Структура общий шины эвм

Существуют разные способы организации структуры ЭВМ. Набор проводов, обеспечивающих необходимые связи между отдельными блоками ЭВМ, называются шинами. Шина содержит линии данных и линии управления. Рассмотрим сначала одношинную однопроцессорную организацию ЭВМ (рис. 3).

Структура общий шины эвм

Рис. 3. Одношинная однопроцессорная архитектура ЭВМ

Все устройства связаны с одной шиной. Поскольку шина может использоваться только для одной передачи, то в данный момент времени только одно устройство может быть активным. Подобная структура обеспечивает низкую стоимость ЭВМ и легкость подключения внешних устройств.

Недостатки однопроцессорной одношинной структуры в том, что при использовании одной шины общая продуктивность системы, во-первых, диктуется производительностью процессора, во-вторых, ограничивается последовательным характером процесса обмена информацией процессора с прочими устройствами. Увеличение производительности системы за счет повышения быстродействия элементов системы (процессора, памяти) дает положительный результат только до определенных пределов, так как ограничивается сверху пропускной способностью общей шины.

В простейшей одношинной двухпроцессорной архитектуре эффект «узкого места» шины в известной степени нейтрализуется. Каждый процессор имеет собственную память, в которой хранятся некоторые управляющие программы (рис. 4). Дополнительно в системе имеется общая память, доступная в данный момент одному из процессоров.

Структура общий шины эвм

Рис. 4. Одношинная двухпроцессорная архитектура ЭВМ

Однако наличие общей магистрали и обмен с памятью в режиме разделения времени (в два такта) все же создают определенные ограничения.

Двухшинная структура позволяет повысить производительность системы. Существует два варианта двухшинной однопроцессорной структуры.

В первом варианте (рис. 5, а) ввод-вывод данных происходит под прямым управлением центрального процессора, во втором (рис. 5, б) – без участия процессора. В такой структуре реализуется параллельная работа нескольких устройств ЭВМ.

Недостатки приведенных выше структур снимаются в многошинной многопроцессорной организации ЭВМ. Рассмотрим один из примеров такой организации (рис. 6).

В данной системе имеется три процессора, причем два из них выполняют вспомогательные функции обслуживания внешних устройств. Поскольку имеется несколько шин, то одновременно в системе может работать несколько устройств.

Структура общий шины эвм

Структура общий шины эвм

Рис. 5 Двухшинная однопроцессорная архитекутра ЭВМ

Многопроцессорная многошинная архитектура является базой для построения суперЭВМ, по своим характеристикам превосходящих большинство современных ЭВМ.

Структура общий шины эвм

Рис. 6. Многошинная многопроцессорная архитектура ЭВМ

Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Структура эвм 5-го поколения

Работу пользователя ЭВМ в настоящее время можно представить с помощью схемы, представленной на рис.7.

Структура общий шины эвм

Рис. 7. Схема работы пользователя на современной ЭВМ

Для решения задачи на ЭВМ необходима программа, которую создает либо сам пользователь, либо программист.

Архитектура ЭВМ 5-го поколения предусматривает наличие интеллектуального интерфейса, заменяющего программиста (рис. 8).

Структура общий шины эвм

Рис. 8. Структура ЭВМ 5-го поколения

В состав интеллектуального интерфейса (ИИ) входят: 1 – процессор общения; 2 – планировщик («автоматический программист»); 3 – база знаний. Пользователь ставит задачу такой ЭВМ на естественном языке (возможно, в рукописной или речевой форме); процессор общения переводит задание в форму, понятную планировщику, который, используя знания из базы знаний, разрабатывает программу, решающую поставленную задачу. Затем программа выполняется той частью ЭВМ 5-го поколения, которая обозначена на рис. 8 как обычная ЭВМ.

Видео:Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать

Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

Структура ЭВМ с общей шиной

Часто при построении ЭВМ для связи процессорного модуля с периферийными используется одна группа шин. В этом случае микропроцессор обращается к внешним устройствам ввода-вывода как к элементу памяти. Данная организация проста с точки зрения задействованных аппаратных средств, но допускает лишь последовательный во времени режим обмена информацией между периферийными модулями и процессорным модулем, т.е. невозможно одновременно обратиться и к памяти и к портам ввода-вывода. Структурная схема ЭВМ с общей шиной представлена на рис.4.2.

Рис.4.2. Структура ЭВМ (МП-системы) с общей шиной.

Читайте также: Шины для велосипеда салют

По роду передаваемой информации все шины разделены на три группы, образующие шину данных, шину адреса и шину управления. Характерной особенностью шины данных является ее двунаправленность, обеспечиваемая буферными регистрами, под которой понимается возможность передачи данных в разные моменты времени в различных направлениях, например, сначала от процессорного модуля к периферийному, а затем в обратном направлении. Ещё одна особенность этих буферных регистров заключается в том, что они являются трехстабильными, т.е. выходы этих регистров могут принимать третье пассивное или, так называемое высокоимпедансное состояние, благодаря чему регистр оказывается как бы отключенным от шины данных.

Каждый периферийный модуль ЭВМ имеет вход для приема сигнала ВМ (выбор модуля). В процессе работы ЭВМ с помощью этого сигнала «активизируется» только один из периферийных модулей. Это означает, что возможен обмен данными между ним и процессорным модулем. Выходы остальных модулей при этом остаются в высокоимпедансном состоянии (отключенном) и на работу ЭВМ не влияют.

Поскольку процессорный модуль должен обмениваться данными с определенными ячейками памяти запоминающих устройств или с определенными портами, то для возможности обращаться (адресоваться) к ним, каждая ячейка памяти и каждый порт ввода и вывода имеют свои индивидуальные номера — адреса. При обмене данными процессорный модуль устанавливает двоичный код, соответствующий адресу порта или ячейки памяти на шине адреса ЭВМ. Шина адреса является однонаправленной, т.е. адреса передаются только в одном направлении: от процессорного модуля.

Рассматриваемая ЭВМ содержит два модуля памяти: модуль ОЗУ и модуль ПЗУ. Некоторые ЭВМ могут содержать несколько модулей ОЗУ и ПЗУ, каждый из которых имеет вход для приема сигнала «выбор модуля» или в английской терминологии «change crystal» CS. Во всех случаях, когда ЭВМ содержит более одного модуля памяти, часть кода адреса ячейки памяти должна указывать, к какому модулю памяти производиться обращение. Эта часть называется кодом выбора модуля. Оставшаяся часть кода адреса выбирает ячейку памяти внутри модуля и называется адресом слова. Дешифрация кода выбора модуля производится с помощью дешифратора выбора модуля памяти, который вырабатывает соответствующий сигнал CS. Дешифрация адреса слова осуществляется внутренним дешифратором модуля. Входы этого дешифратора (адресные шины модуля памяти) подключаются к соответствующим линиям шины адреса.

Рассматриваемая ЭВМ содержит один порт ввода и один порт вывода. Однако таких портов у ЭВМ может быть и гораздо больше. Все входы CS портов ввода и вывода подключаются через дешифратор номеров портов к линиям шины адреса ЭВМ. Порты «активизируются» при появлении на шине адреса кодов, соответствующих их номерам. Дополнительным условием «активизации» любого периферийного модуля является наличие соответствующего сигнала на шине управления. По линиям шины управления от процессорного модуля к периферийным поступают сигналы, определяющие выбор группы модулей (порты или модули памяти), а также направление обмена данными: сигнал чтения из модулей запоминающих устройств – RDM (read memory), сигнал записи в модули запоминающих устройств – WRM (write memory), сигнал чтения из порта ввода – RDIO (read input/output), сигнал записи в порт вывода – WRIO (write input/output).

Таким образом, при записи, например, числа в ячейку памяти ОЗУ процессорный модуль устанавливает на шине адреса адрес этой ячейки памяти, на шине данных – двоичный код записываемого числа и выдает на соответствующую линию шины управления сигнал WRM. При этом с шины данных число записывается в адресуемую ячейку памяти ОЗУ. При чтении, например, данных из какого-либо порта ввода процессорный модуль устанавливает на шине адреса адрес этого порта и выдает на соответствующую линию шины управления сигнал RDIO. При этом адресуемый порт ввода передает информацию со своего входа на шину данных, откуда она считывается процессорным модулем.

Читайте также: Hyundai tucson размерность шин

Мы рассмотрели организацию обмена данными между процессорным и периферийными модулями. Теперь рассмотрим работу ЭВМ в целом. Работа ЭВМ, как и любого цифрового устройства, заключается в обработке исходных данных по заданному алгоритму. Под алгоритмом работы цифрового устройства понимается набор последовательно выполняемых действий по обработке исходных данных с целью получения требуемого результата. В ЭВМ алгоритм реализуется при выполнении программы, хранимой в памяти в виде последовательности команд.

Выполнение любой команды начинается с чтения кода этой команды из запоминающего устройства. Для этого процессорный модуль устанавливает на шине адреса код адреса ячейки памяти, в который записан код команды и выдает на соответствующую линию шины управления сигнал RDM. В результате код команды выдается из ячейки памяти на шину данных и считывается процессорным модулем. МП дешифрирует код операции команды, определяет какие действия ему необходимо выполнить и переходит к исполнению команды. Во время выполнения команды МП может обращаться к памяти для чтения или записи данных, к порту ввода для ввода исходных данных, к порту вывода для вывода полученных результатов.

После окончания выполнения текущей команды МП переходит к выполнению очередной команды, т.е. обращается к ячейке памяти, где хранится код следующей команды.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Видео:Базовая архитектура и структура ЭВМСкачать

Базовая архитектура и структура ЭВМ

4.2. Структура эвм с общей шиной.

Часто при построении ЭВМ для связи процессорного модуля с периферийными используется одна группа шин. В этом случае микропроцессор обращается к внешним устройствам ввода-вывода как к элементу памяти. Данная организация проста с точки зрения задействованных аппаратных средств, но допускает лишь последовательный во времени режим обмена информацией между периферийными модулями и процессорным модулем, т.е. невозможно одновременно обратиться и к памяти и к портам ввода-вывода. Структурная схема ЭВМ с общей шиной представлена на рис.4.2.

Структура общий шины эвм

Рис.4.2. Структура ЭВМ (МП-системы) с общей шиной.

По роду передаваемой информации все шины разделены на три группы, образующие шину данных, шину адреса и шину управления. Характерной особенностью шины данных является ее двунаправленность, обеспечиваемая буферными регистрами, под которой понимается возможность передачи данных в разные моменты времени в различных направлениях, например, сначала от процессорного модуля к периферийному, а затем в обратном направлении. Ещё одна особенность этих буферных регистров заключается в том, что они являются трехстабильными, т.е. выходы этих регистров могут принимать третье пассивное или, так называемое высокоимпедансное состояние, благодаря чему регистр оказывается как бы отключенным от шины данных.

Каждый периферийный модуль ЭВМ имеет вход для приема сигнала ВМ (выбор модуля). В процессе работы ЭВМ с помощью этого сигнала «активизируется» только один из периферийных модулей. Это означает, что возможен обмен данными между ним и процессорным модулем. Выходы остальных модулей при этом остаются в высокоимпедансном состоянии (отключенном) и на работу ЭВМ не влияют.

Поскольку процессорный модуль должен обмениваться данными с определенными ячейками памяти запоминающих устройств или с определенными портами, то для возможности обращаться (адресоваться) к ним, каждая ячейка памяти и каждый порт ввода и вывода имеют свои индивидуальные номера — адреса. При обмене данными процессорный модуль устанавливает двоичный код, соответствующий адресу порта или ячейки памяти на шине адреса ЭВМ. Шина адреса является однонаправленной, т.е. адреса передаются только в одном направлении: от процессорного модуля.

Читайте также: Скорость шины pci в bios

Рассматриваемая ЭВМ содержит два модуля памяти: модуль ОЗУ и модуль ПЗУ. Некоторые ЭВМ могут содержать несколько модулей ОЗУ и ПЗУ, каждый из которых имеет вход для приема сигнала «выбор модуля» или в английской терминологии «change crystal» CS. Во всех случаях, когда ЭВМ содержит более одного модуля памяти, часть кода адреса ячейки памяти должна указывать, к какому модулю памяти производиться обращение. Эта часть называется кодом выбора модуля. Оставшаяся часть кода адреса выбирает ячейку памяти внутри модуля и называется адресом слова. Дешифрация кода выбора модуля производится с помощью дешифратора выбора модуля памяти, который вырабатывает соответствующий сигнал CS. Дешифрация адреса слова осуществляется внутренним дешифратором модуля. Входы этого дешифратора (адресные шины модуля памяти) подключаются к соответствующим линиям шины адреса.

Рассматриваемая ЭВМ содержит один порт ввода и один порт вывода. Однако таких портов у ЭВМ может быть и гораздо больше. Все входы CS портов ввода и вывода подключаются через дешифратор номеров портов к линиям шины адреса ЭВМ. Порты «активизируются» при появлении на шине адреса кодов, соответствующих их номерам. Дополнительным условием «активизации» любого периферийного модуля является наличие соответствующего сигнала на шине управления. По линиям шины управления от процессорного модуля к периферийным поступают сигналы, определяющие выбор группы модулей (порты или модули памяти), а также направление обмена данными: сигнал чтения из модулей запоминающих устройств – RDM (read memory), сигнал записи в модули запоминающих устройств – WRM (write memory), сигнал чтения из порта ввода – RDIO (read input/output), сигнал записи в порт вывода – WRIO (write input/output).

Таким образом, при записи, например, числа в ячейку памяти ОЗУ процессорный модуль устанавливает на шине адреса адрес этой ячейки памяти, на шине данных – двоичный код записываемого числа и выдает на соответствующую линию шины управления сигнал WRM. При этом с шины данных число записывается в адресуемую ячейку памяти ОЗУ. При чтении, например, данных из какого-либо порта ввода процессорный модуль устанавливает на шине адреса адрес этого порта и выдает на соответствующую линию шины управления сигнал RDIO. При этом адресуемый порт ввода передает информацию со своего входа на шину данных, откуда она считывается процессорным модулем.

Мы рассмотрели организацию обмена данными между процессорным и периферийными модулями. Теперь рассмотрим работу ЭВМ в целом. Работа ЭВМ, как и любого цифрового устройства, заключается в обработке исходных данных по заданному алгоритму. Под алгоритмом работы цифрового устройства понимается набор последовательно выполняемых действий по обработке исходных данных с целью получения требуемого результата. В ЭВМ алгоритм реализуется при выполнении программы, хранимой в памяти в виде последовательности команд.

Выполнение любой команды начинается с чтения кода этой команды из запоминающего устройства. Для этого процессорный модуль устанавливает на шине адреса код адреса ячейки памяти, в который записан код команды и выдает на соответствующую линию шины управления сигнал RDM. В результате код команды выдается из ячейки памяти на шину данных и считывается процессорным модулем. МП дешифрирует код операции команды, определяет какие действия ему необходимо выполнить и переходит к исполнению команды. Во время выполнения команды МП может обращаться к памяти для чтения или записи данных, к порту ввода для ввода исходных данных, к порту вывода для вывода полученных результатов.

После окончания выполнения текущей команды МП переходит к выполнению очередной команды, т.е. обращается к ячейке памяти, где хранится код следующей команды.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле

    🎦 Видео

    Шина компьютера, оперативная память, процессор и мостыСкачать

    Шина компьютера, оперативная память, процессор и мосты

    Системная шина процессораСкачать

    Системная шина процессора

    Принципы работы ЭВМСкачать

    Принципы работы ЭВМ

    Архитектура ПК: Магистрально-модульный принцип построения ПК. Центр онлайн-обучения «Фоксфорд»Скачать

    Архитектура ПК: Магистрально-модульный принцип построения ПК. Центр онлайн-обучения «Фоксфорд»

    Лекция 1 | Архитектура ЭВМ и основы ОС | Кирилл Кринкин | CSC | ЛекториумСкачать

    Лекция 1 | Архитектура ЭВМ и основы ОС | Кирилл Кринкин | CSC | Лекториум

    Архитектура ЭВМ. Лекция 1: Типы архитектур. Комбинационная и последовательная логика.Скачать

    Архитектура ЭВМ. Лекция 1: Типы архитектур.  Комбинационная и последовательная логика.

    Архитектура персонального компьютераСкачать

    Архитектура персонального компьютера

    КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМСкачать

    КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМ

    3. Структура процессора ЭВМ. Запоминающие устройстваСкачать

    3. Структура процессора ЭВМ. Запоминающие устройства

    Шины ввода-выводаСкачать

    Шины ввода-вывода

    Системная шина персонального компьютера ISAСкачать

    Системная шина персонального компьютера ISA

    22 Гарвардская архитектураСкачать

    22 Гарвардская архитектура

    Сделайте так и колесо больше не будет спускать..Скачать

    Сделайте так и колесо больше не будет спускать..

    4 минуты и ты знаешь как устроен компьютерСкачать

    4 минуты и ты знаешь как устроен компьютер

    Как работает компьютерная память: что такое RAM, ROM, SSD, HDD и в чем разница?Скачать

    Как работает компьютерная память: что такое RAM, ROM, SSD, HDD и в чем разница?

    Понятие архитектуры ЭВМ. Структура ЭВМ. 2 семестр, 1 лекцияСкачать

    Понятие архитектуры ЭВМ. Структура ЭВМ. 2 семестр, 1 лекция

    Ремонт бокового пореза (продольного) на легковой шине Cordiant Comfort 185/60 R14. Заплата с кордом.Скачать

    Ремонт бокового пореза (продольного) на легковой шине Cordiant Comfort 185/60 R14. Заплата с кордом.
Поделиться или сохранить к себе:
Технарь знаток