Температура всасывания и температура нагнетания являются производными температур кипения и конденсации и непосредственно не характеризуют изменение холодопроизводительности и потребляемой мощности. Температура нагнетания определяется величиной работы, затрачиваемой на осуществление процесса сжатия паров агента в компрессоре, а также степенью перегрева пара, поступающего в компрессор. Температура всасывания определяется величиной перегрева пара в испарителе и характеризует уровень заполнения испарителя жидким агентом. Эти температуры имеют важное значение для оценки правильности режима работы установки. [4]
Температура всасывания наиболее чувствительна к уровню заполнения системы агентом, на ее изменении основана работа термо-регулирующих вентилей, однако при ручном регулировании затруднительно использовать эту температуру в качестве основного показателя. Температура всасывания изменяется в диапазоне 5 — 10 С, всасывающий трубопровод, покрытый тепловой изоляцией и снеговой шубой обладает значительной тепловой инерцией, и температуры, показываемые установленным на нем техническим термометром, отстают по времени на 60 с и более. Кроме того, по температуре всасывания невозможно установить степень влажности пара, что особенно важно для безаварийной работы. [6]
Температура всасывания при опыте всегда поддерживается равной 15, а переохлаждение жидкости при определении холо-допроизводительности принимают равным 5, независимо от условий испытаний; поэтому величина, стоящая в скобках, есть постоянная для каждого расчетного режима. [7]
Температура всасывания ( перегрев) зависит от количества холодильного агента, подаваемого в испаритель. Иногда подачу холодильного агента в испарительную систему регулируют не по перегреву всасываемых паров, а по температуре нагнетания. [8]
Температура всасывания аммиачных паров в установках с одноступенчатым сжатием должна быть на 5 — 10 С выше температуры кипения, а в установках фреоновых — — 8 — 15 С и даже выше. [9]
Температуру всасывания в компрессор первой ступени ( точка /) принимают обычно 0 С, т.е. из условия обеспечения достаточно высокого перегрева. [10]
Если температура всасывания в первую ступень значительно ниже, чем во вторую, что наблюдается в зимних условиях, или относительная влажность cpj мала, то конденсации влаги перед второй ступенью не наблюдается. [11]
Если температура всасывания в I ступень значительно ниже, чем во II ( в зимних условиях), или относительная влажность рх мала, то конденсации влаги перед II ступенью не наблюдается. [12]
Если температура всасывания в первую ступень значительна ниже, чем во вторую ( в зимних условиях) или относительная влажность fj мала, то конденсация влаги перед второй ступенью не наблюдается. [13]
Предполагая температуру всасывания неизменной, заменяем отношение удельных весов отношением первоначального давления всасывания рвс к новому р вс. [14]
R, температуры всасывания Тн , температуры охлаждаемой воды tw и ее количества mw) не влияет на объемное количество всасываемого газа. Эти параметры влияют только на степень повышения давления и мощность. [15]
- 7.2. Поддержание параметров при оптимальном режиме работы хладоновых установок
- Обслуживание холодильных установок: отклонения от оптимального режима работы
- Опасность пониженной температуры кипения хладагента
- Опасность повышения температуры нагнетания паров хладагента
- Опасность повышения температуры конденсации паров хладагента
- Опасности влажного хода компрессорного оборудования
- 🔥 Видео
Видео:Перелит фреоном. Симптомы.Скачать
7.2. Поддержание параметров при оптимальном режиме работы хладоновых установок
Оптимальный режим характеризуется определенными значениями перепадов температур между средами в теплообменных аппаратах, температурами перегрева пара на всасывании в компрессор и нагнетания.
Температура кипения хладона. В системах непосредственного охлаждения разность температур воздуха в охлаждаемом помещении и кипения в камерных приборах принимается в пределах: в установках большой производительности 7…10°С; в установках малой производительности 12…20°С, вследствие того, что для малых установок нецелесообразно применение большой теплопередающей поверхности испарителя.
В испарителях, предназначенных для охлаждения хладоносителя, разность между средней температурой хладоносителя и кипением хладагента следующая: в оросительных испарителях 6…7 °С; в затопленных испарителях 4…6 °С. Перепад между воздухом охлаждаемого помещения и хладоносителем в камерных приборах составляет 7…10°С.
Температуру кипения определяют по двухшкальному манометру, установленному на испарителе, температуру камеры — по термометру, установленному на 2/3 высоты от пола в средней части камеры. Средняя температура хладоносителя равна полусумме температур входящего в испаритель хладоносителя и выходящего из него.
Температура пара, поступающего в компрессор (перегрева пара). Зависит от степени заполнения испарителя хладоном, теплопередающей поверхности теплообменника и значений температур t0 и tк .
Перегрев пара до теплообменника целесообразно поддерживать минимальным с целью организации устойчивого возврата масла в компрессор: в системах с верхней подачей хладона 5…10°С; в затопленных змеевиковых батареях 2…3 °С; в кожухотрубных затопленных испарителях 1…1,5 °С.
Перегрев пара после теплообменника должен быть возможно большим для увеличения коэффициента подачи (рис. 87) и лучшего отделения масла от хладона.
Читайте также: Компрессор кондиционера солярис схема
Рекомендуемые перегревы пара указаны в табл. 54 и 55.
Температуру всасывания определяют по термометру, установленному на всасывающей линии на расстоянии 0,2— 0,3 м до запорного всасывающего вентиля компрессора.
Температура конденсации. Параметры конденсации самоустанавливаются в зависимости от плотности теплового потока, температуры и расхода воды или воздуха, проходящих через аппарат.
При расчете конденсатора разность между температурой конденсации и средней температурой воды в кожухотрубном конденсаторе принимают 4…6 °С; разность температур конденсации и средней температуры окружающего воздуха в воздушном конденсаторе 11…17°С.
Перепад между температурами воды, выходящей из конденсатора и входящей в него, должен быть при оборотном водоснабжении 2…4 °С, при проточном водоснабжении 6…8°С.
С уменьшением температуры конденсации увеличивается холодопроизводительность установки. Однако при низких температурах и давлениях конденсации осложняется подача жидкого хладона в испарительную систему. Поэтому при очень низких температурах окружающей среды для поддержания давления конденсации не менее 0,4 МПа уменьшают расход воды, проходящей через конденсатор, а при воздушном охлаждении отключают вентиляторы конденсаторов.
Температура конденсации определяется по двухшкальному манометру, установленному на конденсаторе.
Верхний предел температуры конденсации для хладона-12 составляет 60 °С, а для хладона-22 — 40 °С.
Температура нагнетания компрессора. Она дает возможность с высокой точностью судить как о техническом состоянии установки, так и возникновении различного рода неполадок в ее работе.
Максимально допустимая температура нагнетания не должна превышать: 125 °С — для поршневых компрессоров, работающих на хладоне-12; 140 °С — на хладоне-22; 90 °С — для винтовых компрессоров.
Показатели нормальной работы хладоновой машины. При установившейся работе поршневого компрессора должны быть следующие показатели:
температура картера не должна превышать температуру воздуха машинного отделения более чем на 25…30 °С;
температура цилиндровых крышек должна быть близка к температуре нагнетательного трубопровода;
температура смазочного масла во время работы должна быть не выше 55 °С и может превышать температуру картера только на 3…4 °С;
температура сальника не должна превышать 60 °С;
система смазки должна обеспечивать разность давлений масла в сальнике и картере в пределах 0,05—0,15 МПа для низкооборотных компрессоров и 0,2—0,3 МПа — для высокооборотных;
уровень масла в картере должен поддерживаться на 3/4 высоты смотрового стекла.
Читайте также: Разборка компрессора скания 4
Основными причинами увеличения температуры отдельных частей компрессора являются поломка пластин нагнетательных клапанов; негерметичность байпаса или перепускного предохранительного клапана; задиры на поверхности гильзы или поломка поршневых колец; неплотность прилегания пластин нагнетательного клапана; нарушение возврата масла в картер; повышение перегрева пара хладагента, поступающего в компрессор; засорение рубашки компрессора или прекращение подачи охлаждающей воды; применение масла, не соответствующего техническим требованиям.
Компрессор должен работать без стука в шатунно-поршневой группе. Появление стука свидетельствует о неисправности самого компрессора: появление увеличенных зазоров, недостаточная величина мертвого пространства, поломка пластин или пружин клапанов или других деталей.
К появлению стуков может привести попадание в цилиндры жидкого хладона или масла.
При появлении стуков компрессор нужно немедленно остановить!
Видео:Почему обмерзает приемная(обратная) трубка компрессора холодильника.Скачать
Обслуживание холодильных установок: отклонения от оптимального режима работы
Большинство температур, которые характеризуют работу холодильных агрегатов, являются самоустанавливающимися, т.е. автоматика холодильных установок сама подбирает параметры работы системы согласно условиям работы оборудования:
- тепловой нагрузки на испарительную систему;
- производительности компрессора промышленной холодильной установки;
- величины теплообменных поверхностей;
- температуры окружающей среды.
Оптимальным называют такой режим работы холодильного оборудования, при котором создается наиболее благоприятный перепад температур между средами в теплообменниках. При обслуживании промышленных холодильных установок задачей персонала является наладка машин и создание таких внешних условий, чтобы самоустановленные системой параметры отвечали понятию оптимума, т.е. обеспечивали работу холодильной системы с минимальным расходом воды и электроэнергии, а также продолжительными межремонтными периодами. Эксплуатация промышленных холодильных агрегатов в режимах, отличных от оптимального, влияет на экономичность и безопасность холодильной системы.
Наиболее часто встречающимися отклонениями от оптимальной работы холодильной установки являются:
1) пониженная температура кипения хладагента;
2) повышенная температура нагнетания паров хладагента;
3) повышенная температура конденсации паров хладагента;
4) влажный ход компрессора.
Видео:Переохлаждение и Перегрев. Что это, для чего и зачем.Скачать
Опасность пониженной температуры кипения хладагента
При снижении температуры кипения на 1°С холодопроизводительность компрессора падает на 4-5%, а потребляемая установкой мощность увеличивается на 2-3%. Также понижение температуры кипения хладагента сверх оптимального уровня опасно угрозой замерзания хладоносителя в испарителе, высокой вероятностью усушки продукции, ухудшением смазки фреоновых компрессоров, а также подмораживанием охлажденных грузов вблизи от приборов охлаждения.
Причины понижения температуры кипения:
1. Повышенные теплопритоки, которые могут наблюдаться вследствие плохой изоляции охлаждаемых помещений, циркуляционного ресивера, испарителей для охлаждения хладоносителя и трубопроводов.
2. Недостаточная поверхность теплопередачи испарителя при данной тепловой нагрузке. Причинами такого несоответствия могут быть:
- неверный подбор теплообменных аппаратов;
- несоответствие производительности компрессоров и охлаждающих приборов;
- недостаток хладоносителя в панельном испарителе;
- плохое обслуживание холодильных установок (засорение трубопроводов и фильтров, снеговая шуба на внешней поверхности приборов охлаждения, замасливание их внутренней поверхности);
3. Ухудшение теплопередачи испарительного оборудования, которое может быть связано:
- с малым количеством хладагента в системе;
- со скоплением масла;
- с перебоями в работе вентиляторов воздухоохладителей;
- с загрязнением и коррозией теплообменных поверхностей.
Видео:Как найти всасывающий патрубок, если это не указано на маркировкеСкачать
Опасность повышения температуры нагнетания паров хладагента
Повышение температуры нагнетаемого уже на 5°С по сравнению с допустимой свидетельствует о таких неполадках в работе холодильной установки:
1. Большом перегреве на линии всасывания компрессора холодильной установки , которое может возникать при таких условиях:
- недостатке хладагента;
- большом сопротивлении или плохой изоляции всасывающего трубопровода;
- засорении парового фильтра на всасывании компрессора;
- плохой изоляции испарителя, циркуляционного ресивера или отделителя жидкости.
Читайте также: Компрессор ne6181e характеристики аналог
2. Неисправности компрессорного оборудования, а именно:
- сильном износе компрессорного цилиндра;
- негерметичном прилегании клапанов и их пластин, из-за чего пар перетекает из нагнетательной полости в полость всасывания или цилиндры;
- поломке нагнетательного клапана;
- несоответствующей вязкости или низком уровне масла в картере, из-за чего наблюдается сильное трение поршневых колец о стенки цилиндра;
- недостаточном охлаждении компрессора: плохой подачи воды в охлаждающую рубашку либо нарушении теплообмена через стенки рубашки из-за недостаточного обслуживания холодильных машин.
Видео:9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.Скачать
Опасность повышения температуры конденсации паров хладагента
При увеличении температуры конденсации на 1°С наблюдается уменьшение холодопроизводительности на 1-2% и возрастание расхода электроэнергии на 2-2,5%. Увеличение температуры конденсации свыше 40…50°С недопустимо.
Основными причинами, которые вызывают повышение температуры конденсации, являются:
- Неисправности в системе охлаждения, которые могут возникать из-за:
- неэффективной работы градирни;
- засорения водяных фильтров;
- недостаточного открытия водяных задвижек;
- низкой производительности или неисправности насосов;
- засорения форсунок испарительного конденсатора;
- низкой температуры окружающей среды в зимнее время при эксплуатации воздушных конденсаторов.
2. Ухудшение теплопередачи в конденсаторах в результате:
- неверного расчета количества работающих конденсаторов или уменьшения их поверхности (неправильный ремонт);
- переполнения конденсатора жидким холодильным агентом;
- присутствия в конденсаторе неконденсируемых примесей (воздуха, продуктов разложения масла);
- ухудшения теплообмена из-за загрязнения поверхности труб;
- плохого распределения охлаждающей воды из-за загрязнения форсунок и распределителей.
3. Дефекты водорегуляторов в автоматизированных холодильных установках.
Видео:Переохлаждение фреона в конденсаторном блоке.Скачать
Опасности влажного хода компрессорного оборудования
Одним из самых опасных режимов работы холодильной установки является влажный ход компрессора. При сжатии влажного пара происходит сильное охлаждение смеси, цилиндров и всей группы движения компрессора, в результате чего может возникнуть разрыв блока цилиндров (тепловой удар при резком охлаждении и гидравлический удар при чрезмерном повышении давления) и необходимость срочного ремонта поршневых компрессоров. Именно поэтому категорически запрещается впрыск жидкого хладагента в аммиачный компрессор.
Основными признаками влажного хода являются:
- отсутствие перегрева всасываемого пара;
- падение температуры нагнетания;
- обмерзание картера и цилиндров компрессора;
- изменение звука работы компрессора (вместо звонкого звука появляется глухой стук в клапанах и цилиндре).
Причинами попадания в компрессор влажного пара являются:
- Переполнение испарителя хладагентом, в т.ч. вследствие неисправности приборов автоматики.
- Вскипание жидкости в затопленных испарителях при резком скачке тепловой нагрузки или резком падении в них давления.
- Концентрация пара в трубопроводе всасывания при продолжительной стоянке или низкой температуре воздуха и плохой теплоизоляции трубопровода.
Таким образом, недостаточное техническое обслуживание холодильного оборудования в процессе их эксплуатации приводит к нарушению оптимальной работы холодильных установок и поломке холодильных агрегатов. Работающий с холодильным оборудованием персонал обязан иметь соответствующую квалификацию и должный навык работы с техникой. В ином случае для сервисного обслуживания холодильных установок необходимо привлекать специалистов из профильных компаний. Так сотрудники НПП «Холод» обеспечат качественное обслуживание холодильных агрегатов и составных частей, в т.ч. произведут техническое обслуживание компрессоров, теплообменных аппаратов, осуществят наладку системы. Также мы производим ремонт холодильных установок, модернизацию и реконструкцию холодильных систем, обучение персонала и оказываем иные услуги в области промышленного холода.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
- Правообладателям
- Политика конфиденциальности
🔥 Видео
Проверка кондиционера в автомобиле. Давления и температуры исправного автокондиционера.Скачать
Принцип действия всасывающего клапана (регулятора всасывания). Intake valve compressor. How it worksСкачать
Чиллер, запуск в работу и обнаружение новых неисправностейСкачать
Работа винтового компрессора, его принцип действия и устройство.Скачать
Система Кондиционирования Воздуха - Детально. Компрессор, Конденсатор, ТРВ, Испаритель, Фреон R407FСкачать
Перегрев и переохлаждениеСкачать
Провизионые Реф Установки - Боль для Механика если не знаешь ответы на эти вопросы.Скачать
Почему обмерзает обратка? Ремонт холодильников. Курсы холодильщиковСкачать
Принцип работы холодильной централиСкачать
Провизионные Реф Установки и Установки Кондиционирования воздуха. Обсуждение и Практические Советы.Скачать
Как ухаживать за компрессором? Обучающее видеоСкачать
Лекция 24. Особенности эксплуатации кондиционеров при низких температурах окружающей средыСкачать
Холодильный компрессор. Виды. ДиагностикаСкачать
24й кондиционер на 18 компрессоре он оф продолжениеСкачать