Тепловой расчет компрессора это

Тепловой расчёт поршневого компрессора включает в себя определение коэффициентов подачи и описанных объёмов ступеней; определение температурных режимов ступеней и подбор смазочных материалов; подбор стандартизированных клапанов или расчёт клапанов; определение индикаторных мощностей ступеней и мощности на валу компрессора; подбор приводного двигателя. Приведённые примеры тепловых расчётов воздушного и холодильного компрессоров помогут в выполнении этого раздела.

Используя полученные в предыдущем разделе значения степеней повышения давлений в ступенях и величины межступенчатых давлений, определяют коэффициенты подачи в каждой ступени.

Составляющие коэффициента подачи определяют следующим образом. Задаются в соответствии с рекомендациями коэффициентами: дросселирования , подогрева , плотности . Рассчитывают коэффициенты подогрева и влажности . Объемный коэффициент подсчитывают по формуле

Задаются значением относительного объема аm для всех ступеней сжатия. По рекомендациям определяют значение показателя политропы конечных параметров m.

Коэффициенты подачи ступеней находят по уравнению

Результаты расчетов сводят в таблицу.

После этого приступают к определению основных размеров и параметров ступеней.

Объем, описываемый поршнем I ступени:

Температура всасывания i-й ступени (кроме первой) находится из соотношения Твсi = ТвсI + ΔТ (где ∆Т – недоохлаждение перед i-й ступенью, принимаемое равным 8 – 12 К).

Объем, описываемый поршнем i-й ступени

Затем задаются частотой вращения вала электродвигателя n0 (с учётом параметров прототипа или по общим рекомендациям).

Задаются средней скоростью поршня ст или определяют её расчётным путём: сm = 2Sпn0. Описанный объем цилиндра простого действия Vh = (π/4)D 2 Snn0. Тогда получают Vh = (π/8)D 2 сm или . Для цилиндра двойного действия с дисковым поршнем или для цилиндра с дифференциальным поршнем используют соответствующие зависимости для определения диаметров по известному описанному объёму.

Для каждой ступени значение D округляют до ближайшего стандартного размера диаметра цилиндра по ГОСТ 9515–8.

Рассчитывают полный ход поршня:

После округления значения хода поршня уточняют среднюю скорость поршня:

Если частота вращения коленчатого вала и ход поршня заимствовались из выбранного прототипа, то и средняя скорость поршня будет равна средней скорости поршня этого прототипа.

Проверяют значения Sп/DI и Sпn0 2 . Эти значения должны соответствовать современным тенденциям.

Уточняют описанные поршнями объемы после округления диаметров цилиндров (и хода поршня):

Проверяют производительность компрессора с учетом округления основных размеров цилиндра:

Согласно ГОСТ 23680–79 производительность компрессора не должна отличаться от номинальной не более чем на ± 5 %.

Основные размеры и параметры ступеней компрессора сводят в таблицу.

Далее определяют температуры нагнетания в каждой ступени.

Например, принимая, что сжатие воздуха происходит по адиабате (k = 1,4), находят температуру нагнетания:

Расчет сводится в таблицу.

Для воздушного компрессора допустимой является температура нагнетания до 454 К. В этом разделе с учётом рассчитанной температуры нагнетания и свойств рабочего газа необходимо подобрать смазочный материал для ступеней сжатия и для компрессора в целом.

Проектирование системы газораспределения чаще всего заключается в подборе самодействующих унифицированных клапанов по пропускной способности.

Основным критерием при подборе клапанов в рамках курсового проекта рассматривают допустимую относительную потерю мощности в клапанах ΔNкл/Nинд, которую выбирают по рекомендациям.

По выбранному допустимому значению ΔNкл/Nинд находят соответствующие значения критерия скорости F.

Скорость звука при условиях течения в клапане определится из выражения

где R – газовая постоянная, принимается по справочным данным.

Далее необходимо рассчитать допустимую условную эквивалентную скорость газа в клапане:

Затем определяют необходимое значение эквивалентной площади клапана:

Тепловой расчет компрессора это

где zкл – количество клапанов.

В каждой ступени в соответствии с полученной величиной суммарной эквивалентной площади клапанов всасывания и нагнетания и компоновочными возможностями ступени необходимо уточнить число и типоразмер клапанов в этой ступени.

Результаты расчётов сводят в таблицу.

Кроме определения геометрии проточной части клапанов, необходимо произвести расчёт пружин в клапанах.

Из уравнения неразрывности определяют скорректированное значение эквивалентной скорости газа в клапане и скорость звука:

Затем находят скорректированное значение критерия скорости газа в клапане:

По известному скорректированному значению критерия скорости F находят максимальное значение теоретической относительной потери давления в клапане æmах. Задаются величиной коэффициента мощности Θ = æп.о./æmax.

По известным значениям æmax и Θ находят минимальное значение относительного перепада давления в клапане, необходимого для преодоления силы упругости пружины в полностью открытом клапане:

Минимальный перепад давления, необходимый для полного открытия клапана, будет равен:

Находят отношение полной высоты подъема пластины к ширине прохода в щели h/b. Значения h и b приведены в справочных данных по характеристикам клапанов.

На основании полученного значения отношения h/b по графикам находят коэффициент давления потока ρр.

Затем рассчитывают приведенную силу упругости пружины:

Округляют значение приведенной силы упругости пружины до ближайшего номинального значения Впр.ном.

Определяют силу давления пружины на пластину клапана:

Результаты расчета сводят в таблицу.

После этого приступают к определению мощности привода компрессора.

Сначала определяют индикаторную мощность каждой ступени компрессора по методике, использующей упрощенную схематизированную диаграмму:

где Θ – коэффициент, учитывающий возвращение энергии в процессе расширения; .

Индикаторная мощность компрессора равна сумме индикаторных мощностей ступеней:

Значением механического КПД задаются по рекомендациям.

Эффективную мощность (мощность на валу компрессора) определяют по Nинд.к и ηмex:

Используя полученное значение Nе и принятую в расчёте частоту вращения подбирают электродвигатель и проверяют правильность задания n0 при определении основных размеров ступеней. В случае значительного расхождения уточняют основные размеры ступеней. Номинальная мощность электродвигателя должна превышать расчётную мощность на валу компрессора примерно на 20 % для компенсации возможных перегрузок компрессора.

При расчётах реальных газов [6, 9] необходимо учитывать их сжимаемость. Как известно, для реальных газов уравнение состояния записывается в виде

где ξ – коэффициент сжимаемости, определяемый по справочным данным [9].

При этом объёмный коэффициент определится из следующего соотношения:

где kТ – температурный показатель адиабаты [9].

Температура нагнетания при адиабатном сжатии рассчитывается по следующему выражению:

Индикаторная мощность ступени при сжатии реального газа может быть рассчитана по следующему соотношению:

где Θ – коэффициент, учитывающий возвращение энергии в процессе расширения; ; – показатель избытка работы в адиабатическом цикле; ; здесь – показатель отклонения сжимаемости в начальной, конечной и средней точках адиабаты [9].

Видео:Тепло компрессорных установок / Тепловыделение компрессора, рекуперация теплаСкачать

Тепло компрессорных установок / Тепловыделение компрессора, рекуперация тепла

Расчет компрессоров. Подбор компрессорного оборудования

Видео:Тепловой насос : выбираем компрессор и отчего зависит СОРСкачать

Тепловой насос : выбираем компрессор и отчего зависит СОР

Общее описание по расчету и подбору компрессорных устройств

Несмотря на тот факт, что компрессорному оборудованию поршневого типа уже более 200 лет, компрессорные устройства широко применяются лишь последние сто лет. Области их использования распространяются на бытовые сферы деятельности людей, такие как снабжение сжатым воздухом пневматических инструментов, а также и на профессиональную область: снабжение сжатым газом промышленных отделений, выпуск высокомощных холодильных установок и т.д. Показатели технических характеристик позволяют сделать необходимые предварительные выводы о компрессорном устройстве, которое планируется для применения на практике. Данные характеристики очень важны для проектирования и расчета компрессора, полезны при подборке инструментов, пневматического оборудования и связанного с ними источника энергии.

Компрессоры широко используются в промышленности для транспортировки различных сред и представляют собой механическое устройство, которое сжимает рабочую среду в газообразной форме. Существует много типов компрессоров, поэтому надлежащий подбор и расчет компрессоров необходимы, чтобы удовлетворить требования, предъявляемые промышленной областью применения к данному виду оборудования.

Обычно процесс сжатия рабочей среды происходит в компрессоре либо при помощи вращающихся лопастей, либо в цилиндрах при помощи поршней. Компрессоры с вращательными узлами используются для потока с большим объемным расходом и невысоким давлением нагнетания, в то время как поршневые компрессоры требуются для случаев создания высокого давления. Существует еще много рабочих параметров, которые нужно учитывать, включая действующие нормы и стандарты. Таким образом, подбор компрессора – это важная процедура, требующая учета многих факторов.

Для правильного подбора компрессора, необходимо понимать, для каких целей он будет применяться, а также необходимо получить расчетные параметры, такие как давление, температура, производительность и пр., определить тип компрессора.

Данные о газе, требуемой производительности, давлении на всасе и температуре на всасе, а также давлении на нагнетании являются одними из основных параметров для подбора компрессора.

Подбор компрессоров опирается на термодинамику как базовую теорию сжатия газа, сравнение нескольких типов компрессоров, теорию расчета и подбора, а также формулы для расчета компрессора. Имеется несколько уравнений для расчета компрессора. Чтобы наглядно представить теорию расчета. Примерный опросный лист для подбора компрессора можно найти по ссылке http://ence.ch/ru/about/query/.

Видео:9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.Скачать

9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.

Выбор компрессорного оборудования. Тип компрессора

Остановимся на основных шагах выбора компрессорного оборудования.

Компрессор – это устройство, которое используется для увеличения давления сжимаемой среды путем уменьшения удельного объема среды во время ее прохождения через компрессор. Уровень давления на входе и выходе варьируются от глубокого вакуума до избыточного давления в зависимости от потребностей технологического процесса. Это одно из главных условий, под которые подбирают тип и конфигурацию компрессора. Компрессоры обычно подразделяют на две больших подгруппы: динамические и объемные. Для одной области применения могут быть подобраны разные типы компрессоров, которые могут лучше подходить для конкретного применения, учитывая специфику их конструкции.

Видео:CFD Расчет характеристики компрессора (Общие рассуждения)Скачать

CFD Расчет характеристики компрессора (Общие рассуждения)

Свойства рабочей среды. Сжатие газов

В компрессоре могут быть сжаты различные газы. Необходимо предоставить термодинамические свойства газа или сжимаемой газовой смеси, для того, чтобы поставщик мог надлежащим образом рассчитать компрессорный агрегат. При выполнении расчета компрессора необходим полный состав газа, название газа, а также его химическую формулу. В спецификации компрессора должен быть указан анализ газа с перечислением названий каждого компонента, молекулярного веса, точки кипения и т.д. Эти данные очень важны, так как являются определяющими для многих параметров компрессора. Соотношение между основными параметрами газа (давлением, температурой и объемом) называется уравнением состояния газа.

Читайте также: Натяжитель ремня компрессора маз

Наиболее простое уравнение состояния газа – это уравнение состояния идеального газа.

где:
P — давление,
V — молярный объём,
R — универсальная газовая постоянная,
T —температура.

Это уравнение применяется только к газу, температура которого намного выше критической температуры, или давление намного ниже, чем критическое давление. Воздух при атмосферных условиях подчиняется этому закону.

Реальный газ отличается от идеального фактором называемым сжимаемостью («Z»). Понятие «сжимаемость» используют в термодинамике для пояснения отклонения термодинамических свойств реальных газов от свойств идеальных газов.

Значение «Z» — функциональная зависимость состава газа и его давления и температуры.

Это уравнение верно, если и только если «Z» определено. «Z» может быть рассчитано с адекватной точностью во многих случаях при использовании закона соответственных состояний:

Часто удобно использовать одно уравнение для расчета значения «Z».

Существуют много уравнений, наиболее простое — это уравнение состояния Редлиха — Квонга.

Другие уравнения более точные для широкого диапазона газов и условий, но более сложные.

Наиболее часто используемые для расчета производительности компрессора — это уравнение состояния Соаве-Редлиха-Квонга, уравнение состояния Пенга-Робинсона, уравнение Бенедикта-Вебба-Рубина, Старлинга-Хана, методы API и другие.

Коэффициент сжимаемости Z можно рассчитать на компьютере для чистых газов или их смесей, используя готовые общие таблицы сжимаемости газов на основе отношения фактических и критических значений температуры и давления, имеющиеся в доступе в различных источниках.

Параметры газа также можно найти с помощью диаграмм состояния, таблиц термодинамических свойств конкретного газа или из соответствующего уравнения состояния.

Видео:Переохлаждение и Перегрев. Что это, для чего и зачем.Скачать

Переохлаждение и Перегрев. Что это, для чего и зачем.

Термодинамика. Расчеты.

Термодинамика – это отрасль науки, которая занимается тепловой энергией. Это основа инжиниринга, которая позволяет понять механизм преобразования энергии. Теория процесса сжатия изначально определяется первым и вторым законом термодинамики.

Первый закон термодинамики.

Первый основной принцип термодинамики гласит: энергия не может быть ни создана, ни разрушена, она может быть только изменена из одной формы в другую.

Уравнение энергии для фиксированной массы газа гласит, что увеличение энергии газа равняется работе, совершаемой по отношению к газу, минус тепло, отводимое от газа во внешнюю среду. В компрессоре можно не учитывать изменения в потенциальной и химической энергии. В тех областях применения, где используется уравнение энергии для фиксированной массы газа, можно не принимать в расчет кинетическую энергию. Тогда уравнение энергии будет выглядеть так:

Если мы рассматриваем контрольный объем, то должны учитывать работу совершаемую газом, который входит и выходит из контрольного объема. При этом в большинстве случаев там, где используется это уравнение, необходимо учитывать кинетическую энергию газа, который входит и покидает контрольный объем. Уравнение энергии тогда примет такой вид:

Для стационарного процесса не будет изменений в условиях в контрольном объеме и E2 = E1.

Уравнения изоэнтропического изменения указаны выше. Они применяются к любому изменению во время, которого нет потерь и нет отвода тепла к газу. Изменение свойств можно взять из диаграммы Молье для газа или если газ является идеальным газом, то по уравнениям приведенным выше:

Закон для потока несжимаемой среды через ограничение:

m = F · √ ((2 · ρ · ∆P) ) · √ (32,18/144)

F — площадь эффективного потока, то есть геометрическая площадь потока.

Для идеального газа, если перепад давления низок настолько, что поток дозвуковой как это должно быть в поршневых компрессорах, перепад давления выражается:

В термодинамике, система может классифицироваться как изолированная, закрытая или открытая опираясь на передачу массы и энергии в рамках границ системы. Система, в которой нет ни передачи вещества, ни энергии по ее границам с внешней средой называется изолированной. Закрытая система не имеет передачи массы с внешней средой, но может передавать энергию (либо тепло или работу) внешней среде. Открытая система — это система, в которой вещество и энергия могут передаваться вдоль ее границ. Когда переменные системы, такие как температура, давление, или объем меняются, говорят о том, что система находится в термодинамическом процессе. Существуют различные виды термодинамических процессов:

1. изобарический процесс (означает, что объем увеличивается, в то время как давление постоянное)
2. изохорический процесс (процесс с постоянным объемом, означает, что работа совершаемая системой равна 0. Все тепло остается в системе.)
3. изотермический процесс (предполагается, что сжимаемый газ остается при постоянной температуре во время сжатия или расширения. Внутреннее тепло удаляется из системы с такой же скоростью, что и добавляется от механической работы процесса сжатия.)
4. адиабатический процесс (предполагается, что во время сжатия газа энергия или тепло не передаются к газу или от газа)
5. изоэнтропический процесс (адиабатический процесс, который обратимый)
6. обратимый и необратимый процесс

Тепловой поток можно ограничить при помощи термически изолирующего материала вокруг системы, либо если проводить процесс так быстро, что тепловой поток не успеет образоваться.

Ниже представлена диаграмма различных типов термодинамических процессов описанных выше:

Тепловой расчет компрессора это

Видео:Как высчитать производительность компрессора!Скачать

Как высчитать производительность компрессора!

Процесс сжатия

Степень сжатия (R) – это отношение давления на нагнетании к давлению на всасе:

R = Pd/Ps (где значения Pd и Ps являются абсолютными).
У одноступенчатого компрессора только одно значение R.
У двухступенчатого компрессора 3 значения R.

R = общая степень сжатия компрессора
R1 = степень сжатия первой ступени
R2 = степень сжатия второй ступени.

Ps – давление всасывания
Pd – давление на нагнетании
Pi –давление между ступенями

При сжатии газа в компрессоре доступный для молекул объем становится меньше, в результате чего расстояние между молекулами уменьшается. Т.к в фиксированном объеме количество молекул газа увеличивается, то его масса и плотность этого фиксированного объема также увеличиваются. Увеличение плотности влечет за собой увеличение давления.

На рисунке ниже вертикальная линия от точки 1 до точки 2’ представляет изоэнтропический процесс сжатия, который требует минимальной работы по сжатию от Р1 до Р2. Фактический процесс сжатия следует траектории от точки 1 вверх и вправо по направлению к увеличивающейся энтропии, заканчиваясь у точки 2 на изобаре для Р2.

Тепловой расчет компрессора это

Работа, совершаемая в компрессоре, идет на увеличение давления газа, на увеличение температуры газа и на тепло, отводимое из компрессора. В большинстве случаев требование заключается в увеличении давления газа с наименьшей затратой мощности. Если процесс сжатия адиабатический, тогда между компрессором и внешней средой нет передачи тепла, тогда меньше работы будет совершаться, когда процесс изоэнтропический. Это предполагает, что нет потерь в компрессоре что, по сути, является недостижимой целью, но это можно брать за основу для индикаторного коэффициента полезного действия сжатия. Изоэнтропийный КПД компрессора определяется как работа по сжатию газа в изоэнтропическом процессе, поделенном на фактическую работу, используемую, для сжатия газа. КПД компрессора часто указывается как изоэнтропийный КПД.

Однако невозможно изготовить компрессор с изоэнтропийным КПД больше чем 100%. Совершаемая работа в обратимом изотермическом процессе меньше той, которая совершается в изоэнтропическом процессе. В обратимом изотермическом процессе температура газа поддерживается равной температуре на всасе при помощи обратимой передачи тепла во время сжатия. В таком процессе не должно быть потерь, однако потребляемая мощность больше почти всегда, чем изоэнтропическая мощность и поэтому изоэнтропический КПД обычно используется для классифицирования компрессоров.

Существующие два принципиальных типа компрессоров: объемные и динамические, отличающиеся по принципу сжатия рабочей среды. Объемные компрессоры сжимают газ путем удерживания значительных объемов газа в закрытом пространстве с последующим уменьшением объема. Сжатие происходит, когда в рабочую камеру машины поступает определенный объем газа, и происходит последующие уменьшение внутреннего объема рабочей камеры.

Другой тип компрессора — динамический компрессор, сжимает газ путем механического воздействия вращающихся лопастей или импеллера, передавая скорость и давление. Больший диаметр импеллера, больший молекулярный вес газа или большая скорость вращения будут производить большее давление. Обычно объемные компрессоры подбирают для небольших объемов газа и больших коэффициентов давления. Динамические компрессоры подбирают для больших объемов газа и меньших коэффициентов давления.

Видео:Как узнать производительность компрессора на ВЫХОДЕ. Часть 2.4.1Скачать

Как узнать производительность компрессора на ВЫХОДЕ. Часть 2.4.1

Базовые стадии подбора компрессора могут включать

1. расчет степени сжатия.
2. выбор между одноступенчатым компрессором и многоступенчатым.
3. расчет температуры на нагнетании.
4. определение объемной производительности.
5. определение требуемого рабочего объема.
6. выбор модели компрессора.
7. определение минимального крутящего момента выбранного компрессора.
8. выбор фактического крутящего момента.
9. расчет фактического рабочего объема.
10. расчет требуемой мощности.
11. подбор подходящих опций.
12.подбор надлежащего компрессора.

Видео:Расчет во FlowVision. Винтовой компрессорСкачать

Расчет во FlowVision. Винтовой компрессор

Технические характеристики компрессорного оборудования

Среди наиболее важных технических характеристик компрессорного оборудования следует выделить следующие:

  • давление воздуха при выпуске в атмосферах или барах. Более популярные в быту модели компрессорного оборудования производят давление лишь от 6 до 8 бар, промышленные же компрессорные устройства способны создать давление воздуха в 25 бар. Давление означает то, что та или иная модель компрессора способна создавать определенное внутреннее давление и нагнетать в герметичную полость воздушную массу. Показатель создаваемого давления определяется классом и мощностью компрессорного агрегата. В быту нет необходимости использовать компрессор, который может создать сверхвысокое давление, достаточно будет небольшой машины с рабочим давлением до 10 бар. Крупное же предприятие не всегда может работать на таких значениях, здесь нужны более мощные компрессорные машины или установки. Рабочее давление компрессора является средней величиной между максимальным давлением, при котором останавливается процесс нагнетания, и минимальным давлением в системе, вновь запускающим компрессор. Как правило, между остановкой и включением компрессора в работу разница давлений составляет в 2 бара. Исходя из данного показателя, все компрессоры подразделяются на компрессорные машины низкого, среднего и высокого давления. Не каждый компрессор имеет достаточную мощность для сжатия воздуха при создании высокого давления, ведь только мощные поршневые устройства способны достигать показателей давления в 30 атмосфер. Их винтовые аналоги до столь высоких планок не дотягиваются;
    Давление на входе / на выходе. В спецификации компрессора необходимо указывать наименьшее значение давления газового потока на входе. Это необходимо для того, чтобы гарантировать производительность компрессора.
    Давление может быть абсолютным или избыточным, при указании данных необходимо делать соответствующую пометку в спецификации. Необходимо также указывать единицы измерения для указываемого давления.
  • Температура на входе. На температуру на входе влияют объемный расход, требования по напору и потребляемая мощность. Поэтому необходимо указывать также максимальную температуру на входе.
  • Температура на нагнетании. Температура на нагнетании (Td) зависит от температуры на входе, коэффициента сжатия, значения удельной теплоемкости газа и кпд сжатия. Эта температура важна для механического проектирования компрессора, выбора ступени сжатия, а также расчета охладителя и трубопроводов.
    Температура на нагнетании компрессора напрямую оказывает влияние на срок службы поршневых колец и клапанов. Ниже представлена формула для расчета температуры на нагнетании для одноступенчатого компрессора с воздушным охлаждением:

Есть отрасли промышленности, например, пищевая отрасль, которые не могут допустить в сжатом воздухе наличие посторонних примесей. Поэтому в этих случаях при подборе компрессорной установки предпочтение отдаётся не мощностным характеристикам, а конструктивным особенностям в исполнении компрессора. Технические параметры компрессоров в подобных случаях должны соответствовать требованиям, предъявляемым к чистоте сжатого воздуха, сжатие которого должно протекать в устройстве, исключающем использование масла для смазки его рабочих поверхностей.

Видео:Устройство и принцип работы винтового компрессораСкачать

Устройство и принцип работы винтового компрессора

Конструктивные особенности компрессорного оборудования

К конструктивным особенностям компрессора можно отнести:

  1. вид приводного устройства. Им может быть как двигатель внутреннего сгорания, так и электродвигатель;
  2. количество ступеней, используемых для процесса сжатия воздуха. Эта характеристика имеет смысл и важность при выборе поршневых компрессоров, так как позволяет проводить сжатие газа не в одном, а в нескольких цилиндрах последовательно;
  3. система охлаждения (маслом, воздухом, водой).
  4. мобильность. Компрессоры могут быть установлены как стационарно, на специальном фундаменте, так и располагаться на прицепе для их упрощённой транспортировки;
  5. компоновка узлов. Все составные комплектующие элементы компрессорного устройства могут монтироваться как на раме, так и на ресивере;
  6. размещение ресивера: вертикальное и горизонтальное.

Питание от сети также не следует упускать из расчета при выборе компрессора, поскольку не все предприятия автосервисов, где делают монтаж шин, располагают источником тока с напряжением 380 вольт. В отдельных случаях даже подача напряжения в 220 вольт может идти нестабильно.

Выбор компрессора связан непосредственно с предварительным расчетом выше названных технических характеристик. Прежде, чем приступить к расчету характеристик компрессора, следует осветить некоторые тонкости. Перекачиваемая компрессорным устройством за единицу времени масса воздуха является величиной постоянной, зависящей напрямую от особенностей конструктивного исполнения компрессора. Но принято, что производительность определяют объемные величины, а не массовые. Этот факт часто ведёт к путанице в расчетах и, соответственно, к ошибкам в уже произведенных расчетах.

Это обусловлено тем, что воздух подвергается сжатию, как и все газы. Из-за этого одна и та же масса воздуха способна занять разный объем, что зависит от значений давления и температуры. Точную взаимосвязь между этими величинами объясняет сложная степенная зависимость или уравнение политропы. Компрессорное устройство наполняет ресивер, давление в котором растёт, а его объемная производительность падает. Получается, что объемная подача компрессора является переменной величиной. Какая же величина указывается тогда в технических характеристиках на компрессорное устройство?

По ГОСТу производительность компрессора исчисляется объемом воздуха на выходе из него, в пересчете на физические условия в процессе всасывания. Как правило, физические условия на входе в компрессор типичны для нормальных условий работы: температура составляет 20 °С, давление — 1 бар. По ГОСТу также допускается отклонение фактических показателей компрессорного устройства на ±5% от тех показателей, которые указаны в паспортных данных на этот компрессор.

При этом производят также перерасчет параметров потребителей сжатого воздуха, чтобы они были согласованы с характеристиками компрессорного устройства. Если, например, номинальный расход данного устройства составляет 100 литров/минуту, то это означает, что при рабочем давлении пневматический инструмент за одну минуту потребляет то количество воздуха, которое при нормальных условиях заняло бы объем в 100 литров.

Производители компрессорного оборудования за границей не ознакомлены с предписаниями российских ГОСТов и рассчитывают производительность своей продукции иным способом, что обычно приводит к ошибкам. Данные из технических паспортов на их компрессорную технику содержат параметры теоретической производительности устройства (производительности по всасыванию).

Теоретическая производительность компрессорного устройства определяется геометрическим объемом поместившегося в его рабочую полость воздуха за один период всасывания. Затем этот объём умножается на количество периодов (циклов) за единицу времени. Эта теоретическая производительность выше, чем фактическая производительность компрессорного устройства. Разница между теоретической и фактической производительностью компенсируется за счет коэффициента производительности (Кпр), который зависит от условий всасывания и от особенностей конструктивного исполнения компрессорного устройства (потерь на клапанах: всасывающих и нагнетательных, наличия не до конца вытесненного объёма), которые способствуют уменьшению наполнения цилиндра (в случае с поршневым компрессором). Коэффициент производительности у компрессоров промышленного исполнения составляет от 0,6 до 0,8.

Разница в расчетах теоретической и фактической производительности, произведенных на входе и на выходе, может достигать существенной величины. При указании в технической характеристике теоретической производительности на компрессорное устройство следует пересчитать эти данные на производительность на выходе устройства, а значит, уменьшить её показатель на 30-40%.

Видео:рекуперация тепла компрессор CompAirСкачать

рекуперация тепла компрессор CompAir

Проектирование компрессора

В спецификации компрессора обязательно должно быть указано максимально допустимое рабочее давление. Эти данные наряду с максимально допустимой температурой используются производителями компрессоров для того, чтобы изготовить корпус и основные рабочие части компрессора, способные выдержать максимально допустимое давление и температуру. Для центробежных и осевых компрессоров максимально допустимое давление корпуса рассчитывается на компьютере путем добавления максимального давления на входе к максимальному дифференцированному давлению, которое может возникнуть в компрессоре при наиболее сложной комбинации условий. Для цилиндров поршневых и корпуса винтовых компрессоров максимально допустимое давление должно превышать номинальное давление на нагнетании на 10% или 25 psi в зависимости от того, какая из величин больше больше.

Максимально допустимая температура для центробежных и осевых компрессоров должна быть максимальной температурой на нагнетании, достигаемой при работе компрессора, и включать некоторый допуск. Максимально допустимая температура для цилиндров поршневых компрессоров и корпуса винтовых компрессоров должна превышать номинальную температуру на нагнетании.

Видео:Как узнать производительность компрессор? ВидеоСкачать

Как узнать производительность компрессор? Видео

Трубопроводные фланцы и номинальное значение

Присоединительные размеры трубопроводов, номинальное значение фланцев и их вид должны быть указаны в спецификации для всех входов и выходов компрессора. Уплотнение вала и штока плунжера также должно быть указано в спецификации.

Видео:Работа винтового компрессора, его принцип действия и устройство.Скачать

Работа винтового компрессора, его принцип действия и устройство.

Система смазки и смазочное масло

Прямая функция этих систем – прежде всего, предоставлять бесперебойную подачу чистой и охлаждающей смазочной жидкости для подшипников и уплотнений компрессора, зубчатых передач и привода. Это важные системы для компрессоров, поэтому расчет этих систем должен быть четко прописан в спецификации.

Видео:Компрессор ECO AE-1004-22, устранил причину отключения (срабатывания теплового реле)Скачать

Компрессор ECO AE-1004-22, устранил причину отключения (срабатывания теплового реле)

Материальное исполнение

Сжимаемые газы могут повлиять на выбор материалов компрессора, особенно это касается частей, соприкасающихся со средой. Так, например, при сжатии H2S может произойти сероводородное растрескивание высокопрочных материалов. Подходящими для такой работы будут материалы, прошедшие термическую обработку после изготовления с устойчивостью к деформации не ниже 90000 psi.

Видео:Тепловой насос для загородного дома. | Эффективность теплового насоса. | Тепловой насос отзывы !!!Скачать

Тепловой насос для загородного дома. | Эффективность теплового насоса. | Тепловой насос отзывы !!!

Технологические ступени сжатия

Степень сжатия (R) – это отношение давления на нагнетании (Р2) к давлению всасывания (Р1) в компрессоре, Р2/Р1. Когда требуется сжатие до высокого давления, расчет компрессора предполагает наличие нескольких ступеней сжатия, в некоторых случаях между ступенями сжатия требуются охладители для отвода тепла, которое возникает в процессе сжатия. Дополнительные ступени сжатия требуются, например:

  • для снижения температуры в конце сжатия каждой ступени, применяя промежуточное охлаждение до приемлемого уровня, чтобы обеспечить надлежащую работу компрессора.
  • для снижения температуры на входе ступени сжатия чтобы в свою очередь понизить напор, требуемый для достижения заданного коэффициента сжатия.
  • для обеспечения ограничений по дифференциальному давлению и коэффициенту сжатия различных типов компрессоров, например ограничения по осевой нагрузке у центробежных компрессоров, по предельному напряжению штока поршня у поршневых компрессоров, осевой нагрузки у винтовых компрессоров.
  • чтобы понизить идущую на привод компрессора потребляемую мощность для процесса сжатия за счет работы промежуточных охладителей между ступенями и чтобы удерживать температуру в безопасных пределах.

Видео:Производительность компрессора.Скачать

Производительность компрессора.

Выбор одноступенчатого или многоступенчатого компрессора

Выбор надлежащего количества ступеней сжатия в основном базируется на степени сжатия.

Температуры на нагнетании и режим работы также учитывают при определении количества ступеней. Ниже представлен пример подбора количества ступеней сжатия.

Сравнение одноступенчатого и двухступенчатого компрессора, которые применяются для одинаковой рабочей среды в одинаковых условиях (одинаковая производительность, газ и давление):

Как и во многих инженерных решениях, необходимо найти компромисс между изначальными расходами и рабочими расходами и издержками на техническое обслуживание.

1. Для начала необходимо произвести расчет всех потребителей воздуха Q, л/минуту.
С этой целью суммируется расход потребляемого воздуха ото всех его потребителей. Это делается на основании их характеристик из паспортных данных, что даёт величину Q (л/мин), представляющую собой объём воздуха, который потребляет пневматическая система. Эта величина близка к максимальному показателю, если планируется использование большого количества потребителей. Она может быть уменьшена на коэффициент загрузки, так как не всегда все потребители воздуха будут одновременно в работе. Задача – ввести коррекцию на уменьшение, которая обеспечит запас воздуха в пневматической системе – это личный выбор каждого владельца компрессорного агрегата.

2. Следующий параметр для расчета — производительность компрессора A (л/мин).
Многие ошибки в расчетах заключаются в неправильном определении величины A и понимании производительности компрессорного устройства. Все фирмы-производители компрессорных устройств указывают под данной величиной в своих технических паспортах или каталогах максимальное потребление воздуха на входе в компрессор. Эту величину нельзя применять как производительность компрессорного устройства на выходе, поскольку данная величина не учитывает КПД компрессорного устройства и его конструктивные отличительные признаки. В связи с этим расчет производительности компрессорной машины следует осуществлять следующим образом:

где
Q — суммарный объем воздуха, который потребляют все потребители пневматической системы в целом, измеряемый в литрах/минуту;
β — коэффициент, который закладывает производитель для учета конструктивных особенностей своего компрессорного оборудования;
η — КПД компрессорного устройства.
В качестве справочной информации ниже приведены значения β и η для работы компрессорного устройства в диапазоне рабочих давлений от 6 до 8 бар.

3. Не менее важным параметром при выборе компрессорного устройства является выбор объема ресивера V (л). Производители компрессорного оборудования рекомендуют при выборе величины объема ресивера предусматривать её в следующем диапазоне A:

Выбор правильного ресивера, а также увеличение его объема способствуют компенсации и сглаживанию давления, что, в свою очередь, делает пневматическую систему более гибкой в отношении восприятия нагрузок.

4. При подборе компрессора по давлению придерживаются правила, что создаваемое компрессорным устройством давление должно быть выше давления, на котором работают потребители сжатого воздуха. Любой компрессор накачивает воздух до максимального рабочего давления Рмакс., а затем отключается. Повторно компрессор включается уже при падении давления до Рмин. Разница между максимальным и минимальным давлениями компрессорного устройства составляет 2 бара.

5. Продолжая тему подбора компрессорного устройства, важно определиться с его назначением: решить, как и для каких целей будет использоваться данное устройство. Важно определить продолжительность его постоянной работы, максимальный объем необходимого сжатого воздуха, рабочее давление и прочие подобные технические характеристики, о которых уже шла речь выше.

Тип компрессора: вот тот показатель, от которого в полной мере зависят все остальные выше названные характеристики. Просчитав все суммарные потребляемые мощности, можно делать выводы. В случае, когда требуется компрессор для краскопульта или иного пневматического инструмента с небольшим рабочим давлением, лучшим вариантом будет компрессор поршневого типа. Если идет речь о больших мощностях и нескольких потребителях воздуха, следует задуматься о таких компрессорных машинах, как винтовые или спиральные. Не следует забывать и о расстоянии, на которое будет подаваться пневматическая среда, т.е. сжатый воздух.

6. На компрессорные характеристики, особенно на показатели мощности, также влияют такие факторы, как местоположение над уровнем моря, температура окружающей среды и атмосферное давление. Чем выше нахождение над уровнем моря, тем ниже параметры температуры и давления окружающего воздуха. При эксплуатации воздушного компрессора в таких условиях следует учитывать это обстоятельство, поскольку эти условия оказывают влияние на показатели производительности компрессорного устройства и на номинальный расход сжатого воздуха. Поэтому если компрессорное устройство будет эксплуатироваться на большой высоте, то характеристики его производительности на выходе будут определенным образом отличаться от указанных в техническом паспорте характеристик.

Известно, что воздух на высоте разряжается, а это приводит к ухудшению охлаждения электродвигателя воздушного компрессора и его комплектующих частей, которые подвержены нагреву. Двигатель работает с номинальными характеристиками на максимальной высоте 1000 м над уровнем моря и температуре макс. 40°С (См. таблицу ниже, в которой указано, как ведут себя различные двигатели, в зависимости от высоты и температуры). Некоторые типы компрессорных устройств оснащены электродвигателями, которым на большой высоте свойственна потеря мощности. Соответственно, на вал компрессора также подаётся пониженная мощность.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    📽️ Видео

    Тепловой насос своими рукамиСкачать

    Тепловой насос своими руками

    Лекция 3 Основы рабочего процесса ВРД. Часть 1 Работа ступени осевого компрессораСкачать

    Лекция 3 Основы рабочего процесса ВРД. Часть 1 Работа ступени осевого компрессора

    Лекция 3 Построение цикла кондиционера на диаграммеСкачать

    Лекция 3  Построение цикла кондиционера на диаграмме

    ВСЯ ПРАВДА о эффективности теплового насоса. Виды тепловых насосов и их правильное подключение.Скачать

    ВСЯ ПРАВДА о эффективности теплового насоса. Виды тепловых насосов и их правильное подключение.

    Воздушный ресивер для компрессоров. Кратко о том, что такое воздухосборник и для чего он нужен.Скачать

    Воздушный ресивер для компрессоров. Кратко о том, что такое воздухосборник и для чего он нужен.
Поделиться или сохранить к себе:
Технарь знаток