Судовой реверс редуктор схема

К важнейшим составным частям судовых энергетических установок относятся элементы передачи мощности. Под этим понимаются все элементы, участвующие в передаче крутящего момента от коленчатого вала или ротора в турбинах к гребному винту. Типовая дизельная энергетическая установка с двумя среднеоборотными дизелями показана на рисунке. Она включает в себя муфты, одноступенчатый редуктор, валопровод и гребной винт. В энергетических установках с малооборотными дизелями редуктор отсутствует, в турбинных и энергетических установках с высокооборотными дизелями ставят двух- и трехступенчатые редукторы. В дизель- и турбоэлектрических энергетических установках предусмотрены электродвигатели.

Судовой реверс редуктор схема

Дизель-редукторная энергетическая установка со среднеоборотными дизелями

1 — муфте; 2 — редуктор; 3 — валопровод; 4 — гребной винт

Видео:Судовой реверс редуктор 120С и 135Скачать

Судовой реверс редуктор 120С и 135

Муфта соединяет узлы, выполняющие вращательные движения. Муфта предназначена для передачи крутящего момента от ведущего вала к ведомому, а также для сглаживания незначительных продольных, радиальных, угловых отклонений и крутильных колебаний. В зависимости от конструкции, назначения и принципа действия различают жесткие (глухие), упругие, фрикционные, гидродинамические и электромагнитные муфты. В судовых установках встречаются все виды муфт в зависимости от типа, мощности и конструкции главного двигателя. В установках, не имеющих передаточных механизмов (например, в малооборотных дизелях), чаще всего применяют жесткие муфты (рис. а, b). Фланцы жесткой муфты в разогретом состоянии запрессованы на вал или на конус и дополнительно зафиксированы призматической шпонкой. В энергетических установках с редуктором связь между редуктором и двигателем, а также с валом гребного винта осуществляется со стороны двигателя чаще всего через соединительную муфту, а со стороны гребного винта — через разобщительную. На рис. е показана упругая муфта. Она состоит из двух оснований, соединенных между собой гибкими прокладками, изготовленными из специальной резины. Такие муфты винтами крепятся к фланцам вала. Они могут передавать моменты независимо от направления вращения. За счет гибких вкладышей возможно выравнивание при перекашивании валов относительно друг друга.

Работа гидродинамических муфт основывается на гидравлическом принципе, схематично показанном на рис. с. Это можно представить себе так: насос, приводимый в движение двигателем, отсасывает жидкость из резервуара, и нагнетает ее в турбину. Жидкость под определенным давлением протекает через лопатки турбины, приводя ее в движение, и затем течет обратно в резервуар. При одинаковых размерах роторов насоса и турбины агрегат работает как гидравлическая муфта, при различных — он превращается в гидротрансформаторную передачу, позволяющую изменять частоту вращения ведомого вала. На практике роторы насосов и турбин находятся в специальном корпусе (рис. d). Действие гидродинамической муфты основывается на энергообмене между двумя полумуфтами (рис. d) с помощью рабочей среды и циркуляции жидкости. Эта циркуляция возникает только в том случае, когда первичная сторона и турбина имеют равные частоты вращения. У гидравлических муфт, используемых на судах, это скольжение составляет от 1,5 до 3%.

Судовой реверс редуктор схема

Судовые муфты

а, b — жесткие (глухие) муфты: 1 — полумуфта; 2 — фланец; 3 — шпоночная канавка со шпонкой. с — схема гидромуфты: 1, 2 — насосы; 3 — цистерна. d — схема гидромуфты (турбо-муфты); е — гибкая муфта. 4 — фланец; 5 — элемент муфты. f — электромагнитная муфта.

Видео:Судовой реверс редуктор до 25 л/сСкачать

Судовой реверс редуктор до 25 л/с

В судовых главных двигателях довольно часто применяют также электромагнитные индукционные скользящие муфты. Принцип действия подобной муфты состоит в использовании вращающего момента, возникающего вследствие воздействия вращающегося магнитного поля на индукционные токи. Внутренняя часть муфты расположена на ведущем вале. Обмотки полюсов через щетки и контактные кольца питаются постоянным током. Внешняя часть муфты имеет обмотку в виде беличьей клетки. Когда внешняя часть, приводимая в движение двигателем через вал, начинает вращаться и возбуждается, она вместе с валом, связанным с ней и ведущим, например, к редуктору, попадает в область вращения магнитного поля. За счет этого в обмотке типа беличьей клетки этой части муфты возникают индукционные токи. Эти токи, взаимодействуя с силовыми линиями магнитного поля, обусловливают возникновение момента вращения, вследствие чего внешняя часть муфты начинает вращаться вместе с внутренней. Таким образом вращение, мощность и момент вращения передаются от двигателя к валу редуктора. Часть муфты с обмоткой типа беличьей клетки должна — аналогично гидродинамической и электромагнитной муфте — вращаться медленнее, чем вращающееся магнитное поле, так как при одинаковой скорости вращения обеих частей не могли бы возникнуть индуктированные токи и передача вращающего момента была бы невозможна. Поэтому и в данном случае имеет место так называемое скольжение муфты. Редуктор главного двигателя должен передавать момент вращения и так изменять его частоту вращения, чтобы она имела оптимальную величину, необходимую для нормальной работы гребного винта. На судах чаще всего применяют механические редукторы, состоящие из зубчатых колес. С введением планетарного редуктора появилась возможность значительно уменьшить размеры и общую массу. В последнее время на новых судах все чаще используют планетарные редукторы в энергетических установках со среднеоборотными дизелями, газовыми или паровыми турбинами.

Судовой реверс редуктор схема

Механический судовой редуктор

а — суммирующий; b — планетарный. 1 — вал турбины высокого давления; 2 — вал турбины низкого давления; 3, 5, 8, 9 — центральные солнечные шестерни; 4 — водило; 6 — свободный эпицикл; 7 — вал; 10 — тормозной эпицикл; 11 — свободное водило; 12 — полый вал; 13 — зубчатые колеса (3-я ступень); 14 — приводное зубчатое колесо гребного вала; 15 — гребной вал; 16 — гребной винт

Валопровод соединяет приводной двигатель с гребным винтом. Гребной вал, который в зависимости от расположения машинного отделения на судне может состоять из одной или нескольких соединенных через глухие муфты частей, должен передавать момент вращения двигателя на гребной винт. Гребной вал опирается на радиальные подшипники. Концевая часть проходит в уплотнительном сальнике, который предохраняет туннель гребного вала от попадания морской воды. На конусообразной концевой части гребного вала закреплен гребной винт (рис. а). Осевое давление, действующее со стороны гребного винта и передаваемое дальше через вал, воспринимается упорным подшипником. Принцип действия упорного подшипника изображен на рис. d-е. Такой подшипник старого типа состоит из взаимодействующего с опорными поверхностями гребня давления; опорные поверхности залиты металлом. На переднем ходу функционирует одна поверхность гребня давления, на заднем — другая.

Видео:Реверсивно-редукторная передача РРП-40. Часть 1Скачать

Реверсивно-редукторная передача РРП-40. Часть 1

Читайте также: Как прокачать рулевой редуктор

Судовой реверс редуктор схемаСудовой реверс редуктор схема

Валопровод

а — общий вид; b — полумуфта; с — упорный подшипник; d, e — принцип действия упорного подшипника. 1 — гребной вал; 2 — сальник; 3 — полу- подшипник; 6 — переборочный сальник; 7 — муфта; 4 — промежуточный вал; 5 — опорный упорный подшипник; 8 — упорный вал

Гребной винт в настоящее время является почти единственным типом движителя. Он состоит из нескольких лопастей, радиально укрепленных на ступице. Во время вращения гребного винта вокруг своей оси на лопастях возникает сила давления, которая в конечном итоге обусловливает движение судна. Характерной величиной гребного винта является шаг. Его теоретическое значение, т. е. без учета скольжения, зависит от угла атаки лопасти гребного винта. Для достижения хорошего взаимодействия между главным двигателем и гребным винтом необходимо, чтобы параметры и особенно шаг винта имели определенные значения. Оптимальное взаимодействие будет достигнуто лишь при определенном состоянии нагрузки судна и при определенных погодных условиях (ветер, волнение и т. д.). Если эти значения отклоняются от заданных, то взаимодействие двигателя и гребного винта не приносит результата, заложенного в проекте. На практике это означает, что взаимодействие двигателя и относящегося к нему гребного винта будет наиболее эффективным, например, при полной нагрузке судна и при хорошей погоде. На судах, работающих в изменяющихся условиях, таких как буксиры или рыболовные суда (свободный ход, ход с тралом), движитель должен быть приспособлен к соответствующим условиям работы. Вместе с тем стало бы возможным одновременное использование полной мощности приводного двигателя при различных состояниях его нагрузки.

Видео:Подготовка судового редуктора к дизелю 240-245Скачать

Подготовка судового редуктора к дизелю 240-245

Судовой реверс редуктор схема

Судовой движитель

а — гребной винт с неподвижными лопастями; b — винт регулируемого шага; с — гребной винт в насадке; d — соосные гребные винты

Лопасти винта фиксированного шага отлиты вместе со ступицей или прочно привинчены к ней (см. рис. а). Изменять шаг можно на гребных винтах регулируемого шага ВРШ (рис. b). Лопасти гребного винта расположены на криволинейных дисках и укреплены на ступице винта так, что они могут поворачиваться. Применение ВРШ позволяет использовать нереверсивные двигатели в качестве судовых. Они могут работать и при постоянной частоте вращения, так как в этом случае можно осуществлять все маневры путем изменения угла атаки, т. е. от самого большого шага винта на переднем ходу, когда лопасти находятся в таком положении, что несмотря на вращение гребного винта, тяга не появляется (и поэтому судно не движется), до положения лопастей, соответствующего заднему ходу. Вначале ВРШ применяли только на буксирах, рыболовных и специальных судах, и только позднее их начали устанавливать на судах торгового флота. За счет установки ВРШ достигаются большая экономичность энергетических установок, возможность использования полной мощности двигателя при различной нагрузке, а также возможность применения нереверсивных ДВС или паровых турбин без турбин заднего хода. К преимуществам следует также отнести и возможность осуществления заднего хода при полной мощности двигателя.

Иногда на судах (особенно на судах речного флота) гребной винт устанавливают в насадке (см. рис. с). Такая конструкция позволяет улучшить уелввия работы гребного винта и повысить КПД. Диаметр судового движителя может достигать 9 м, а масса — 50 т. Гребные винты регулируемого шага имеют меньший диаметр. Преобладающее число судов имеет только один гребной винт, устанавливаемый в диаметральной плоскости судна. Встречаются также двухвинтовые суда, которые приводятся в движение либо от двух малооборотных, либо от четырех среднеоборотных дизелей, причем в последнем случае один гребной винт приводится в движение двумя двигателями. В редких случаях строятся трехвинтовые суда, например торпедные катера, на которых два бортовых движителя, приводятся в движение от высокооборотных дизелей через редукторную передачу, а средний гребной винт — от газовой турбины. Некоторые большие пассажирские суда и боевые корабли, например авианосцы, снабжаются четырьмя симметрично расположенными гребными винтами. В условиях постоянно растущих мощностей главных двигателей требуются гребные винты очень больших диаметров, что приводит к технологическим и производственным трудностям. Чтобы противодействовать этому и улучшить КПД, пытаются «устанавливать движители, вращающиеся в противоположных направлениях (см. рис. d). В этом случае необходимы сложные устройства, такие как полые гребные валы и специальные редукторные передачи. Наряду с гребными винтами в последнее время применяют крыльчатые движители. Они состоят из нескольких вращающихся навесных лопаткообразных лопастей изменяющегося профиля, укрепленных на плоском рабочем колесе. Рабочее колесо приводится в движение главным двигателем через гипоидный зубчатый редуктор. Вращающиеся лопаткообразные лопасти создают силу упора, действующую в направлении, зависящем от угла установки лопастей, как показано на рис. а. Во время работы движителя можно плавно изменять угол атаки лопастей.

Видео:О реверс-редукторе для катера.Скачать

О реверс-редукторе для катера.

Судовой реверс редуктор схемаСудовой реверс редуктор схема

Крыльчатый движитель

а — принцип действия; b — движитель Фойта-Шнейдера (вид сбоку); с — движитель Фойта Шнейдера (вид сверху); d — буксир с движителем Фойта-Шнейдера в носовой части судна; е — буксир с движителем Фойта-Шнейдера в кормовой части судна

I — «Стоп»; 2 — «Передний ход»; 3 — «Задний ход»; 4 — «Поворот на левый борт»; 5 — «Поворот на левый борт» (на заднем ходу); 6 — «Поворот на правый борт»; 7 — управляющий механизм; 8 — привод; 9 — лопасти; 10 — распределительные рычаги и тяги

Крыльчатый движитель может служить как в качестве пропульсивного движителя, так и в качестве руля. Судно, оснащенное двумя симметрично расположенными движителями, может двигаться в любом направлении. Недостатком является частая повреждаемость лопаткообразных лопастей, выступающих ниже днища судна. Крыльчатый движитель в основном используется на портовых буксирах и лоцманских судах, а также на судах портовой службы. Мощность подобных установок невелика: максимально она составляет 2200 кВт.

Судовой реверс редуктор схема

Видео:Как устроен редуктор лодочного мотора , переключение передач вперед / назадСкачать

Как устроен редуктор лодочного мотора , переключение передач вперед / назад

Судовой реверс редуктор схема

Рис.1 6. люки в носовой кубрик

В кормовой и носовой части катера устанавливаются сварные корзины предназначенные для укладки швартового троса.


источники:

Видео:Судовой редуктор DONG I DMT110AСкачать

Судовой редуктор DONG I DMT110A

https://evakuatorinfo.ru/sudovoy-revers-reduktor-shema

🎦 Видео

Судовой гидравлический реверсивный редуктор МА142Скачать

Судовой гидравлический реверсивный редуктор МА142

Ревеср редуктор 3д6Скачать

Ревеср редуктор 3д6

Реверс редуктор. Проще некуда.Скачать

Реверс редуктор. Проще некуда.

Реверс редуктор на 150 л/сСкачать

Реверс редуктор на 150 л/с

ямз-238 судовой с гидравлическим реверс-редуктором рр300 запускСкачать

ямз-238 судовой с гидравлическим реверс-редуктором рр300 запуск

Реверс-редуктор 3д6 установкаСкачать

Реверс-редуктор 3д6 установка

Судовой редуктор Baysan M30Скачать

Судовой редуктор Baysan M30

Судовой редуктор DMT90AСкачать

Судовой редуктор DMT90A

Судовой редуктор DONG-I DMT140HСкачать

Судовой редуктор DONG-I DMT140H

Ходоуменьшитель ДТ-75, 78.52.002Б, реверс-редуктор ДТ-75Скачать

Ходоуменьшитель ДТ-75, 78.52.002Б, реверс-редуктор ДТ-75

Испытания реверс-редуктораСкачать

Испытания реверс-редуктора

Ремонт реверс-редуктора РР-300 для 3Д6/3Д12/ЯМЗ. Сайт https://altaydizel.ru/Скачать

Ремонт реверс-редуктора РР-300 для 3Д6/3Д12/ЯМЗ. Сайт https://altaydizel.ru/
Поделиться или сохранить к себе:
Технарь знаток