Степень повышения давления в компрессоре по ступеням

Степень повышения давления в компрессоре по ступеням

Книга может оказаться полезной при изучении принципа работы, конструкции и эксплуатации газотурбинных авиационных двигателей.

Оглавление

Приведённый ознакомительный фрагмент книги Теория газотурбинных двигателей предоставлен нашим книжным партнёром — компанией ЛитРес.

Теория ступени компрессора ГТД

Компрессор газотурбинного двигателя служит для повышения давления воздуха перед подачей его в камеру сгорания.

Применение компрессора в ГТД позволяет получить нужный расход воздуха, обеспечить желаемое значение КПД, получить высокую тягу (мощность) при небольших габаритных размерах и массе двигателя.

Компрессор ГТД должен удовлетворять следующим требованиям:

а) сжатие воздуха должно происходить при возможно большем КПД;

б) обеспечивается устойчивая работа двигателя во всем диапазоне эксплуатационных режимов;

в) подвод воздуха в камеру сгорания производится без пульсаций давления, расхода и скорости потока;

г) обеспечение наименьшего веса и габаритов двигателя;

д) обеспечивается высокую надежность авиадвигателя.

Основными типами компрессоров авиационных ГТД являются многоступенчатые осевые [1] или осецентробежные компрессоры.

Процесс сжатия воздуха в многоступенчатом компрессоре ГТД состоит из ряда последовательно протекающих процессов сжатия воздуха в отдельных его ступенях.

Видео:Центробежный компрессорСкачать

Центробежный компрессор

В современных газотурбинных двигателях наиболее часто используются осевые компрессоры, как наиболее полно отвечающие предъявляемым требованиям. В осевых компрессорах авиадвигателя по сравнению с другими типами компрессоров возможны высокие значения степени повышения давления воздуха и большие расходы воздуха при высоких КПД и сравнительно малых габаритных размерах и массе.

Осевой компрессор ГТД имеет несколько рядов лопаток, насаженных на один общий вращающийся барабан или на ряд соединенных между собой дисков, которые образуют ротор компрессора.

Один ряд лопаток ротора называется рабочим колесом.

Другой основной частью компрессора является статор, состоящий из нескольких рядов лопаток (направляющих аппаратов), закрепленных в корпусе. Назначением лопаток статора является:

а) направление проходящего через них воздушного потока под необходимым углом на рабочие лопатки расположенного за ними рабочего колеса;

б) спрямление потока, закрученного лопатками впереди находящегося рабочего колеса, с одновременным преобразованием части кинетической энергии закрученного потока в работу по повышению давления воздуха.

Сочетание одного рабочего колеса и одного стоящего за ним направляющего аппарата называется ступенью компрессора.

Перед первым рабочим колесом компрессора может быть установлен входной направляющий аппарат.

При вращении рабочего колеса за счет внешней энергии повышается скорость потока, при этом на входе рабочего колеса создается разрежение, обеспечивающее непрерывное поступление воздуха. Внешняя энергия, сообщенная лопатками рабочего колеса воздуху, движущемуся по расширяющимся (диффузорным) каналам, затрачивается на повышение давления воздуха, а также на увеличение его скорости.

Преобразование кинетической энергии воздушного потока, приобретенной в рабочем колесе, сопровождающееся повышением давления воздуха, происходит в направляющем аппарате, который, кроме того, обеспечивает потоку требуемое направление для входа в рабочее колесо следующей ступени компрессора.

Разрез лопаток ступени компрессора цилиндрической поверхностью образует решетку профилей рабочего колеса.

На входе в рабочее колесо скорость воздуха может быть направлена не параллельно оси колеса, а под некоторым углом к ней вследствие неполного спрямления потока направляющим аппаратом предыдущей ступени компрессора или установки перед рабочим колесом входного направляющего аппарата. Вращению рабочего колеса соответствует перемещение решетки с окружной скоростью «u». Для определения скорости воздуха относительно рабочих лопаток «w» применим правило сложения векторов скоростей, согласно которому абсолютная скорость равна относительной и переносной. Переносной скоростью будет окружная скорость лопаток, следовательно, c = w + u.

Треугольник, составленный из векторов «c», «u» и «w», является треугольником скоростей на входе в рабочее колесо.

Лопатки рабочего колеса должны быть установлены таким образом, чтобы передние кромки их были направлены по направлению вектора «w» или под небольшим углом к нему. Кривизна профилей лопаток выбирается с таким расчетом, чтобы угол выхода потока из колеса был больше угла входа потока.

Читайте также: Компрессор acc hmk95aa схема подключения

Направление потока за решеткой при безотрывном ее обтекании определяется в углом установки задней кромки лопатки.

Видео:Курс ""Турбомашины". Раздел 3.1.1. Принцип действия ступени компрессораСкачать

Курс ""Турбомашины". Раздел 3.1.1. Принцип действия ступени компрессора

Разворот потока воздуха в рабочем колесе компрессора приводит к возникновению на каждой лопатке аэродинамической силы «P» направленной от вогнутой к выпуклой поверхности профиля. Можно разложить силу «P» на две составляющие. Составляющую, направленную параллельно вектору окружной скорости, назовем окружной, а составляющую, направленную параллельно оси компрессора — осевой составляющей. Окружная составляющая направлена против движения лопаток колеса и противодействует их вращению. Для поддержания частоты вращения ротора к валу компрессора должен быть приложен крутящий момент. Работа, затрачиваемая на вращение колеса идет на увеличение энергии потока, прошедшего через колесо. Это проявляется в том, что обычно скорость потока за колесом оказывается больше скорости потока перед колесом, несмотря на одновременное увеличение давления.

Абсолютная скорость «с» на выходе из рабочего колеса определится построением треугольника скоростей. Вследствие поворота потока в колесе вектор абсолютной скорости на выходе из рабочего колеса оказывается отклоненным от вектора абсолютной скорости на входе в сторону вращения колеса.

Лопатки направляющего аппарата отклоняют поток в обратную сторону. Форма лопаток подбирается так, чтобы направление вектора абсолютной скорости за ступенью соответствовало направлению вектора абсолютной скорости на входе в рабочее колесо. При этом, увеличивается поперечное сечение струи, проходящей через канал между соседними лопатками. В результате скорость потока в направляющем аппарате падает, а давление увеличивается.

Независимо от скорости набегающего на лопатки воздуха и формы проточной части, течение потока через ступень может рассматриваться как течение через систему диффузорных каналов с уменьшением относительной скорости потока в рабочем колесе, уменьшением абсолютной скорости потока в направляющем аппарате и увеличением давления в обоих случаях.

Основными элементами центробежной компрессорной ступени являются рабочее колесо и диффузор, а характерными сечениями воздушного тракта — сечение перед рабочим колесом, сечение за рабочим колесом и сечение на выходе из диффузора. За диффузором могут быть установлены выходной канал или выходные патрубки, обеспечивающие поворот выходящего из диффузора потока в нужную сторону.

Рабочее колесо центробежного компрессора обычно представляет собой диск, на торцевой поверхности которого расположены рабочие лопатки.

В центробежной ступени можно получить значительно большее повышение давления воздуха, чем в осевой ступени, благодаря центробежным силам направленным по движению воздушного потока в рабочем колесе. Но в то же время (в отличие от осевой ступени) ее диаметр намного превышает диаметр рабочего колеса осевого компрессора.

Недостатки центробежной ступени могут быть в значительной степени смягчены в диагональной ступени. По своим параметрам она занимает промежуточное положение между осевой и центробежной ступенью компрессора. Сжатие воздуха в ее рабочем колесе происходит как вследствие уменьшения относительной скорости воздуха в межлопаточных каналах, так и в результате работы центробежных сил, совершаемой при перемещении воздушного потока в колесе от центра к периферии. Меньшее отклонение основного направления течения воздуха от осевого позволяет уменьшить диаметральные габаритные размеры ступени.

Степенью повышения давления ступени компрессора называется отношение давления за ступенью к давлению на входе в рабочее колесо.

В осевых ступенях степень повышения давления обычно невелика и равняется 1,2…1,35. В центробежных ступенях степень повышения давления может достигать 4—6 и более.

С целью увеличения общей степени повышения давления применяют многоступенчатые компрессоры, в каждой ступени которых осуществляется повышение давления воздуха.

Адиабатический КПД ступени компрессора представляет собой отношение адиабатической работы повышения давления воздуха в ступени к затраченной работе Адиабатический КПД ступени осевого компрессора обычно равен 0,83—0,87, что свидетельствует об их высоком аэродинамическом совершенстве. Центробежные ступени имеют несколько меньшее значение адиабатического КПД — 0,75—0,80.

Читайте также: Фильтр сепаратор компрессора для чего

Расход воздуха через компрессор пропорционален плотности воздуха, скорости потока и площади проходного сечения.

Окружная скорость воздушного потока является важнейшим конструктивным параметром ступени компрессора двигателя, она ограничивается прочностью лопаток и диска рабочего колеса и газодинамическими соображениями.

По уровню скорости набегающего на лопатки воздуха осевые ступени разделяются на дозвуковые, сверхзвуковые и трансзвуковые (околозвуковые), в которых окружная или осевая скорости изменяются по радиусу изменяются по радиусу от сверхзвуковой до дозвуковой.

Видео:Курс ""Турбомашины". Раздел 3.1.2. Изменение параметров рабочего процесса в ступени компрессораСкачать

Курс ""Турбомашины".  Раздел 3.1.2. Изменение параметров рабочего процесса в ступени компрессора

В реальных ступенях компрессора между лопатками рабочего колеса и внутренней поверхностью статора всегда имеется конструктивный зазор [3]. При этом зазор на работающем двигателе отличается от монтажного зазора вследствие деформаций деталей ротора и статора под действием газовых сил и теплового расширения. Обычно у прогретого двигателя рабочие зазоры оказываются меньше монтажных.

Перетекание (утечка) воздуха через радиальные зазоры приводит к понижению давления на вогнутой стороне лопатки и к повышению давления на спинке, т. е. к уменьшению разности давлений на поверхностях профиля. Уменьшение перепада давлений приводит к снижению окружного усилия и, следовательно, к снижению работы, передаваемой воздуху в ступени.

На работу ступени оказывают влияние и осевые зазоры между ее неподвижными и вращающимися венцами. Осевые зазоры между лопатками рабочего колеса и направляющего аппарата составляют примерно 15—20% хорды лопаток и также снижают эффективность работы ступени.

Основные параметры многоступенчатого компрессора

В теории газотурбинных двигателей обычно используются следующие параметры многоступенчатого компрессора:

а) степень повышения давления (отношение полного давления воздуха за компрессором к полному давлению перед компрессором);

б) секундный расход воздуха через компрессор;

в) частота вращения pотоpа компрессора;

г) адиабатический КПД компрессора.

Степень повышения давления в компрессоре ГТД равна произведению степеней повышения давления его отдельных ступеней.

В компрессорах современных авиадвигателей степень повышения давления компрессора доходит до 30 и более. Такие высокие степени повышения давления применяют для улучшения экономичности двигателя.

Дело в том, что в газотурбинных двигателях 70% тепла, введенного с топливом в двигатель, теряется с уходящими газами. Эти потери обусловлены вторым законом термодинамики (в двигатель засасывается холодный воздух, а выходит горячий).

При увеличении степени повышения давления в компрессоре соответственно увеличивается и степень понижения давления на тракте расширения газа в двигателе (во сколько раз воздух сжимается — во столько же раз газы расширяются). А чем больше степень понижения давления, тем ниже (при заданной температуре газа перед турбиной) температура уходящих газов и, следовательно, тем меньше потери тепла с уходящими газами.

Иначе говоря, с увеличением степени повышения давления воздуха степень полезного использования введенного в двигатель тепла увеличивается.

Ступени компрессора работают в разных условиях: они имеют разные окружные и осевые скорости, их лопатки обтекаются потоком с разными скоростями и т. д. Поэтому адиабатические работы сжатия воздуха в различных ступенях одного и того же компрессора могут существенно отличаться друг от друга.

В первых и в меньшей степени в последних ступенях работа заметно снижена по сравнению с работой приходящейся на каждую из средних ступеней.

Видео:Курс ""Турбомашины". Раздел 7.5 Многоступенчатые компрессоры (лектор Батурин О.В.)Скачать

Курс ""Турбомашины". Раздел 7.5 Многоступенчатые компрессоры (лектор Батурин О.В.)

Лекция 3. Степень повышения давления в ступени, распределение давления между ступенями.

Многоступенчатое сжатие газа и промежуточное охлаждение.

Выбор числа ступеней и распределения давления между ступенями.

Методы регулирования производительности поршневого компрессора.

Давления, создаваемые компрессорами, работающими в технологических схемах производства, достигают больших значений. Однако получение высокого давления в одной ступени компрессора (в одном компрессорном процессе) затруднительно. Причиной этого в объемных компрессорах (поршневых и роторных) является чрезмерное повышение температуры в конце сжатия, обусловленное невозможностью создания конструкции компрессора с достаточно интенсивным охлаждением. В лопастных компрессорах (осевых и центробежных) причина заключается в недопустимости таких скоростей рабочих лопастей, выполненных из материала с определённой прочностью, которые обеспечили бы требуемое высокое давление при достаточно высоком КПД процесса.

Читайте также: Компрессор для шин даджет inflate kit fb0164

Из указанного следует необходимость применять возможно более интенсивное охлаждение газа в процессе его сжатия, и во – вторых, производить сжатие в последовательно соединенных ступенях, осуществляя понижение температуры газа в охладителях, включенных в поток между ступенями.

В современных компрессорах применяют следующие системы охлаждения:

1) охлаждение компрессора подачей воды в специально выполненные полости в отливке корпуса (внутреннее охлаждение). Этот способ существенно условия смазки поршневых компрессоров. Добиться этим способом существенной экономии энергии, приближая процесс сжатия к изотермическому не удается. Причина этого – затрудненные условия теплообмена между потоками газа и охлаждаемой водой;

2) охлаждение газа в охладителях, устанавливаемых между отдельными ступенями (выносное охлаждение). При этом способе охлаждения, используя трубчатые охладители с большой площадью поверхности, можно получить существенную экономия в расходе энергии. В центробежных компрессорах охладители располагают обычно между группами ступеней, получая простую конструкцию установки. Известны уникальные конструкции компрессоров с охладителями после каждой ступени. Такие компрессоры называют изотермическими. Они экономичны в эксплуатации. Но конструктивно более сложны и дороги;

3) комбинированное (внутреннее и выносное) охлаждение. Этот способ наиболее эффективен и широко применяется, несмотря на конструктивное усложнение и увеличение стоимости установки.

4) Охлаждение впрыском охлаждающей воды в поток газа перед первой ступенью компрессора. При этом способе теплота газа частично расходуется на испарение воды. Недостатком способа является увлажнение газа, что во многих случаях недопустимо.

Применение ступенчатого сжатия с охлаждением газа в охладителях между ступенями дает экономия в энергии, расходуемую на привод компрессора. В компрессоростроении выработаны нормативы по определению необходимого числа ступеней:

— для поршневых и роторных компрессоров – в зависимости от температуры вспышки паров смазочного масла;

— для лопастных – в зависимости от допустимых, по условиям прочности, окружных скоростей концов лопастей и минимума потерь энергии в проточной полости машины.

Минимум затраты энергии в ступенчатом компрессорном процессе имеет место при равенстве степеней повышения давления во всех ступенях. Отсюда следует, что оптимальная степень повышения давления ступени компрессора равна:

Видео:9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.Скачать

9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.

где — конечное давление за последней ступенью компрессора; — степень повышения давления компрессора в целом.

Очевидно соотношение для давления:

В практике компрессоростроения обычно отступают от принципа равномерного распределения затраты энергии по ступеням и относят на ступени высокого давления несколько меньшие степени повышения давления.

В современных поршневых компрессорах с водяным охлаждением степени повышения давления в одном цилиндре выше 7 встречаются редко. Если необходима степень повышения давления выше 7, то процесс сжатия ведут в нескольких последовательно расположенных ступенях давления. При переходе из одной ступени в другую газ охлаждают в промежуточных охладителях.

Количество ступеней, необходимое для достижения заданной степени повышения давления, принимают в пределах:

z
До 6
6-30
30-100
100-150
Выше 1506 и более

Методы регулирования производительности поршневого компрессора:

  1. Изменение частоты вращения;
  2. Дросселирование при всасывании;
  3. Отжимание пластин всасывающего клапана;
  4. Изменение объёма мертвого пространства;
  5. Регулирование остановками компрессора;
  6. Регулирование перепуском газа из полости сжатия в полость всасывания;
  7. Регулирование холостым выпуском из сети через автоматический клапан.

Степень повышения давления в компрессоре по ступеням

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Степень повышения давления в компрессоре по ступеням

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Степень повышения давления в компрессоре по ступеням

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Степень повышения давления в компрессоре по ступеням

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала
    • Правообладателям
    • Политика конфиденциальности

    Механика © 2023
    Информация, опубликованная на сайте, носит исключительно ознакомительный характер


    источники:

    Видео:УСТРАНЕНИЕ ПРЕВЫШЕНИЯ ДАВЛЕНИЯ 1-й ступени Компрессора ВП 20/8 TROUBLESHOOT PRESSURE EXCEEDSСкачать

    УСТРАНЕНИЕ ПРЕВЫШЕНИЯ ДАВЛЕНИЯ 1-й ступени  Компрессора   ВП 20/8  TROUBLESHOOT PRESSURE EXCEEDS

    https://evakuatorinfo.ru/stepen-povysheniya-davleniya-v-kompressore-po-stupenyam

    💡 Видео

    Степень повышения давления (Павлов)Скачать

    Степень повышения давления (Павлов)

    Многоступенчатый центробежный компрессорСкачать

    Многоступенчатый центробежный компрессор

    Курс ""Турбомашины". Раздел 5.1.1. Характеристика компрессора лекция №1 (лектор Батурин О.В.)Скачать

    Курс ""Турбомашины".  Раздел 5.1.1. Характеристика компрессора лекция №1 (лектор Батурин О.В.)

    ПочЭкай ты меня называла 45Скачать

    ПочЭкай ты меня называла  45

    Курс ""Турбомашины". Раздел 7.8 Зачем и как регулировать многоступенчатые компрессоры (Батурин О.В.)Скачать

    Курс ""Турбомашины". Раздел 7.8 Зачем и как регулировать многоступенчатые компрессоры (Батурин О.В.)

    CFD Расчет характеристики компрессора (Общие рассуждения)Скачать

    CFD Расчет характеристики компрессора (Общие рассуждения)

    Как настроить КОМПРЕССОР правильноСкачать

    Как настроить КОМПРЕССОР правильно

    Курс ""Турбомашины". Раздел 7.6 Изменение в многосупенчатом компрессоре (лектор Батурин О.В.)Скачать

    Курс ""Турбомашины". Раздел 7.6 Изменение в многосупенчатом компрессоре (лектор Батурин О.В.)

    Регулируем прессостат. Максимальное и минимальное давление включения и выключения компрессораСкачать

    Регулируем прессостат. Максимальное и минимальное давление включения и выключения компрессора

    Лекция 3 Основы рабочего процесса ВРД. Часть 1 Работа ступени осевого компрессораСкачать

    Лекция 3 Основы рабочего процесса ВРД. Часть 1 Работа ступени осевого компрессора

    Курс ""Турбомашины". Раздел 5.1.3. Характеристика компрессора лекция №3 (лектор Батурин О.В.)Скачать

    Курс ""Турбомашины".  Раздел 5.1.3. Характеристика компрессора лекция №3 (лектор Батурин О.В.)

    Как настроить регулятор давления воздуха на гаражном компрессоре QUATTRO ELEMENTI KM 50-380Скачать

    Как настроить регулятор давления воздуха на гаражном компрессоре QUATTRO ELEMENTI KM 50-380

    Поршневой компрессорСкачать

    Поршневой компрессор

    Работа винтового компрессора, его принцип действия и устройство.Скачать

    Работа винтового компрессора, его принцип действия и устройство.
Поделиться или сохранить к себе:
Технарь знаток