для получения требуемой точности изготовления и шероховатости Людмила Фирмаль
поверхности процесса, а для выхода шлифовального круга в вал делают стандартизированную канавку, где диаметр постоянен, а переменный радиус закруглен(с мякотью). Разница в диаметре ступеней является достаточной опорой для распознавания осевой силы радиуса с размерами кромок и небольших пазов и условий сборки осевая нагрузка от прокалываемой детали, определяемая поверхностью воспринимается валом или валом через различные соединения: полки, упоры, гайки, конические штифты, винты, шурупы, саморезы. Для обеспечения необходимого поворота детали вместе с осью или осью используйте шпонку, ПАЗ, штифт, профильное сечение вала. Все это вызывает конструктивное изменение формы оси и самой оси. 278 создают концентрацию напряжений, уменьшают сопротивление усталости. Посадка на
растяжение (давление) приводит к появлению на посадочной поверхности радиального давления, которое распределяется неравномерно по длине ступицы-в конце, по расчетной зависимости 11.5 а). При изгибе вала или оси рабочая фаза и сопряженная поверхность ступицы взаимно смещаются подобно граничной поверхности композитной балки(рис. 11.5, б). В условиях вращения это вызывает непрерывное возвратно-поступательное движение посадочных поверхностей относительно друг друга. Их сила трения достаточно велика, поэтому в результате происходит повреждение посадочной поверхности-фреттинг-коррозия. Относительное движение является самым большим на краю ступицы, где величина и скорость являются самыми большими. Скругление уменьшает концентрацию напряжений, создаваемую зазубренным диаметром капли(рис. 11.6). Расчет предполагает, что концентрация происходи
т в терминах разницы в диаметре. Источником концентрации напряжений является шпоночная канавка(рис.). 11.7). Таким образом, опасная часть вала и оси расположена в плоскости конца ступицы или в разнице диаметров. В середине ступицы это возможно только в исключительных случаях и с сопряжениями со значительным зазором. Влияние концентрации напряжений можно уменьшить как конструктивно, так и технически Логические меры: применение эллиптических галтелей, Подрезов, прокатных канавок, дробеструйной обработки, различных видов термической и термохимической обработки позволяет наносить на поверхность за счет упрочнения роликом. В современном машиностроении оси и оси в основном изготавливаются с двумя опорами. В большем количестве опор неточность изготовления отверстий для неточностей опор и узлов вызывает отклонения от линейки опор, а это вызывает
переменное дополнительное изгибающее давление при вращении, которое вызывает эти прогибы или значительно снижает усталостную прочность осей и валов. Поэтому, если вам нужно использовать многоопорные оси и валы, вся опора может быть использована для одновременного растачивания и жесткости всех отверстий для опоры. Материал оси и вала, как правило, сталь. При отсутствии термической обработки в основном используются стали СТ5 и СТБ. Для термообработки валов используют среднеуглеродистые и легированные стали, особенно марки 45 и 40х, тяжелонагруженные валы из стали марок 40ХН, 40ХН2МА, 25ХГТ и др. Калькулятор силы. Ось учитывается ТОЛЬКО при изгибе. Давление»о»для некурящих вращения оси изменение нулевого цикла. На оси вращения напряжение изгиба изменяется в симметричном цикле. В зависимости от цикла изменения рабочего напряжения устанавливается допустимое напряжение. Подсчет вала с изгибом и кручением. Достаточно точный расчет вала или вала может быть осуществлен в качестве испытания только в соответствии с данны
ми, полученными из чертежа детали. В процессе проектирования осевой размер узла между опорами вала или оси и деталями (шестернями и др.) насажен на them.It невозможно создать схему изгибающего момента и опоры, так как она неизвестна )- 2 » 0 распределяет значение нормального напряжения на изгиб. Кроме того, значение расчетного коэффициента, влияющего на усталость, может быть установлено только на основе полностью разработанной конструкции вала или вала. Поэтому невозможно провести точные проектные расчеты. Поэтому процесс проектирования вала состоит из трех этапов. Конечно, по результатам тестовых расчетов, возможно, придется внести определенные изменения в разработанную
Читайте также: Как сделать соосность вала
конструкцию. Приблизительное определение диаметра вала рассчитывается только для скручивания: m * io » 0.2 (TC] (11-1) » Здесь d-мм; M-N-М; [TC]-МПа. Чтобы компенсировать пренебрежение изгибом, допустимое напряжение кручения понижается—[TC]=(12…50) МПа. По мере увеличения скорости вращения вала возрастает роль неизмеряемых изгибающих напряжений, следовательно, увеличивается погрешность определения диаметра последнего. Поэтому давление кручения, которое допускалось для высокоскоростного вала, меньше. Также поставляется с повышенными требованиями к жесткости вала. В соответствии с
формулой (11.1)определяется минимальный диаметр части вала, передающей полный крутящий момент. Определите диаметр вала и составьте конструкцию с учетом размеров насаженных на него деталей. Расчет оси является частным случаем расчета вала с крутящим моментом M K=0. Для осей, приблизительное определение диаметра сделано для раздела подвергнутого действию к максимальному изгибающему моменту, посредством д Ми-10 » 0,1 [AI]’, где D-в мм; MI-В Н-м; [si] — МПа. Допустимое напряжение изгиба составляет[oi1=(60…90) МПа. Проверка отсчета вала сделана для статической прочности и усталости. Для его осуществления:- 281º для того чтобы сделать Вал и действующую схему конструкции силы. Сила действия — это действие, под действием которого рабочая
поверхность закрепляется в пространстве (это сила в зубчатых колесах, ремнях, цепях и других шестернях, сила тяжести валов и деталей и др.).); Вращение, при котором вектор синхронно изменяет вращение и направление вала. К ним относятся центробежная сила неуравновешенной массы, нагрузка на конце вала от муфты сцепления и др. Невращающиеся силы вызывают изгибающее напряжение, вращательное изгибающее напряжение постоянного знака и величины, которое изменяется в симметричном цикле. Чтобы определить опасную (наиболее подверженную разрушению) часть вала, нужно составить диаграмму изгиба и крутящего момента.
Рассматривается шарнирная опора при составлении расчетной схемы подшипника. Все силы момента переносятся на ось фокуса. Проверка вала на статическую прочность при максимальной кратковременной перегрузке является опасным участком, где эквивалентное напряжение будет максимальным. При проверке вала на усталость выбирается опасный участок в зависимости от величины изгиба и крутящего момента, изменения поперечного сечения вала, наличия редуктора напряжений. Произведение Kai^W здесь будет представлять собой опасное (расчетное) сечение-максимум;где kad-коэффициент концентрации напряжений детали;Ош V-эквивалентное напряжение в сечении. При посадке на растяжение необходимо проверить краевую часть, которая находится не посередине, а с большей концентрацией напряжений. Испытание на статическую прочность и усталость можно проводить двумя способами Расчет допустимого напряжения для статической
прочности осуществляется по формуле^EQ max=^SP^EQ=K n Y4-3Tk^O t/[it], (11.2) Где K » — коэффициент перегрузки. Величина перегрузки при одной и той же причине ее возникновения может быть разной. Это зависит от конструкции трансмиссии. Перед предохранителем коробки передач- Величина перегрузки 282 зарядного устройства зависит от момента срабатывания устройства. Если в трансмиссии нет предохранительного устройства, то перегрузка может определяться прочностью деталей, связанных с валом, которая менее прочна, чем вал, а если нет достоверной информации о величине возможной перегрузки, то максимальным крутящим моментом двигателя, т. е. моментом перегрузки двигателя Mtah UIN.: СР=^тах/
■л^ням- Расчет допустимого усталостного напряжения проводится по зависимости OEC » =Kstn+ZT^ / a= 2510 — 50- 10″»=125 Н-м. Горизонтальная поверхность MD^=G C * 1x=7560 • 47 • 10
»=360 Н*м. L1S d e V=I V^3 4-L1=3750-5 0.10 — » +73=260N-m;M — =явл= 3750 • 50 • 10-«= 190 Н-м. Подбор опасных участков. Наиболее опасным участком является/—/I-II.в этом участке есть важный изгиб и крутящий момент, который падает на самую тонкую часть вала/ -/. Кроме того, плоскость этого сечения
имеет три концентратора напряжений: скругление, прорезь и переходную посадку. В разделе I-II, также значительно гнуть и вращающий момент, и 2 концентратора давления, galtel и плотная пригонка. Краевой участок под посадочной ступицей считается опасным, так как он имеет наибольшие напряжения по сравнению с центральным. При изгибе опасных участков и напорных участков I-I, Mu=F^t=7560-20-KG » =150N-m. Момент сопротивления[18, табл. 8.24] включая слот: ось W= * 5480MM8; полярный Wp=11880MM8. 150 * 10® О напряжении на изгиб= — = ^ = — — = 2 8 МПа. Давление кручения T MK500-10 » 11880 42 мега паскалей Вертикальная плоскость UOH=i d L=2510-22″8=55N-m, горизонтальная плоскость Goh: =3750(100 -22) 10-«-1840(50 -22) 10-«+73= 315 Н-м. Суммарный изгибающий момент MI=UL1 «+ L1» = /5 5 «+ 3 1 5 » = 3 2 0 Н-м. Напряжение изгиба MI320 ■ 10» О °.ld «0,1-45» =3,5 МПА. 286 напряжение кручения Проверки на
статическую прочность проводятся в соответствии с допустимым напряжением. Коэффициент перегрузки 200% при 7sp=2, перегрузка. Вал изготовлен из легированной стали 40x: HB-200; ov=730MPa;ot=500MPa;TT=280MPa;O j=320MPa;T j=200MPa; F0=0.1; ft=0.05. Отношение aJ
- Правообладателям
- Политика конфиденциальности
📽️ Видео
Прочность и жесткость валов. Часть 6: Эпюры моментов выходного вала (цилиндрическая передача).Скачать
Прочность валаСкачать
Урок 2. Прочностной анализ в ANSYS Static Structural 2022Скачать
КРУЧЕНИЕ ВАЛА. Касательные напряжения. Сопромат.Скачать
Валы и оси (балансировка)Скачать
Что такое прочность [доступное объяснение]Скачать
Расчет деталей на прочность в Autodesk Inventor (Анализ напряжений)Скачать
9.3. Конструктивные элементы валов и осейСкачать
Прочность и жесткость валов. Часть 7. Расчет на жесткость выходного вала (цилиндрическая передача).Скачать
SOLIDWORKS Simulation: Урок 1. Линейный статический анализСкачать
Э03 02 3 Проверочный расчет на усталостьСкачать
Кручение. Часть 6 Жесткость валаСкачать
Что такое расстановки и почему они меняют жизнь? Метод Вании Маркович "Движение души"Скачать
Статическая балансировка валов (Static shaft balancing)Скачать