Воздушный компрессор – это агрегат, необходимый для осуществления процесса сжатия воздуха и подачи его в пневмопотребитель под давлением. Любой пневмоинструмент, работающий со сжатым воздухом, нуждается в компрессоре. Компрессоры бывают различных типов, но основными типами для использования на производстве и в бытовых целях являются винтовые и поршневые. Некоторые виды компрессоров имеют как схожие элементы, так и конструктивные отличия. Существуют компактные и достаточно большие агрегаты, переносные и стационарные. Для определенных областей применения существуют варианты исполнения из различных материалов.
- Особенности подбора компрессоров
- Компрессоры винтового типа
- Принцип работы:
- Преимущества и недостатки:
- Компрессоры поршневого типа
- Основные элементы:
- Преимущества и недостатки:
- Расчет объема ресивера
- Область применения поршневых компрессоров
- Управление компрессорным оборудованием
- Основные характеристики компрессора. Производительность компрессора. Мощность компрессора
- Общая информация по компрессорам
- Рабочее давление компрессора
- Производительность компрессора
- Мощность компрессора
- 🔍 Видео
Видео:Делаем трубопровод для сжатого воздухаСкачать
Особенности подбора компрессоров
При расчете компрессора важными параметрами являются степень сжатия, давление, производительность и прочие технические данные. Но одним из важнейших моментов такого расчета является определение необходимого типа компрессора и его технических параметров. Также следует учитывать конструктивные особенности пневмоинструмента, например, если инструмент должен работать при давлении 5-7 бар, то компрессор должен быть рассчитан как минимум на 7-9 бар. Необходимо учитывать также перепады давления, реальные особенности и структуру пневмосети. Как правило, в прилагаемом техническом описании компрессора указываются данные по потреблению воздуха и производительности без учета перепадов на магистрали, это тоже следует учесть.
Видео:Компрессор высокого давления. Реальная производительность.Скачать
Компрессоры винтового типа
Винтовой компрессор — это достаточно простое и надежное оборудование, которое при должном техническом обслуживании будет экономить средства и электроэнергию, а также обеспечивать долговечную и качественную работу.
Исходя из практики, для промышленного применения характерно использование воздушных компрессоров винтового типа, так как они имеют достаточно высокую производительность. Кроме того, они имеют множество технологических особенностей и опций, подходящих для использования в промышленных отраслях. Основной особенностью конструкции винтовых компрессоров является винтовая пара, состоящая из ведущего и ведомого ротора. Она служит непосредственно для процесса сжатия и является одним из главных элементов компрессора.
Принцип работы:
Корпус компрессора и роторы образуют камеру сжатия. Винтовая пара, состоящая из ведущего и ведомого роторов, находится в сцепленном состоянии. По мере вращения винтов в противоположном направлении, объем камеры увеличивается и начинается процесс всасывания воздуха. При достижении максимального объема всасываемого воздуха, камера изолируется от патрубка всасывания, и теперь пара роторов начинает сокращать объем и направлять сжатый воздух в камеру нагнетания.
Если компрессор маслозаполенный, то масло отводит тепло, возникающее при сжатии, и далее отделяется в сепараторе, а из компрессора выходит чистый сжатый воздух. Как правило, маслозаполненные компрессоры имеют чуть больший КПД , чем безмасляные. Особенностью таких компрессоров является плавная, равномерная работа с низким уровнем шума. В случае безмасляного компрессора масло не охлаждает агрегат, поэтому сжатие происходит в несколько этапов, как правило, в две ступени. Результатом этого является чистый воздух без примесей масла, но сам агрегат, как правило, стоит дороже и более сложен в техобслуживании. Такие компрессоры незаменимы в тех процессах, у которых необходим чистый воздух, например, в химических или фармацевтических отраслях. Для охлаждения такого типа компрессоров используется впрыск воды.
Преимущества и недостатки:
Преимуществами винтовых агрегатов является простота конструкции, небольшой уровень шума, надежные и долговечные составные элементы конструкции, достаточно небольшая стоимость эксплуатации, малое содержание масла в воздухе, небольшие габариты и т.д. В винтовых компрессорах возможна частичная разгрузка с понижением мощности и изменением объема всасываемого воздуха. Также такие компрессоры можно устанавливать в параллель, образуя агрегаты повышенной мощности.
Из существенных недостатков можно отметить лишь достаточно высокую стоимость.
Видео:Заправка баллонов сжатым воздухомСкачать
Компрессоры поршневого типа
Поршневые компрессорные агрегаты повсеместно используются в быту и на малых и средних предприятиях. В отличие от других типов компрессоров, у данного типа оборудования основной рабочей системой является поршневая группа.
Основные элементы:
- группа цилиндров;
- группа поршней;
- элементы обеспечения движения;
- клапаны и трубопроводы регулировки производительности;
- система смазки;
- охлаждающая система;
- установочные элементы.
Конструкция поршневого воздушного компрессора представляет собой чугунный (или из иного материала) корпус с горизонтально или вертикально установленным цилиндром.
Рабочая группа включает в себя поршень, клапан нагнетания и клапан всасывания. Движение обеспечивается двигателем посредством КШМ. Перемещение поршня определяет процесс всасывания и сжатия воздуха в камере цилиндра. Воздух поступает в цилиндр через открытый клапан всасывания, так как при движении поршня возникает разряжение, открывается клапан всасывания и впускает воздух. Во время обратного перемещения объем поршневой камеры уменьшается и происходит сжатие воздуха и увеличение его давления. Клапан всасывания закрывается и открывается клапан нагнетания, через который сжатый воздух подается в магистраль. Поскольку при таком принципе работы существует достаточно большой риск износа механизмов, в воздух добавляются частички масла, благодаря чему происходит смазывание и снижение трения. Данный цикл является повторяющимся, и в процессе работы воздух поступает в пневмоооборудование под необходимым давлением.
Поршневой воздушный компрессор имеет достаточно простую и эффективную конструкцию, при этом сохраняя достаточно высокую производительность и качественные эксплуатационные характеристики. Как правило, на большинстве производств используемые компрессоры дублируют, поскольку в случае выхода из строя или при необходимости технического обслуживания рабочего компрессора, его заменяет второй и обеспечивается непрерывность рабочего процесса.
Представленные выше типы агрегатов применяются во множестве отраслей промышленности, имеют высокие рабочие характеристики, являются надежными и долговечными при условии соответствующего техобслуживания и грамотной эксплуатации. Они могут использоваться для работы с большинством пневматических инструментов.
Преимущества и недостатки:
Преимуществом поршневого компрессора является простота конструкции и достаточно несложное техобслуживание. Также компрессоры такого типа имеют достаточно небольшую стоимость в сравнении с другими типами компрессоров.
Недостатком является достаточно частое техобслуживание и затраты на него, большой износ трущихся частей, нагрев в процессе работы, и, как следствие, необходимость дополнительного охлаждения.
Видео:Как настроить регулятор давления воздуха на гаражном компрессоре QUATTRO ELEMENTI KM 50-380Скачать
Расчет объема ресивера
Одним из важных параметров, которые должны быть учтены при расчете компрессора, является объем ресивера.
Если компрессор используется для бытовых целей, то объема в 30-50 литров вполне должно хватить.
В промышленных компрессорах объем ресивера может составлять более 200 литров. Ресивер необходим для предотвращения перепадов давления при запуске двигателя и защищает компрессор путем снижения количества пусков-остановов, что ведет к более долговечной работе. Объем ресивера следует выбирать исходя из поставленной задачи и из числа активных потребителей воздуха.
Видео:Компрессор СО 7Б для мастерской.Видео обзорСкачать
Область применения поршневых компрессоров
Компрессоры указанных выше типов используются повсеместно – в энергетике и медицине, на строительных объектах, в системах охлаждения и в машиностроении, на военных объектах, в сталелитейной и текстильной промышленности. Особенно важным является применение в пищевой промышленности. Множество переключающих, запорных и противосмесительных клапанов имеют воздушный пневмопривод. Как правило, клапаны объединены в кластеры, к которым также необходимо обеспечить постоянную подачу чистого сжатого воздуха. В случае возникновения проблем с компрессором, возможно нарушение функционала таких клапанов и, как следствие, дорогостоящие ошибки и неисправности при производстве продуктов питания.
Читайте также: Компрессор воздушный электрический greenworks
Компрессорное оборудование также является неотъемлемой частью множества технологических процессов, таких, как:
- работа с пылесборниками и пневматическими муфтами при производстве цемента,
- постоянная подача сжатого воздуха для электростанций, пескоструйная обработка,
- покраска надувка шин в автомобильной промышленности,
- подача воздуха для нагрева или охлаждения стали в сталелитейной промышленности,
- сжатый воздух необходим для перемещения жидкостей и создания давления в резервуарах в химической промышленности,
- процесс упаковки, работа с продуктом, управление пневматикой в пищеовй промышленности,
- охлаждающий воздух для роботов в машиностроении,
- воздух для процесса упаковки и производства лекарственных средств в фармацевтической отрасли,
- подача воздуха в пневматический инструмент на строительных объектах,
- перемещение угля и руды, подача воздуха в шахты, обеспечение работоспособности для машин в горнодобывающей промышлености,
- распыление порошковых сред и прочие технологические процессы в целлюлозно-бумажной промышленности.
Видео:ПневмоРазводка в Гараже, Своими Руками. Правильный Вариант Исполнения!Скачать
Управление компрессорным оборудованием
Управление компрессором, а именно регулирование его функционала необходимо для обеспечения стабильной работы и обеспечения соответствия необходимым рабочим условиям. В основном, регулирование осуществляется путем использования реле давления и определенной системы настройки. Данные настройки обеспечивают постоянное давление в ресивере. Автоматика отключает компрессор при достижении давлением установленного максимума, и включает, как только активируется автоматика защиты по нижнему допустимому давлению.
Кроме автоматики, срабатывающей по давлению, необходимо еще множество предохранительных элементов – запорные клапаны на линиях всасывания и нагнетания, индикаторы контроля уровня масла, датчики давления масла, соленоидные клапаны и т.д.
Для корректной работы компрессора часто используются дополнительные опции: частотный преобразователь, рекуперационный теплообменник (экономайзер), лренажные и охладительные линии.
Видео:Фильтры сжатого воздуха магистральные Remeza R0106-P-PI 4071010465 , Ремеза, компрессораСкачать
Основные характеристики компрессора. Производительность компрессора. Мощность компрессора
Видео:Как заправить баллоны сжатым воздухомСкачать
Общая информация по компрессорам
Компрессоры, как и другие сложные технические устройства, обладают массой разнообразных характеристик, варьирующихся в больших пределах. Однако можно выделить ряд величин, являющихся основными для устройства. Именно они определяют сферу применения компрессора, и на их основе проводится расчет и подбор компрессорного оборудования под конкретную задачу. Прочие характеристики являются второстепенными и в большинстве случаев сами зависят от величины основных параметров. Второстепенные характеристики также оказывают влияние на конструкцию, работу и общую эффективность компрессора, но в значительно меньшей степени.
Величина основных характеристик определяет условия эксплуатации компрессора, а также те показатели потока сжатого газа, которые могут быть достигнуты с помощью этого компрессора. Удобство заключается в том, что по набору небольшого числа параметров можно определить сферу применения компрессора, либо наоборот очертить круг подходящих для проставленной задачи устройств. Подбор может проводиться как по одной основной характеристике, так и по набору из нескольких, в зависимости от требований, предъявляемых к компрессору.
Наиболее влияние на применимость компрессора оказывают следующие характеристики:
- рабочее давление;
- производительность;
- мощность.
Несомненно, прочие характеристики, такие как: габаритные размеры, вес, температура газа на выходе, шумность и т.д., также могут оказывать существенное влияние на расчет и итоговый выбор компрессора, однако основной выбор подходящего типа устройства строится именно на производительности и рабочем давлении. К примеру, если для определенной задачи требуется подавать воздух под большим давлением, но с относительно небольшим расходом, то такое соотношение требуемых основных характеристик сразу же отсеивает группу компрессоров низкого давления, таких как центробежные или водокольцевые. Попытки достичь требуемого рабочего давления на установках таких типов окажутся или невозможными, или же экономически нецелесообразными. В то же время компрессоры высокого давления по определению оказываются более подходящими под условия. Уточнение типа устройства может происходить уже по различным второстепенным характеристикам и результатам технико-экономического анализа. Поршневые компрессоры обойдутся дешевле в плане капитальных затрат, а винтовые смогут обеспечить большую чистоту воздуха, но все они будут удовлетворять требованиям по основным характеристикам.
Обычно покупатель не располагает, а чаще просто не может располагать, полными данными по тому, компрессор с какими параметрами ему необходим. В наличие лишь основные требования, которые должен удовлетворять компрессор: сколько и под каким давлением нужно подавать газ, и насколько ограничена мощность, которую можно будет подвести к устройству. Иными словами рабочее давление, производительность и потребляемая мощность. Несомненно, этот базовый набор требований может быть дополнен и уточнен такими пунктами, как коррозионная и химическая стойкость деталей, шумность, равномерность подачи и т.д. На основании этих данных могут быть подобраны и сконструированы несколько компрессоров, и каждый окажется в состоянии выполнить поставленную задачу. Отличия будут заключаться в деталях, по которым покупатель сможет выбрать оптимальный вариант, а критерием оптимальности в таком случае может быть любая из второстепенных характеристик, к примеру, величина потребляемой электроэнергии (в случае компрессорного агрегата с электродвигателем) или стоимость обслуживания агрегата.
Несмотря на то, что вышеперечисленные характеристики относятся к основным, существует еще ряд параметров, которые зачастую также оказывают соизмеримое влияние на выбор компрессора. Так химический и физический состав газа может оказывать решающее влияние, поскольку от способности компрессора перекачивать такую среду будет зависеть даже не его эффективность, а возможность работы как таковая. Плюс к этому, замена материала деталей на химически стойкий или износостойкий способна поднять стоимость все устройства в несколько раз. В других случаях крайне важными могут оказаться требования, предъявляемые к сжатому газу на выходе из компрессора, к его чистоте, равномерности подачи и температуре, а не только к показателям расхода и давления. К примеру, в пищевой промышленности предъявляются повышенные требования к чистоте сред и веществ, поэтому принципиально недопустимо использовать масляную смазку винтов в винтовом компрессоре, если есть вероятность попадания смазочного материала в поток газа, при этом значения других характеристик не будут иметь никакого влияния на окончательное решение по применимости. Отличие таких существенных, но все же второстепенных характеристик от основных заключается в том, что степень их влияния неодинакова от случая к случаю, в то время как рабочее давление, производительность и мощность важны всегда.
Видео:дизельный компрессор для пескоструйных работСкачать
Рабочее давление компрессора
Эту характеристику вообще можно назвать основополагающей, так как она отражает основную функцию компрессора – сжимать газ, что приводит к повышению его давления. Развиваемое компрессором давление обычно измеряться в Паскалях (Па), барах (бар) или атмосферах (атм), но также могут быть использованы миллиметры ртутного столба (мм рт. ст.), килограмм-сила на квадратный сантиметр (кгс/см 2 ) или фунт на квадратный дюйм (PSI). Наиболее распространены единицы измерения Па и бар, которые соотносятся следующим образом 1 бар = 0,1 МПа. Также рабочее давление подразделяют на избыточное (Pизб) и абсолютное (Pабс). Их значения отличаются на величину атмосферного давления (Pатм) и связаны соотношением Ризб = Рабс — Ратм.
Читайте также: T1114yb r 600 168 вт компрессор
При выборе компрессора нужно иметь ввиду тот факт, что создаваемое устройством давление постепенно снижается по пути к рабочему инструменту или аппарату. Падение давления может происходить на протяжении всего газопровода и в так называемых местных сопротивлениях: клапанах, изгибах газопровода, задвижках и т.д. Рабочее давление компрессора должно покрывать все потери на пути к потребителю и на выходе соответствовать предъявляемым требованиями.
В отдельных случаях важным условием могут быть условия подачи сжатого газа. Так поршневые компрессоры в силу своей конструкции создают пульсирующий поток сжатого газа, в то время как в винтовых компрессорах сжатие среды происходит равномерно без колебаний во времени. В таких случаях, например, как напыление лаков и красок, равномерность подачи является важным условием корректной работы. Снижение пульсаций давления компрессора может быть достигнуто различными способами. Так поршневые компрессоры могут иметь несколько рабочих камер, циклы работы которых смещены во времени относительно друг друга, за счет чего происходит частичное сглаживание суммарного потока. Однако чаще используется устройство под названием ресивер – сосуд, в котором происходит накопление сжатого газа, поступающего из компрессора, что позволяет почти полностью исключить пульсацию исходящего из него потока газа.
В зависимости от развиваемого давления компрессоры делятся на:
- вакуумные (разрежение более 0,05 МПа);
- низкого давления (от 0,15 до 1,2 МПа);
- среднего давления (от 1,2 до 10 МПа);
- высокого давления (от 10 до 100 МПа);
- сверхвысокого давления (более 100 МПа).
Видео:Как выбрать компрессор для гаража или строительства?Скачать
Производительность компрессора
Под производительностью компрессора подразумевается количество газа, нагнетаемого в единицу времени. Обычно она измеряется в м 3 /мин, л/мин, м 3 /час и т.д. Величина производительности компрессора может быть указана для стороны всасывания и стороны нагнетания, которые не равны друг другу, поскольку в процессе сжатия газ меняет свой объем. Для случая производительности на входе обычно берутся стандартные условия, то есть при атмосферном давлении и температуре 20°C. Выбор способа указания производительности компрессора может зависеть от удобства восприятия в зависимости от сферы применения устройства. Пересчет расхода газа с условий на входе на выходные условия может быть осуществлен с помощью специальных формул. Также перерасчет производительности может потребоваться в случае, если газ имеет другую температуру.
В зависимости от величины производительности компрессоры принято делить на устройства:
- большой производительности (более 100 м 3 /мин);
- средней производительности (от 10 до 100 м 3 /мин);
- малой производительности (до 10 м3/мин).
Производительность поршневого компрессора
Производительность конкретного компрессора преимущественно зависит от его геометрии и типа. Наиболее прост и нагляден в этом случае будет поршневой компрессор, так как размеры его рабочей камеры напрямую влияют на производительность. Ее можно представить, как объем рабочей камеры, умноженный на количество циклов хода поршня, совершаемых в единицу времени, или, если отталкиваться от геометрических параметров деталей поршневого узла, как площадь поперечного сечения цилиндра (F), помноженная на ход поршня (S) и на частоту вращения вала (n). Однако такое возможно только в идеальном случае. В действительности из-за конструкции клапанов и самого цилиндра и поршня не весь газ вытесняется из рабочей камеры. Небольшая часть его остается, и пространство, занимаемое им, называется вредным пространством. Это делается намерено, чтобы избегать ударов поршня о торцевую стенку камеры, что могло бы повлечь быстрый выход компрессора из строя.
Обозначим объем, описываемый поршнем, как Vп, тогда вредный объем может быть выражен как Vв=V-Vп, где V–объем рабочей камеры. Для учета вредного пространства используется соответствующий коэффициент ε=(V-Vп)/Vп. То есть вредный объем может быть определен также по формуле Vв=ε∙Vп.
Газ, занимающий вредный объем, влияет так же и на всасывание новой порции газа, так как этот процесс не начнется до тех пор, пока остаточный газ не расширится до определенной величины, во время чего поршень успеет пройти некоторое расстояние, а значит и всасывание будет неполным относительно идеального случая. Для учета этого явления вводят такой параметр как объемный КПД, рассчитываемый по формуле λ0=Vд/Vп, где Vд–действительный засасываемый объем газа. Сам коэффициент может быть рассчитан по следующей формуле:
где:
λ0 – объемный КПД;
ε – коэффициент вредного пространства;
p1 – давление на входе, Па;
p2 – давление на выходе, Па;
m – показатель политропы.
Таким образом, производительность поршневого компрессора одинарного действия определяется по формуле:
Если используется поршень двойного действия, то расчет производительности не может быть рассчитан как простое удвоение производительности одной рабочей камеры. Требуется уточнение, так как одна из рабочих камер будет частично занята штоком поршня, из-за чего ее производительность будет меньше чем у камеры без штока. Уточненная формула выглядит следующим образом:
где:
Vп2 – производительность поршневого насоса двойного действия;
f – площадь поперечного сечения штока.
Производительность винтового компрессора
Объемную производительность такого компрессора можно представить, как суммарный объем полостей, ограниченных винтами и корпусом, подаваемых на выход за единицу времени. В идеальном случае, когда отсутствуют какие-либо потери и протечки, теоретическая производительность винтового компрессора (с двумя винтами) может быть рассчитана по следующей формуле:
где:
Qт – теоретическая производительность винтового компрессора, м 3 /с;
l – длина винта, м;
m1 – количество заходов ведущего винта;
n1 – частота вращения ведущего винта, с -1 ;
f1 – площадь впадины ведущего винта, м 2 ;
m2 – количество заходов ведомого винта;
n2 – частота вращения ведомого винта, с -1 ;
f2 – площадь впадины ведомого винта, м 2 .
С учетом того, что обычно выполняется равенство m1∙n1 = m2∙n2 = m∙n, формулу теоретической производительности винтового компрессора можно представить в виде:
Действительный расход оказывается меньше теоретического, что закономерно. Сказывается влияние различных перетечек внутри компрессора и утечек газа во внешнюю среду через уплотнения. Математически это учитывается коэффициентом подачи, поэтому действительная производительность будет равна:
Qд – действительная производительность;
Qп – величина протечек через уплотнения;
ηп – коэффициент подачи.
Производительность центробежного компрессора
Принцип перекачивания среды в центробежном компрессоре идентичен принципу работы центробежного насоса с той разницей, что газ при сжатии претерпевает уменьшение объема, что приводит к увеличению его плотности. Производительность таких компрессоров обычно считают на входе в устройство и при нормальных условиях, что удобно для использования. Начальное значение этого параметра, как и выходное давление, обычно предварительно задается перед расчетом, после чего высчитываются геометрические размеры элементов рабочего колеса. К примеру, формула, связывающая производительность центробежного компрессора и размеры входного сечения колеса выглядит следующим образом:
где:
Q – производительность центробежного компрессора, м³/с;
vв – скорость потока газа на входе в колесо, м/с;
d1 – наружный диаметр ступицы колеса, м;
d2 – минимальный диаметр покрывающего диска, м;
Читайте также: Замена подшипника компрессора кондиционера лада ларгус
Видео:Осушители воздуха рефрижераторного и адсорбционного типа | КАК СПАСТИ ПРОИЗВОДСТВОСкачать
Мощность компрессора
В общем случае мощность, следуя стандартному определению, – это величина совершаемой за период времени работы к длительности этого периода. В отношении компрессора – это произведение производительности по газу на работу по его сжатию. Такую мощность называют теоретической и рассчитывают по формуле:
где:
Nт – теоретическая мощность, кВт;
Q – производительность, м 3 /мин;
ρ – плотность газа, кг/м 3 ;
A – теоретическая работа сжатия газа, дж/кг.
Однако стоит заметить, что теоретическая мощность не совпадает с мощностью, которую требуется подвести к компрессору для его работы, и с мощностью, которую должен вырабатывать двигатель, подключаемый к компрессору. Связано это с явлением потери мощности, что численно описывается набором коэффициентов полезного действия. Осуществляемый в компрессоре процесс сжатия обладает своим показателем КПД (в зависимости от типа процесса), а также в компрессоре часть подводимой мощности теряется при механической передаче. В связи с этим мощность, которую необходимо подать на входной вал компрессора, называют мощностью на валу или эффективной мощностью, связанную с теоретической мощностью следующей формулой:
где:
Nэ – эффективная мощность, кВт;
ηм – механический КПД компрессора;
ηпр – КПД процесса сжатия газа.
Если рассматривать компрессорную установку, оснащенную также двигателем и передачей, то в ней будут наблюдаться дополнительные потери мощности, отражаемые двумя КПД ηд и ηпер, соответственно. Тогда мощность Nд, которую необходимо подвести к двигателю компрессорной установки для ее работы, будет равна:
где:
Nд – мощность двигателя компрессорной установки, кВт;
ηд – КПД двигателя;
ηпер – КПД механической передачи.
Учет КПД всех элементов компрессорной установки крайне важен. Один и тот же двигатель может оказаться неподходящим для одной и той же задачи по сжатию газа, если она будет осуществляться компрессорами разного типа, поскольку их КПД могут сильно отличаться. Мощности, идущей непосредственно на сжатие газа, может попросту не хватить вследствие больших потерь. К примеру, в среднем КПД винтовых компрессоров составляет 95%, в то время как у поршневых компрессоров эта величина оказывается ближе к 80%, то есть разница в эффективности использования подводимой мощности может составлять 10-15% в пользу винтового устройства.
Мощность поршневого компрессора
Расчет мощности для поршневых компрессоров, осуществляющих сжатие до давления не более чем 10 МПа, с высокой точностью может проводиться по формулам, в которых газ рассматривается как идеальный. Однако в компрессорах с большим максимальным давлением сжатия (более 10 МПа) в расчетах начинает оказывать влияние тот факт, что перекачиваемый газ является не идеальным. Ключевое отличие идеального газа от не идеального (реального) заключается в принятии допущения, что молекулы газа не взаимодействуют между собой, в то время как в реальном газе такое взаимодействие имеет место и при больших давлениях может оказывать существенное влияние на поведение газа. Формула теоретической мощности, учитывающая эти факторы, выглядит следующим образом:
где:
Nт – теоретическая мощность, кВт;
Q – производительность компрессора, м 3 /с;
ρ – плотность газа, кг/м 3 ;
i1 – энтальпия газа перед сжатием, Дж/кг;
i2 – энтальпия газа после сжатия, Дж/кг.
Приведенная формула относится к случаю одноступенчатого компрессора. Если сжатие происходит в несколько ступеней, то разница энтальпий (i2-i1) в формуле должна быть заменена на сумму разниц энтальпий на каждой ступени. Если совершаемая работа по сжатию одинакова для каждой ступени, то уравнение принимает вид:
где:
n – число ступеней;
i1, i2 – начальная и конечная энтальпии первой ступени, Дж/кг.
На примере рисунка мощность первой ступени N1=(Q∙ρ∙n∙(i2-i1))/1000, мощность второй ступени N2=(Q∙ρ∙n∙(i3-i2))/1000, и мощность третьей ступени N3=(Q∙ρ∙n∙(i4-i3))/1000. При допущении, что изменение энтальпии на каждой ступени одинаково, то есть (i2-i1)=(i3-i2)=(i4-i3). При общем количестве ступеней (n=3) получим:
Мощность винтового компрессора
При прохождении газом винтового компрессора происходят постоянные потери мощности, которые осуществляются разными путями. Поскольку изготавливаемые винты не идеальны по форме и размерам, постоянно происходят обратные перетечки газа из полости в полость в направлении из области нагнетания в область всасывания, что обуславливает часть потерь. Также энергия газа расходуется на трение о винты и корпус, при ударах и т.д. В силу этих причин мощность, расходуемая на сжатие газа в устройстве оказывается больше, чем теоретическая, потребовавшаяся на сжатие того же газа в идеальных условиях. Такая мощность называется индикаторной и может быть определена по формуле:
где:
Nи – мощность винтового компрессора (индикаторная), кВт;
k – поправочный коэффициент (от 1,05 до 1,18 в зависимости от размера устройства);
Q – производительность при входных условиях, м 3 /с;
pв – давление на всасывании, Па;
pн – давление на нагнетании, Па;
ε – степень сжатия (геометрическая);
m – показатель политропы.
В остальном же расчет полной мощности всего компрессорного агрегата, состоящего из непосредственно компрессора, двигателя и передачи, соответствует другим типам компрессоров. Мощность самого компрессора увеличивается относительно индикаторной на величину механических потерь, происходящих в процессе его работы. Часть мощности теряется на передаче, и часть в самом двигателе. Учет этих потерь осуществляется введением соответствующих коэффициентов полезного действия.
Мощность центробежного компрессора
Поток газа, проходя через центробежный компрессор, теряет часть совей энергии за счет гидравлических потерь. Величина этих потерь описывается гидравлическим коэффициентом полезного действия (ηг), который связывает теоретическую мощность (Nт), которая потребовалась бы на сжатие газа в идеальных условиях, и индикаторную мощности (Nи):
Также, вследствие неизбежных утечек газа из рабочего пространства реальный расход газа в итоге отличается от теоретического, что также приводит к дополнительным потерям мощности, характеризуемым объемным КПД (ηо). Полезная мощность (Nп), которую необходимо сообщить рабочему колесу для сжатия газа будет равна:
Полезную мощность можно также рассчитать исходя из замеров реальных параметров компрессора по формуле:
где:
Nп – полезная мощность, Вт;
Vд – действительный расход, м 3 /с;
Hд – действительный напор, м;
p – средняя величина давления до и после сжатия, обычно принимаемая как среднее арифметическое, Па.
Общая мощность компрессора, которую необходимо сообщить валу, называется мощностью на валу и может быть рассчитана из индикаторной мощности с учетом механических потерь в компрессоре:
где:
Nв – мощность на валу компрессора, Вт;
ηм – механический КПД.
С учетом всех потерь полный КПД (ηп) центробежного компрессора будет выражен следующим уравнением:
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
🔍 Видео
ПНЕВМОМАГИСТРАЛЬ ОТ КОМПРЕССОРАСкачать
ПОДГОТОВКА СЖАТОГО ВОЗДУХА для покраски - фильтры, шланги, компрессор.Скачать
Пневмосистема в гараже (Компрессор+пневмомагистраль + блок подготовки сжатого воздуха)Скачать
Какой компрессор лучше: безмасляный, ременный или коаксиальныйСкачать
Винтовой компрессор бу на ресивере с осушителемСкачать
Компрессор воздушный Fiac GM 25-300Скачать
Устройство пневмолинии в гараже. Как избежать ошибок. Принцип устройстваСкачать
дизельный компрессор зиф пв 6/07 для пескоструяСкачать
Воздушный компрессор SENCO PC 1010Скачать