Рассмотрим рабочий цикл идеального поршневого компрессора. Под идеальным будем подразумевать компрессор, отвечающий следующим требованиям:
1) на пути движения газа в таком компрессоре отсутствуют гидравлические сопротивления, вследствие чего температура в периоды всасывания и нагнетания постоянна, а на всасывающих и нагнетательных рабочих клапанах отсутствуют перепады давления;
2) давление и температура газа под поршнем в период всасывания и нагнетания не изменяются;
3) после окончания процесса нагнетания в компрессоре не остается газа;
4) в компрессоре отсутствуют утечки газа через рабочие клапаны, в зазоре между поршнем и цилиндром;
5) затраты мощности на механическое трение отсутствуют.
Графическое изображение цикла в компрессоре представлено на рис. 10.3.
Рассмотрим течение процесса компримирования газа, начиная с момента начала его сжатия, т.е. когда поршень компрессора занимает положение 2, соответствующее крайнему правому положению. В этот момент параметры газа, находящегося в цилиндре, были р1, v1, Т1, объем газа в цилиндре V1, а приемный клапан компрессора закрыт.
При движении поршня влево начинается процесс сжатия газа, т.е. процесс изменения параметров состояния.
Процесс нагнетания характеризуется линией сжатия 1–2, являющейся в общем случае политропой сжатия. В точке 2 заканчивается процесс сжатия газа, а его рабочие параметры будут p2, v2, Т2 и объем газа в цилиндре V2. В связи с тем, что давление p2 при отсутствии сопротивления нагнетательных клапанов равно давлению в трубопроводе после компрессора, момент окончания сжатия газа совпадает с моментом открытия нагнетательного клапана и началом процесса нагнетания.
Линия 2–3 характеризует процесс нагнетания, т.е. процесс выталкивания газа в напорный трубопровод, и называется линией нагнетания. В точке 3 поршень компрессора достигает крайнего левого положения. Скорость его в этой точке wл=0, что приводит к закрытию нагнетательного клапана. С началом движения поршня вправо происходит снижение давления с р2 до p1 – давления в приемном трубопроводе, что характеризуется линией снижения давления 3–4.
В точке 4 давление под поршнем становится равным давлению в приемном трубопроводе. Этот момент совпадает с моментом открытия приемного клапана и началом процесса всасывания.
Линия 4–2, характеризующая процесс всасывания, т.е. процесс заполнения рабочего цилиндра газом, называется линией всасывания.
В точке 1 заканчивается процесс всасывания. Это совпадает c началом процесса сжатия 1–2, т.е. с началом нового цикла компрессора.
Теоретические основы работы поршневых компрессоров
Видео:9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.Скачать
Принцип работы поршневого компрессора.
Индикаторные диаграммы рабочих циклов поршневого компрессора.
Подача поршневого компрессора, факторы, влияющие на неё.
Многоступенчатое сжатие газа.
Поршневой компрессор — машина, предназначенная для преобразования энергии газа (пара, жидкости) с помощью поршня и обеспечивающая высокие давления нагнетания (до 40 МПа и выше).
Преимущества таких компрессоров — высокие значения к. п. д. и степени повышения давления цилиндров в одной ступени, максимальное давление сжатия газа, возможность эксплуатации в широком диапазоне изменения давлений компримируемого газа, возможность построения на базе одной модели различных компрессорных схем и сохранения мощности при изменении условий эксплуатации. Важное достоинство поршневых компрессоров — незначительная чувствительность к изменению плотности компримируемого газа. В то же время динамическая неуравновешенность от возвратно-поступательного компрессора оказывается причиной повышенной металлоемкости.
Для компримирования нефтяного и природного газов, а также воздуха, в районах с развитой системой электроснабжения применяют угловые и оппозитные поршневые компрессоры с приводом от электродвигателя.
Принципиальная схема поршневого компрессора (рис. 2.1) включает цилиндр 1, поршень 2, всасывающий 3 и нагнетательный 4 клапаны, шток 5 и кривошипно – шатунный механизм, состоящий из крейцкопфа 6, шатуна 7 и кривошипа 8.
Читайте также: Как должен работать компрессор в холодильнике бирюса
Рисунок 2.1 — Схема работы поршневого компрессора
Рабочий процесс в поршневом компрессоре осуществляется за четыре этапа:
1. расширение газа во вредном пространстве цилиндра компрессора (в клапанах и околоклапанном пространстве, в зазоре между крышкой цилиндра и плоскостью АА, соответствующей крайнему положению поршня);
2. всасывание (расширение и всасывание происходят при движении поршня от плоскости АА до плоскости ВВ на длине хода поршня s; при этом всасывающий клапан открывается не сразу, а лишь после того, как газ, находящийся во вредном пространстве цилиндра, расширится, и его давление станет меньше давления во всасывающей линии, в этот момент откроется клапан 3, и газ начнет поступать в цилиндр компрессора);
3. сжатие (происходит при движении поршня от плоскости ВВ до плоскости СС);
4. нагнетание (происходит при движении поршня от плоскости СС до плоскости АА; нагнетание газа в трубопровод начинается тогда, когда давление газа в цилиндре превысит давление в нагнетательной линии, в этот момент откроется клапан 4, и газ начнет поступать в трубопровод).
Видео:Теоретический цикл холдильной парокомпрессорной установки. Цикл Карно, обратный цикл Карно.Скачать
Характер изменения объема газа зависит от условий теплообмена между газом, деталями компрессора и окружающей средой. В зависимости от этого сжатие или расширение могут происходить:
— без теплообмена (адиабатический процесс); т. е. с нагревом газа при его сжатии;
— с частичным теплообменом (политропический процесс);
— с полным теплообменом (изотермический процесс) т. е. с сохранением одной и той же, постоянной при сжатии и расширении, температуры газа.
Как видно из определений, адиабатический и изотермический процессы являются частными случаями политропического процесса.
Политропический процесс изменения состояния идеального газа удовлетворяет уравнению:
где p – давление; V – объем газа; m – показатель политропы.
При адиабатических процессах m обозначается через k и называется показателем адиабаты. Показатель адиабаты определяется как отношение удельных (или молярных) теплоемкостей газа при постоянном давлении и объеме. Для одноатомных газов k = 1,67, для двухатомных k = 1,40 – 1,41, для многоатомных k = 1,2 – 1,3. При политропических процессах показатель политропы m может принимать значение от единицы до k и быть больше k. При изотермическом процессе m = 1.
При рассмотрении идеального цикла поршневого компрессора принимают следующие допущения:
1. Отсутствуют сопротивления движению потока газа (в том числе и в клапанах).
2. Давление и температура газа во всасывающей и нагнетательной линиях постоянны.
3. Давление и температура газа в период всасывания, так же как и в период выталкивания газа из цилиндра, не меняются.
4. Мертвое (вредное) пространство в цилиндре компрессора отсутствует.
5. Нет потерь мощности на трение и нет утечек газа.
Индикаторная диаграмма идеального цикла представлена на рис. 2.2. Процесс сжатия газа поршнем характеризуют кривые 1-2. При изотермическом процессе это будет кривая 1-2′», при адиабатическом 1-2″, а при политропическом 1-2 или 1-2″. Рассматривая политропический процесс 1-2, видим, что за этот период цикла, объем газа уменьшится с V1 до V2 давление изменится от р1 до р2, а температура -от Т1 до Т2. Далее идет нагнетание газа в трубопровод 2-3. Давление и температура газа остаются в этот период неизменными (p2 и T2). Весь объем газа V2 переходит в нагнетательный трубопровод. За период 3-4 в цилиндре снижается давление до давления во всасывающем трубопроводе (p1) закрывается нагнетательный клапан и с началом движения поршня вправо открывается всасывающий клапан. Период всасывания характеризуется линией 4-1. Здесь давление и температура газа равны р1 и T1, в цилиндр поступает объем газа, равный V1.
Видео:Холодильный компрессор | Как это устроено? | DiscoveryСкачать
Читайте также: Ремонт компрессор автомобиля в петербурге
Рисунок 2.2 – Индикаторная диаграмма идеального цикла поршневого компрессора
Рисунок 2.3 – Индикаторная диаграмма реального цикла поршневого компрессора
Рассмотрим реальный цикл работы поршневого компрессора. Процесс сжатия газа в цилиндре соответствует линии 1-2 на индикаторной диаграмме (рис. 2.3). В начальный момент сжатия относительно холодный газ получает тепло от нагретого цилиндра, вследствие чего процесс идет с подводом тепла к газу, и политропа отклоняется вправо от политропы идеального процесса (пунктирная линия). В конце процесса сжатия газа температура его повышается и становится больше температуры цилиндра и клапанов, и процесс сжатия идет с отводом тепла от газа. Политропа на этом участке отклоняется влево от политропы идеального процесса. Эти явления приводят к тому, что показатель реальной политропы процесса сжатия газа становится переменным, и расчет процесса надо вести по условному эквивалентному показателю политропы.
Понижение давления в цилиндре против давления во всасывающей линии (см. рис. 2.3, точка 1), в начале сжатия обусловлено сопротивлением потоку газа во всасывающем клапане. Повышение давления против давления в нагнетательном трубопроводе (точка 2) в конце сжатия обусловлено усилиями, затрачиваемыми на открытие нагнетательного клапана (сопротивление пружин клапана и инерция масс деталей клапана, приводимых в движение при его открытии). Процесс нагнетания соответствует линии 2-3. Повышенное, против идеального процесса, давление нагнетания обусловливается сопротивлениями потоку газа в нагнетательном клапане и подводящих каналах. Некоторая волнистость линии нагнетания обусловливается непостоянством сопротивлений потоку газа из-за изменений скоростей поршня и газа, пульсацией давления в газопроводе и вибрацией клапанных пластин.
За процессом нагнетания в реальном цилиндре идет процесс расширения газа, оставшегося в мертвом (вредном) пространстве под давлением р2» (линия 3-4). Объем вредного пространства Vм. Газ расширяется, снижая давление от р2» до р4 и увеличивая свой объем до V4. При этом поршень движется вправо. Процесс расширения заканчивается при открытии всасывающего клапана. Давление в цилиндре при этом будет ниже, чем во всасывающем трубопроводе, за счет усилий, затрачиваемых на открытие всасывающего клапана. Процесс расширения газа идет вначале с отбором тепла от сжатого газа, а затем с подводом тепла к газу, и потому показатель политропы будет не постоянен (так же как и при сжатии газа).
За процессом расширения идет всасывание газа (линия 4-1). Давление в цилиндре при этом будет ниже давления в подводящем трубопроводе за счет сопротивления движению потока газа в клапане и каналах. Колебание давления всасывания в цилиндре обусловлено теми же явлениями, которые наблюдаются и при нагнетании газа.
Работа, затрачиваемая на сжатие газа, в реальном цикле определяется площадью индикаторной диаграммы 1-2-3-4 (см. рис. 2.3).
Подачей компрессораназывают объем или массу газа, проходящего за единицу времени по линии всасывания или линии нагнетания компрессора. Расход газа на нагнетании всегда меньше, чем на всасывании, за счет утечек газа через неплотности.
Объемный расход газа обычно приводится к условиям всасывания (к давлению и температуре во всасывающей линии), нормальным условиям (давление 100 кПа и температура 293°К) или стандартным условиям (100 кПа и 293°К).
Потребителя интересует обычно количество газа, подаваемого ему от компрессора, приведенное к нормальным или стандартным условиям. Иногда эту подачу называют коммерческой.
Читайте также: Отключить компрессор кондиционера хендай
Подача компрессора с одним цилиндром одинарного действия (см. рис. 3.3)
Видео:Низкотемпературные машины. Лекция 3. Работа компрессоров и детандеров. Изоэнтропный процесс.Скачать
(2.1)
где ar w:top=»1134″ w:right=»850″ w:bottom=»1134″ w:left=»1701″ w:header=»720″ w:footer=»720″ w:gutter=»0″/> «> — коэффициент подачи, зависящий от многих факторов;
— объем описываемый поршнем за ход в одну сторону;
п — число двойных ходов поршня в минуту (с возвращением в исходное положение).
(2.2)
— объемный;
— герметичности;
— температурный;
— давления.
Видео:Поршневой компрессорСкачать
Объемный коэффициент отражает степень полноты использования объема цилиндра. Коэффициент герметичности это функция подачи компрессора от запаздывания закрытия клапанов, негерметичности уплотнений зазора между поршнем и цилиндром, уплотнений штоков у цилиндров двойного действия, негерметичности соединений рабочих каналов. Коэффициент герметичности обычно принимается в пределах 0,95. 0,98. Температурный коэффициент отражает влияние нагрева газа при всасывании за счет теплообмена с горячими стенками цилиндра и каналов. При нагреве увеличивается объем газа, находящегося в цилиндре, и уменьшается полезный объем газа, поступающего в цилиндр из всасывающего патрубка. Температурный коэффициент зависит от степени сжатия газа, поскольку от этого зависят температура нагнетаемого газа и температура стенок каналов и цилиндра. Коэффициент давления учитывает снижение подачи компрессора за счет уменьшения давления газа в цилиндре при всасывании по сравнению с давлением во всасывающем патрубке. В результате этого снижения давления газ расширяется, и в цилиндр входит меньшее его количество. На подачу влияет уменьшение давления не в начале, а в конце периода всасывания. Коэффициент давления обычно находится в пределах 0,95…0,98.
При необходимости сжимать газ до давления, превышающего 0,4…0,7 МПа по манометру, применяют многоступенчатое сжатие, сущность которого состоит в том, что процесс сжатия газа разбивается на несколько этапов или ступеней. В каждой из этих ступеней газ сжимается до некоторого промежуточного давления и перед тем как поступать в следующую ступень, охлаждается в межступенчатом холодильнике. В последней ступени газ дожимается до конечного давления. В современных компрессорах высокого давления число ступеней сжатия достигает семи.
Причины, заставляющие применять многоступенчатое сжатие, следующие;
— выигрыш в затраченной работе;
— ограничение температуры конца сжатия;
— более высокий коэффициент подачи.
Для уменьшения работы сжатия применяется ступенчатое сжатие газа с охлаждением его в охладителях, расположенных между ступенями компрессора.
В результате охлаждения газа устраняется и другая причина, обусловливающая применение ступенчатого сжатия, это недопустимое повышение температуры газа при большой степени повышения давления одноступенчатым компрессором. Температура на этапе сжатия газа не должна достигать значений, при которых происходит изменение свойств компрессорного масла. С повышением температуры газа вязкость масла уменьшается, ухудшаются условия смазки, и увеличивается износ трущихся деталей компрессора. При достижении температур порядка 180. 200°С масло разлагается, в результате чего поверхности деталей цилиндра компрессора и нагнетательная линия покрываются нагаром. Это ухудшает охлаждение компрессора и нарушает его нормальную работу (увеличивается трение между поршневыми кольцами и цилиндром, возможны поломки колец и задиры поверхности цилиндра, ухудшается работа клапанов, возникает опасность самовозгорания и взрыва в нагнетательной линии).
1. Принцип действия поршневого компрессора.
2. Условия сжатия газа в поршневых компрессорах. Политропный процесс.
3. Идеальная индикаторная диаграмма цикла поршневого компрессора.
4. Работа на сжатие единицы массы газа в компрессоре.
5. От чего зависит температура в конце процесса сжатия в одной ступени?
6. Производительность поршневых компрессоров.
7. Объемный коэффициент подачи поршневого компрессора.
8. Принцип получения высоких давлений в поршневых компрессорах.
Видео:Поршневой компрессорСкачать
🎬 Видео
11. ОСНОВЫ ТЕПЛОТЕХНИКИ. ПОЛУЧЕНИЕ ХОЛОДА. ЦИКЛЫ ХОЛОДИЛЬНЫХ МАШИН. Устройство холодильникаСкачать
1.3. Теоретический цикл паросиловой установки – цикл Ренкина. ТеплофикацияСкачать
Принцип работы холодильной машиныСкачать
Низкотемпературные машины. Лекция 2. Теоретический детандерСкачать
8. Основы теплотехники. Круговой процесс. Циклы ДВС. Цикл Карно. Характеристики циклов. Циклы ДВССкачать
Центробежный компрессорСкачать
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬСкачать
Переохлаждение и Перегрев. Что это, для чего и зачем.Скачать
Циклы паровых турбинСкачать
Теория ДВС: Офисное оборудование (часть 2) КомпрессорСкачать
Наддув ДВС. Как работает турбонаддув?Скачать
Лекция 3 Построение цикла кондиционера на диаграммеСкачать
Лекция 2 Принцип работы кондиционераСкачать
Низкотемпературные машины. Лекция 2. Индикаторная работа теоретического компрессораСкачать