Тепловыделения от воздушных компрессоров

Вентиляционная система в компрессорной должна соответствовать нормативным документам, главным из которых является СНиП 41-01-2003. Ведь неправильный воздухообмен способен негативно влиять на человеческое здоровье и на контрольно-измерительную технику. Правильно смонтированная вентиляция в компрессорной способна повысить эксплуатационный период оборудования, создать благоприятный микроклимат для обслуживающего персонала.

Содержание
  1. Вентиляция компрессорной: виды и их особенности
  2. Естественная аэрация
  3. Принудительная аэрация
  4. Расчетные данные для монтажа вентиляционной системы компрессорного цеха
  5. Особенности расчетов
  6. Основы обустройства вентиляционной системы компрессорной станции
  7. Тепловыделения от воздушных компрессоров
  8. Расчет компрессоров. Подбор компрессорного оборудования
  9. Общее описание по расчету и подбору компрессорных устройств
  10. Выбор компрессорного оборудования. Тип компрессора
  11. Свойства рабочей среды. Сжатие газов
  12. Термодинамика. Расчеты.
  13. Процесс сжатия
  14. Базовые стадии подбора компрессора могут включать
  15. Технические характеристики компрессорного оборудования
  16. Конструктивные особенности компрессорного оборудования
  17. Проектирование компрессора
  18. Трубопроводные фланцы и номинальное значение
  19. Система смазки и смазочное масло
  20. Материальное исполнение
  21. Технологические ступени сжатия
  22. Выбор одноступенчатого или многоступенчатого компрессора

Видео:Какой компрессор лучше: безмасляный, ременный или коаксиальныйСкачать

Какой компрессор лучше: безмасляный, ременный или коаксиальный

Вентиляция компрессорной: виды и их особенности

Важно! Вентиляционная система должна быть обустроена с учетом особенностей компрессорного оборудования, которое способно нагревать возле себя температуру воздуха до 40 градусов в холодное время года и более 60 градусов в летнюю жару. Также, при обустройстве вентиляции следует учитывать специфику оборудования, климатические особенности региона.

Естественная аэрация

Этот вид воздухообмена основывается на физических законах: холодный воздух с большой массой находится внизу помещения, теплый – более легкий, поднимается вверх. Следуя этому утверждению не сложно определить, что подогретый компрессором воздух будет направляться вверх и скапливаться именно вверху сооружения, вот оттуда его и необходимо удалять.

Естественная аэрация должна обеспечивать поступление свежих воздушных масс как можно ближе к полу, а выводить их показано как можно ближе к потолку.

При монтаже природного воздухообмена необходимо:

  • размещать компрессорную установку на линии движения воздушных масс, как можно ближе к приточному отверстию;
  • устанавливать приточные и вытяжные отверстия таким образом, чтобы воздушный поток охватывал все помещение;
  • мощность компрессорной установки. Естественная вентиляционная система пригодна для использования лишь в тех помещениях, в которых установлен компрессор мощностью не более 16 кВт;
  • работоспособность системы в разное время года. Эффективность природного потока воздуха при температуре менее 2 градусов тепла существенно снижается. Вентиляционные клапаны даже могут замерзнуть при минусовых показателях.

Важно! Для повышения эффективности естественной аэрации устанавливается на приточный канал специальная заслонка, которая является специфической регулировкой поступления воздушных масс в помещение.

Принудительная аэрация

Принудительная вентиляция используется для производств, которые применяют компрессоры более 16 кВт. Механическая вентиляция в компрессорной может также применятся и с оборудованием меньшей мощности в том случае, если:

  • из-за небольших вентиляционных каналов естественный воздухообмен не выполняет своих функций;
  • в цеху находится не один источник тепла;
  • помещение небольшого размера.

Принцип работы принудительного воздухообмена заключается в установке вентилятора, который управляется термостатом. Производительность вентилятора нацелена на предотвращение падения давления в воздуховоде. Количество свежего притока должно подавлять рост температуры в помещении в пределах 10 градусов.

Обустроить принудительную вентиляцию в компрессорном цехе можно, если установить воздуховод на выходное отверстие компрессора. В том месте, откуда выходит теплый воздух. Соединение элементов происходит с помощью эластичного кожуха, снижающего вибрацию и шум.

При использовании компрессорной установки в холодное время года целесообразно устанавливать вентиляционный воздуховод с закрывающейся заслонкой. Это позволит устранить неприятные явления, которые приносят низкие температура, а именно замерзание или образование инея.

Видео:Как выбрать компрессор для гаража или строительства?Скачать

Как выбрать компрессор для гаража или строительства?

Расчетные данные для монтажа вентиляционной системы компрессорного цеха

Важно! Приточный канал должен быть надежно защищен от попадания сторонних предметов. С целью обеспечения безопасности используется решетка.

В случае использования компрессоров производительностью не более 10 м3/мин забор воздуха можно производить непосредственно в цеху.

Видео:Рейтинг ТОП-5 воздушных компрессоров | Лучшие в соотношении цена-качество в 2023 годуСкачать

Рейтинг ТОП-5  воздушных компрессоров | Лучшие в соотношении цена-качество в 2023 году

Особенности расчетов

Объем очищаемого воздуха компрессорной станции должен соответствовать объему помещения. Рассчитывается этот показатель по формуле: V=a*b*h, где a- длина, b – ширина, h – высота помещения. При этом высота компрессорного помещения в соответствии с требованиями Госгортехнадзора №36 от 26.02.2009 должна обеспечиваться свыше 4 м.

Вентиляция в компрессорной сжатого воздуха регулируется ВСН 21-77, в соответствии с которым расчетные данные зависят от тепловыделения оборудования. Данные о потребности компрессора в холодном воздухе можно посмотреть в техническом паспорте оборудования.

Тепловыделения от воздушных компрессоров

Воздухосборники должны быть металлическими

Методика расчета поперечного сечения воздуховода для создания эффективной вентиляционной системы принципиально имеет такое выражение:

Поперечное сечение = поток охлаждающего воздуха (указан в паспорте к оборудованию)/скорость движения воздушных масс*3600.

К примеру, для компрессора необходим поток свежего воздуха 6300 м3/час при движении масс в 5м/с. Поперечное сечение =6300/5*3600=0,35 м2. Таким образом, воздуховод для такого компрессора должен иметь поперечное сечение 0,35 м2.

Видео:Воздушный компрессор. ЕСЛИ БЫ Я ЭТО ЗНАЛ, то давно бы уже КУПИЛ FoxWeld aero 220/24. ЖКВ СаморучкаСкачать

Воздушный компрессор. ЕСЛИ БЫ Я ЭТО ЗНАЛ, то давно бы уже КУПИЛ FoxWeld aero 220/24. ЖКВ Саморучка

Основы обустройства вентиляционной системы компрессорной станции

В соответствии с СН 245-63 компрессорные станции должны быть оборудованы естественной вентиляционной системой, а также механизмами принудительного воздухообмена. Вентиляционная система должна обеспечивать микроклимат, показатели которого соответствуют нормам. Компрессоры устанавливаются в помещении высотой более 4 м и со свободным к ним доступом для выполнения ремонтных работ. Расстояние между компрессорами должно быть не менее 1,5 м.

Естественная вентиляция монтируется по принципу приточно-вытяжной системы. Кроме вентиляционных шахт необходимо обеспечить открытие окон наружу. Монтаж воздухосборников для компрессорного цеха выполняется с наружной стороны здания. Они монтируются из стали толщиной до 20 мм и являют собой емкости в 2 м3.

Обустройство вентиляционной системы в компрессорном цеху является нелегкой задачей. Для создания эффективной вентиляции необходимо провести точные расчеты и только затем можно приступать к выполнению монтажных работ. Подачу притока свежих воздушных масс стоит предусматривать с наружной стороны здания. Лучше всего отказаться от монтажа слишком длинного воздуховода. Воздухозаборное отверстие должно быть закрыто от попадания мусора в систему. Внутри необходимо установить регулирующую заслонку, которая позволит контролировать подачу холодного потока в зимний период.

Видео:Тепло компрессорных установок / Тепловыделение компрессора, рекуперация теплаСкачать

Тепло компрессорных установок / Тепловыделение компрессора, рекуперация тепла

Тепловыделения от воздушных компрессоров

Тепловыделения от воздушных компрессоров

Группа: Участники форума
Сообщений: 4029
Регистрация: 13.3.2005
Из: Череповец — СПБ — Воронеж — Геленджик
Пользователь №: 543

Здравствуйте.
Моя ситуация:
1 помещение компрессорной станции
2 станция не обслуживаемая (без персонала)
3 решил совместить вентиляцию с отоплением (большие тепловыделения)
4 кстати, определение тепловыделений тоже вызывает вопрос. мощность двигателей составляет 1600х4 кВт. Формулы для определения процента тепловыделений дают очень большой возможный диапазон. Решил условно для зимы 2,5%, для лета 5%
5 есть аккумуляторные установки. они имеют размеры (шкаф 2х2х4) Планировал организовать местный отсос над шкафом + общеобм приток + общеобм вытяжка.
6 на общеобм приоке и вытяжке вентагрегаты сдублированы
7 часть общеобм вытяжки естественная
8 на летний период вентиляция машзала с компрессорами — принудительная аэрация (крышные вентиляторы) + общеобменная приточка с организацией подсоса воздуха через проёмы.
9 на зимний период вентиляция машзала с компрессорами с 80% рециркуляцией (перераспределение телоты по помещениям)

10 + Помогите сорентироваться. Сколько примерно времени на выполнение этого силами одного человека.
хотелось бы обсудить. вроде и ветка для этого.

Тепловыделения от воздушных компрессоров

Группа: Участники форума
Сообщений: 314
Регистрация: 10.11.2004
Из: Москва
Пользователь №: 250

Вы точно не перепутали. 1600 кВт да еще 4 установки. Максимальная мощьность оборудования, которое я встречал, была какая-то молотилка 300 кВт. Так тоже долго думал, какие тепловыделения принять. Не могу себе представить, как 300 кВт в тепловую энергию могут перейти. Если это произойдет, то в районе этой молотилки температура повыситься градусов до 80.

А по времени, смотря какой проект хотите сделать. Тут же ведь как в сказке где барин шапки заказывал из шкуры. Одну сможешь сделать? Смогу. А две? Смогу. А пять? Смогу. А десять? Тоже смогу. В итоге у барина на голове десять мааленьких шапочек. Так и у нас. За пол года сможешь? Смогу. А за месяц? Смогу. А за неделю? Смогу. Правда на проект уже не очень похоже получается.

Не сказано главное — компрессорная чего — газа, аммиака, сжатого воздуха?

От этого идут все решения. По каждой технологии есть свои Правили безопасности и производственной санитарии. А также нормы технологического проектирования. Все это надо разыскивать.

Мощность 1600 квт — для компрессоров дело обычное. БОльшая часть мощности переходит в работу сжатия среды. А процент тепла — в НТП.

Но имеет значение режим работы. Все ли сразу работают. Обычно компрессора такой мощности вообще нельзя никогда останавливать. Но технология может быть всякая.

Далее надо учитывать возможность аварийной остановки. Перерыв электроснабжения. Хоть это наверняка должен быть объект 1 категории, в России все бывает.

Через сальники всегда бывают утечки среды. Если это не сжатый воздух — может быть взрыв или пожар. В НТП должна указываться необходимость аварийной вентиляции.

Конструкция вентиляции зависит от среды. Может потребоваться вариант с эжекторами.

То есть в данном случае — прежде всего разобраться с технологией. Искать нормы и проекты аналоги хотя бы. Поэтому конкретных советов не даю — могут «под монастырь» подвести.

Ну, а зная, что чертить — сделать можно быстро. Неделя.

Видео:Как выбрать компрессор?Скачать

Как выбрать компрессор?

Расчет компрессоров. Подбор компрессорного оборудования

Видео:ШОК 😱! На что Способен Безмасляный Компрессор DWT | Тест компрессор для гаражаСкачать

ШОК 😱! На что Способен Безмасляный Компрессор DWT | Тест компрессор для гаража

Общее описание по расчету и подбору компрессорных устройств

Несмотря на тот факт, что компрессорному оборудованию поршневого типа уже более 200 лет, компрессорные устройства широко применяются лишь последние сто лет. Области их использования распространяются на бытовые сферы деятельности людей, такие как снабжение сжатым воздухом пневматических инструментов, а также и на профессиональную область: снабжение сжатым газом промышленных отделений, выпуск высокомощных холодильных установок и т.д. Показатели технических характеристик позволяют сделать необходимые предварительные выводы о компрессорном устройстве, которое планируется для применения на практике. Данные характеристики очень важны для проектирования и расчета компрессора, полезны при подборке инструментов, пневматического оборудования и связанного с ними источника энергии.

Компрессоры широко используются в промышленности для транспортировки различных сред и представляют собой механическое устройство, которое сжимает рабочую среду в газообразной форме. Существует много типов компрессоров, поэтому надлежащий подбор и расчет компрессоров необходимы, чтобы удовлетворить требования, предъявляемые промышленной областью применения к данному виду оборудования.

Обычно процесс сжатия рабочей среды происходит в компрессоре либо при помощи вращающихся лопастей, либо в цилиндрах при помощи поршней. Компрессоры с вращательными узлами используются для потока с большим объемным расходом и невысоким давлением нагнетания, в то время как поршневые компрессоры требуются для случаев создания высокого давления. Существует еще много рабочих параметров, которые нужно учитывать, включая действующие нормы и стандарты. Таким образом, подбор компрессора – это важная процедура, требующая учета многих факторов.

Читайте также: Hgx6 1410 4s компрессор bock

Для правильного подбора компрессора, необходимо понимать, для каких целей он будет применяться, а также необходимо получить расчетные параметры, такие как давление, температура, производительность и пр., определить тип компрессора.

Данные о газе, требуемой производительности, давлении на всасе и температуре на всасе, а также давлении на нагнетании являются одними из основных параметров для подбора компрессора.

Подбор компрессоров опирается на термодинамику как базовую теорию сжатия газа, сравнение нескольких типов компрессоров, теорию расчета и подбора, а также формулы для расчета компрессора. Имеется несколько уравнений для расчета компрессора. Чтобы наглядно представить теорию расчета. Примерный опросный лист для подбора компрессора можно найти по ссылке http://ence.ch/ru/about/query/.

Видео:ОБЫЧНЫМ КОМПРЕССОРОМ больше не пользуюсь! Безмасляный компрессор Sturm AC936100OLE!Скачать

ОБЫЧНЫМ КОМПРЕССОРОМ больше не пользуюсь! Безмасляный компрессор Sturm AC936100OLE!

Выбор компрессорного оборудования. Тип компрессора

Остановимся на основных шагах выбора компрессорного оборудования.

Компрессор – это устройство, которое используется для увеличения давления сжимаемой среды путем уменьшения удельного объема среды во время ее прохождения через компрессор. Уровень давления на входе и выходе варьируются от глубокого вакуума до избыточного давления в зависимости от потребностей технологического процесса. Это одно из главных условий, под которые подбирают тип и конфигурацию компрессора. Компрессоры обычно подразделяют на две больших подгруппы: динамические и объемные. Для одной области применения могут быть подобраны разные типы компрессоров, которые могут лучше подходить для конкретного применения, учитывая специфику их конструкции.

Видео:Компрессор HYC 1824S обзорчик и модернизацияСкачать

Компрессор HYC 1824S обзорчик и модернизация

Свойства рабочей среды. Сжатие газов

В компрессоре могут быть сжаты различные газы. Необходимо предоставить термодинамические свойства газа или сжимаемой газовой смеси, для того, чтобы поставщик мог надлежащим образом рассчитать компрессорный агрегат. При выполнении расчета компрессора необходим полный состав газа, название газа, а также его химическую формулу. В спецификации компрессора должен быть указан анализ газа с перечислением названий каждого компонента, молекулярного веса, точки кипения и т.д. Эти данные очень важны, так как являются определяющими для многих параметров компрессора. Соотношение между основными параметрами газа (давлением, температурой и объемом) называется уравнением состояния газа.

Наиболее простое уравнение состояния газа – это уравнение состояния идеального газа.

где:
P — давление,
V — молярный объём,
R — универсальная газовая постоянная,
T —температура.

Это уравнение применяется только к газу, температура которого намного выше критической температуры, или давление намного ниже, чем критическое давление. Воздух при атмосферных условиях подчиняется этому закону.

Реальный газ отличается от идеального фактором называемым сжимаемостью («Z»). Понятие «сжимаемость» используют в термодинамике для пояснения отклонения термодинамических свойств реальных газов от свойств идеальных газов.

Значение «Z» — функциональная зависимость состава газа и его давления и температуры.

Это уравнение верно, если и только если «Z» определено. «Z» может быть рассчитано с адекватной точностью во многих случаях при использовании закона соответственных состояний:

Часто удобно использовать одно уравнение для расчета значения «Z».

Существуют много уравнений, наиболее простое — это уравнение состояния Редлиха — Квонга.

Другие уравнения более точные для широкого диапазона газов и условий, но более сложные.

Наиболее часто используемые для расчета производительности компрессора — это уравнение состояния Соаве-Редлиха-Квонга, уравнение состояния Пенга-Робинсона, уравнение Бенедикта-Вебба-Рубина, Старлинга-Хана, методы API и другие.

Коэффициент сжимаемости Z можно рассчитать на компьютере для чистых газов или их смесей, используя готовые общие таблицы сжимаемости газов на основе отношения фактических и критических значений температуры и давления, имеющиеся в доступе в различных источниках.

Параметры газа также можно найти с помощью диаграмм состояния, таблиц термодинамических свойств конкретного газа или из соответствующего уравнения состояния.

Видео:Основная Поломка и Особенности Ремонта Китайского КомпрессораСкачать

Основная Поломка и Особенности Ремонта Китайского Компрессора

Термодинамика. Расчеты.

Термодинамика – это отрасль науки, которая занимается тепловой энергией. Это основа инжиниринга, которая позволяет понять механизм преобразования энергии. Теория процесса сжатия изначально определяется первым и вторым законом термодинамики.

Первый закон термодинамики.

Первый основной принцип термодинамики гласит: энергия не может быть ни создана, ни разрушена, она может быть только изменена из одной формы в другую.

Уравнение энергии для фиксированной массы газа гласит, что увеличение энергии газа равняется работе, совершаемой по отношению к газу, минус тепло, отводимое от газа во внешнюю среду. В компрессоре можно не учитывать изменения в потенциальной и химической энергии. В тех областях применения, где используется уравнение энергии для фиксированной массы газа, можно не принимать в расчет кинетическую энергию. Тогда уравнение энергии будет выглядеть так:

Если мы рассматриваем контрольный объем, то должны учитывать работу совершаемую газом, который входит и выходит из контрольного объема. При этом в большинстве случаев там, где используется это уравнение, необходимо учитывать кинетическую энергию газа, который входит и покидает контрольный объем. Уравнение энергии тогда примет такой вид:

Для стационарного процесса не будет изменений в условиях в контрольном объеме и E2 = E1.

Уравнения изоэнтропического изменения указаны выше. Они применяются к любому изменению во время, которого нет потерь и нет отвода тепла к газу. Изменение свойств можно взять из диаграммы Молье для газа или если газ является идеальным газом, то по уравнениям приведенным выше:

Закон для потока несжимаемой среды через ограничение:

m = F · √ ((2 · ρ · ∆P) ) · √ (32,18/144)

F — площадь эффективного потока, то есть геометрическая площадь потока.

Для идеального газа, если перепад давления низок настолько, что поток дозвуковой как это должно быть в поршневых компрессорах, перепад давления выражается:

В термодинамике, система может классифицироваться как изолированная, закрытая или открытая опираясь на передачу массы и энергии в рамках границ системы. Система, в которой нет ни передачи вещества, ни энергии по ее границам с внешней средой называется изолированной. Закрытая система не имеет передачи массы с внешней средой, но может передавать энергию (либо тепло или работу) внешней среде. Открытая система — это система, в которой вещество и энергия могут передаваться вдоль ее границ. Когда переменные системы, такие как температура, давление, или объем меняются, говорят о том, что система находится в термодинамическом процессе. Существуют различные виды термодинамических процессов:

1. изобарический процесс (означает, что объем увеличивается, в то время как давление постоянное)
2. изохорический процесс (процесс с постоянным объемом, означает, что работа совершаемая системой равна 0. Все тепло остается в системе.)
3. изотермический процесс (предполагается, что сжимаемый газ остается при постоянной температуре во время сжатия или расширения. Внутреннее тепло удаляется из системы с такой же скоростью, что и добавляется от механической работы процесса сжатия.)
4. адиабатический процесс (предполагается, что во время сжатия газа энергия или тепло не передаются к газу или от газа)
5. изоэнтропический процесс (адиабатический процесс, который обратимый)
6. обратимый и необратимый процесс

Тепловой поток можно ограничить при помощи термически изолирующего материала вокруг системы, либо если проводить процесс так быстро, что тепловой поток не успеет образоваться.

Ниже представлена диаграмма различных типов термодинамических процессов описанных выше:

Тепловыделения от воздушных компрессоров

Видео:Воздушный компрессор. Тест реальной производительности (3/3)Скачать

Воздушный компрессор. Тест реальной производительности (3/3)

Процесс сжатия

Степень сжатия (R) – это отношение давления на нагнетании к давлению на всасе:

R = Pd/Ps (где значения Pd и Ps являются абсолютными).
У одноступенчатого компрессора только одно значение R.
У двухступенчатого компрессора 3 значения R.

R = общая степень сжатия компрессора
R1 = степень сжатия первой ступени
R2 = степень сжатия второй ступени.

Ps – давление всасывания
Pd – давление на нагнетании
Pi –давление между ступенями

При сжатии газа в компрессоре доступный для молекул объем становится меньше, в результате чего расстояние между молекулами уменьшается. Т.к в фиксированном объеме количество молекул газа увеличивается, то его масса и плотность этого фиксированного объема также увеличиваются. Увеличение плотности влечет за собой увеличение давления.

На рисунке ниже вертикальная линия от точки 1 до точки 2’ представляет изоэнтропический процесс сжатия, который требует минимальной работы по сжатию от Р1 до Р2. Фактический процесс сжатия следует траектории от точки 1 вверх и вправо по направлению к увеличивающейся энтропии, заканчиваясь у точки 2 на изобаре для Р2.

Тепловыделения от воздушных компрессоров

Работа, совершаемая в компрессоре, идет на увеличение давления газа, на увеличение температуры газа и на тепло, отводимое из компрессора. В большинстве случаев требование заключается в увеличении давления газа с наименьшей затратой мощности. Если процесс сжатия адиабатический, тогда между компрессором и внешней средой нет передачи тепла, тогда меньше работы будет совершаться, когда процесс изоэнтропический. Это предполагает, что нет потерь в компрессоре что, по сути, является недостижимой целью, но это можно брать за основу для индикаторного коэффициента полезного действия сжатия. Изоэнтропийный КПД компрессора определяется как работа по сжатию газа в изоэнтропическом процессе, поделенном на фактическую работу, используемую, для сжатия газа. КПД компрессора часто указывается как изоэнтропийный КПД.

Однако невозможно изготовить компрессор с изоэнтропийным КПД больше чем 100%. Совершаемая работа в обратимом изотермическом процессе меньше той, которая совершается в изоэнтропическом процессе. В обратимом изотермическом процессе температура газа поддерживается равной температуре на всасе при помощи обратимой передачи тепла во время сжатия. В таком процессе не должно быть потерь, однако потребляемая мощность больше почти всегда, чем изоэнтропическая мощность и поэтому изоэнтропический КПД обычно используется для классифицирования компрессоров.

Существующие два принципиальных типа компрессоров: объемные и динамические, отличающиеся по принципу сжатия рабочей среды. Объемные компрессоры сжимают газ путем удерживания значительных объемов газа в закрытом пространстве с последующим уменьшением объема. Сжатие происходит, когда в рабочую камеру машины поступает определенный объем газа, и происходит последующие уменьшение внутреннего объема рабочей камеры.

Другой тип компрессора — динамический компрессор, сжимает газ путем механического воздействия вращающихся лопастей или импеллера, передавая скорость и давление. Больший диаметр импеллера, больший молекулярный вес газа или большая скорость вращения будут производить большее давление. Обычно объемные компрессоры подбирают для небольших объемов газа и больших коэффициентов давления. Динамические компрессоры подбирают для больших объемов газа и меньших коэффициентов давления.

Читайте также: Как компрессором выкачать воду

Видео:Воздушный компрессор HDC HD-A101, лучший из лучших и недорогой!!Скачать

Воздушный компрессор HDC HD-A101, лучший из лучших и недорогой!!

Базовые стадии подбора компрессора могут включать

1. расчет степени сжатия.
2. выбор между одноступенчатым компрессором и многоступенчатым.
3. расчет температуры на нагнетании.
4. определение объемной производительности.
5. определение требуемого рабочего объема.
6. выбор модели компрессора.
7. определение минимального крутящего момента выбранного компрессора.
8. выбор фактического крутящего момента.
9. расчет фактического рабочего объема.
10. расчет требуемой мощности.
11. подбор подходящих опций.
12.подбор надлежащего компрессора.

Видео:ВОЗДУШНЫЙ КОМПРЕССОР ДЛЯ ДОМА И ГАРАЖА - ОПТИМАЛЬНЫЙ РАЗМЕР И ОБЪЕМ.Скачать

ВОЗДУШНЫЙ КОМПРЕССОР ДЛЯ ДОМА  И ГАРАЖА  -  ОПТИМАЛЬНЫЙ РАЗМЕР И ОБЪЕМ.

Технические характеристики компрессорного оборудования

Среди наиболее важных технических характеристик компрессорного оборудования следует выделить следующие:

  • давление воздуха при выпуске в атмосферах или барах. Более популярные в быту модели компрессорного оборудования производят давление лишь от 6 до 8 бар, промышленные же компрессорные устройства способны создать давление воздуха в 25 бар. Давление означает то, что та или иная модель компрессора способна создавать определенное внутреннее давление и нагнетать в герметичную полость воздушную массу. Показатель создаваемого давления определяется классом и мощностью компрессорного агрегата. В быту нет необходимости использовать компрессор, который может создать сверхвысокое давление, достаточно будет небольшой машины с рабочим давлением до 10 бар. Крупное же предприятие не всегда может работать на таких значениях, здесь нужны более мощные компрессорные машины или установки. Рабочее давление компрессора является средней величиной между максимальным давлением, при котором останавливается процесс нагнетания, и минимальным давлением в системе, вновь запускающим компрессор. Как правило, между остановкой и включением компрессора в работу разница давлений составляет в 2 бара. Исходя из данного показателя, все компрессоры подразделяются на компрессорные машины низкого, среднего и высокого давления. Не каждый компрессор имеет достаточную мощность для сжатия воздуха при создании высокого давления, ведь только мощные поршневые устройства способны достигать показателей давления в 30 атмосфер. Их винтовые аналоги до столь высоких планок не дотягиваются;
    Давление на входе / на выходе. В спецификации компрессора необходимо указывать наименьшее значение давления газового потока на входе. Это необходимо для того, чтобы гарантировать производительность компрессора.
    Давление может быть абсолютным или избыточным, при указании данных необходимо делать соответствующую пометку в спецификации. Необходимо также указывать единицы измерения для указываемого давления.
  • Температура на входе. На температуру на входе влияют объемный расход, требования по напору и потребляемая мощность. Поэтому необходимо указывать также максимальную температуру на входе.
  • Температура на нагнетании. Температура на нагнетании (Td) зависит от температуры на входе, коэффициента сжатия, значения удельной теплоемкости газа и кпд сжатия. Эта температура важна для механического проектирования компрессора, выбора ступени сжатия, а также расчета охладителя и трубопроводов.
    Температура на нагнетании компрессора напрямую оказывает влияние на срок службы поршневых колец и клапанов. Ниже представлена формула для расчета температуры на нагнетании для одноступенчатого компрессора с воздушным охлаждением:

Есть отрасли промышленности, например, пищевая отрасль, которые не могут допустить в сжатом воздухе наличие посторонних примесей. Поэтому в этих случаях при подборе компрессорной установки предпочтение отдаётся не мощностным характеристикам, а конструктивным особенностям в исполнении компрессора. Технические параметры компрессоров в подобных случаях должны соответствовать требованиям, предъявляемым к чистоте сжатого воздуха, сжатие которого должно протекать в устройстве, исключающем использование масла для смазки его рабочих поверхностей.

Видео:Воздушный компрессор с высокой производительностьюСкачать

Воздушный компрессор с высокой производительностью

Конструктивные особенности компрессорного оборудования

К конструктивным особенностям компрессора можно отнести:

  1. вид приводного устройства. Им может быть как двигатель внутреннего сгорания, так и электродвигатель;
  2. количество ступеней, используемых для процесса сжатия воздуха. Эта характеристика имеет смысл и важность при выборе поршневых компрессоров, так как позволяет проводить сжатие газа не в одном, а в нескольких цилиндрах последовательно;
  3. система охлаждения (маслом, воздухом, водой).
  4. мобильность. Компрессоры могут быть установлены как стационарно, на специальном фундаменте, так и располагаться на прицепе для их упрощённой транспортировки;
  5. компоновка узлов. Все составные комплектующие элементы компрессорного устройства могут монтироваться как на раме, так и на ресивере;
  6. размещение ресивера: вертикальное и горизонтальное.

Питание от сети также не следует упускать из расчета при выборе компрессора, поскольку не все предприятия автосервисов, где делают монтаж шин, располагают источником тока с напряжением 380 вольт. В отдельных случаях даже подача напряжения в 220 вольт может идти нестабильно.

Выбор компрессора связан непосредственно с предварительным расчетом выше названных технических характеристик. Прежде, чем приступить к расчету характеристик компрессора, следует осветить некоторые тонкости. Перекачиваемая компрессорным устройством за единицу времени масса воздуха является величиной постоянной, зависящей напрямую от особенностей конструктивного исполнения компрессора. Но принято, что производительность определяют объемные величины, а не массовые. Этот факт часто ведёт к путанице в расчетах и, соответственно, к ошибкам в уже произведенных расчетах.

Это обусловлено тем, что воздух подвергается сжатию, как и все газы. Из-за этого одна и та же масса воздуха способна занять разный объем, что зависит от значений давления и температуры. Точную взаимосвязь между этими величинами объясняет сложная степенная зависимость или уравнение политропы. Компрессорное устройство наполняет ресивер, давление в котором растёт, а его объемная производительность падает. Получается, что объемная подача компрессора является переменной величиной. Какая же величина указывается тогда в технических характеристиках на компрессорное устройство?

По ГОСТу производительность компрессора исчисляется объемом воздуха на выходе из него, в пересчете на физические условия в процессе всасывания. Как правило, физические условия на входе в компрессор типичны для нормальных условий работы: температура составляет 20 °С, давление — 1 бар. По ГОСТу также допускается отклонение фактических показателей компрессорного устройства на ±5% от тех показателей, которые указаны в паспортных данных на этот компрессор.

При этом производят также перерасчет параметров потребителей сжатого воздуха, чтобы они были согласованы с характеристиками компрессорного устройства. Если, например, номинальный расход данного устройства составляет 100 литров/минуту, то это означает, что при рабочем давлении пневматический инструмент за одну минуту потребляет то количество воздуха, которое при нормальных условиях заняло бы объем в 100 литров.

Производители компрессорного оборудования за границей не ознакомлены с предписаниями российских ГОСТов и рассчитывают производительность своей продукции иным способом, что обычно приводит к ошибкам. Данные из технических паспортов на их компрессорную технику содержат параметры теоретической производительности устройства (производительности по всасыванию).

Теоретическая производительность компрессорного устройства определяется геометрическим объемом поместившегося в его рабочую полость воздуха за один период всасывания. Затем этот объём умножается на количество периодов (циклов) за единицу времени. Эта теоретическая производительность выше, чем фактическая производительность компрессорного устройства. Разница между теоретической и фактической производительностью компенсируется за счет коэффициента производительности (Кпр), который зависит от условий всасывания и от особенностей конструктивного исполнения компрессорного устройства (потерь на клапанах: всасывающих и нагнетательных, наличия не до конца вытесненного объёма), которые способствуют уменьшению наполнения цилиндра (в случае с поршневым компрессором). Коэффициент производительности у компрессоров промышленного исполнения составляет от 0,6 до 0,8.

Разница в расчетах теоретической и фактической производительности, произведенных на входе и на выходе, может достигать существенной величины. При указании в технической характеристике теоретической производительности на компрессорное устройство следует пересчитать эти данные на производительность на выходе устройства, а значит, уменьшить её показатель на 30-40%.

Видео:Компрессоры Hyundai HYC 1824s HYC 1406s | Бесшумные и мощные!Скачать

Компрессоры Hyundai HYC 1824s HYC 1406s | Бесшумные и мощные!

Проектирование компрессора

В спецификации компрессора обязательно должно быть указано максимально допустимое рабочее давление. Эти данные наряду с максимально допустимой температурой используются производителями компрессоров для того, чтобы изготовить корпус и основные рабочие части компрессора, способные выдержать максимально допустимое давление и температуру. Для центробежных и осевых компрессоров максимально допустимое давление корпуса рассчитывается на компьютере путем добавления максимального давления на входе к максимальному дифференцированному давлению, которое может возникнуть в компрессоре при наиболее сложной комбинации условий. Для цилиндров поршневых и корпуса винтовых компрессоров максимально допустимое давление должно превышать номинальное давление на нагнетании на 10% или 25 psi в зависимости от того, какая из величин больше больше.

Максимально допустимая температура для центробежных и осевых компрессоров должна быть максимальной температурой на нагнетании, достигаемой при работе компрессора, и включать некоторый допуск. Максимально допустимая температура для цилиндров поршневых компрессоров и корпуса винтовых компрессоров должна превышать номинальную температуру на нагнетании.

Видео:Сравнение компрессоров Fiac AB 100 515 Remeza 100 LB30 Fubag B5200Скачать

Сравнение компрессоров Fiac AB 100 515 Remeza 100 LB30 Fubag B5200

Трубопроводные фланцы и номинальное значение

Присоединительные размеры трубопроводов, номинальное значение фланцев и их вид должны быть указаны в спецификации для всех входов и выходов компрессора. Уплотнение вала и штока плунжера также должно быть указано в спецификации.

Видео:Тест воздушных компрессоров Skiper IBL50B и IBL50AСкачать

Тест воздушных компрессоров Skiper IBL50B и IBL50A

Система смазки и смазочное масло

Прямая функция этих систем – прежде всего, предоставлять бесперебойную подачу чистой и охлаждающей смазочной жидкости для подшипников и уплотнений компрессора, зубчатых передач и привода. Это важные системы для компрессоров, поэтому расчет этих систем должен быть четко прописан в спецификации.

Видео:Компрессорное масло | Какое масло подходит для воздушных компрессоров?Скачать

Компрессорное масло | Какое масло подходит для воздушных компрессоров?

Материальное исполнение

Сжимаемые газы могут повлиять на выбор материалов компрессора, особенно это касается частей, соприкасающихся со средой. Так, например, при сжатии H2S может произойти сероводородное растрескивание высокопрочных материалов. Подходящими для такой работы будут материалы, прошедшие термическую обработку после изготовления с устойчивостью к деформации не ниже 90000 psi.

Видео:Компрессоры от Denzel / Как они устроены и какой выбрать под свои задачи?Скачать

Компрессоры от Denzel / Как они устроены и какой выбрать под свои задачи?

Технологические ступени сжатия

Степень сжатия (R) – это отношение давления на нагнетании (Р2) к давлению всасывания (Р1) в компрессоре, Р2/Р1. Когда требуется сжатие до высокого давления, расчет компрессора предполагает наличие нескольких ступеней сжатия, в некоторых случаях между ступенями сжатия требуются охладители для отвода тепла, которое возникает в процессе сжатия. Дополнительные ступени сжатия требуются, например:

  • для снижения температуры в конце сжатия каждой ступени, применяя промежуточное охлаждение до приемлемого уровня, чтобы обеспечить надлежащую работу компрессора.
  • для снижения температуры на входе ступени сжатия чтобы в свою очередь понизить напор, требуемый для достижения заданного коэффициента сжатия.
  • для обеспечения ограничений по дифференциальному давлению и коэффициенту сжатия различных типов компрессоров, например ограничения по осевой нагрузке у центробежных компрессоров, по предельному напряжению штока поршня у поршневых компрессоров, осевой нагрузки у винтовых компрессоров.
  • чтобы понизить идущую на привод компрессора потребляемую мощность для процесса сжатия за счет работы промежуточных охладителей между ступенями и чтобы удерживать температуру в безопасных пределах.

Видео:Воздушный компрессор SENCO PC 1010Скачать

Воздушный компрессор SENCO PC 1010

Выбор одноступенчатого или многоступенчатого компрессора

Выбор надлежащего количества ступеней сжатия в основном базируется на степени сжатия.

Температуры на нагнетании и режим работы также учитывают при определении количества ступеней. Ниже представлен пример подбора количества ступеней сжатия.

Сравнение одноступенчатого и двухступенчатого компрессора, которые применяются для одинаковой рабочей среды в одинаковых условиях (одинаковая производительность, газ и давление):

Как и во многих инженерных решениях, необходимо найти компромисс между изначальными расходами и рабочими расходами и издержками на техническое обслуживание.

1. Для начала необходимо произвести расчет всех потребителей воздуха Q, л/минуту.
С этой целью суммируется расход потребляемого воздуха ото всех его потребителей. Это делается на основании их характеристик из паспортных данных, что даёт величину Q (л/мин), представляющую собой объём воздуха, который потребляет пневматическая система. Эта величина близка к максимальному показателю, если планируется использование большого количества потребителей. Она может быть уменьшена на коэффициент загрузки, так как не всегда все потребители воздуха будут одновременно в работе. Задача – ввести коррекцию на уменьшение, которая обеспечит запас воздуха в пневматической системе – это личный выбор каждого владельца компрессорного агрегата.

2. Следующий параметр для расчета — производительность компрессора A (л/мин).
Многие ошибки в расчетах заключаются в неправильном определении величины A и понимании производительности компрессорного устройства. Все фирмы-производители компрессорных устройств указывают под данной величиной в своих технических паспортах или каталогах максимальное потребление воздуха на входе в компрессор. Эту величину нельзя применять как производительность компрессорного устройства на выходе, поскольку данная величина не учитывает КПД компрессорного устройства и его конструктивные отличительные признаки. В связи с этим расчет производительности компрессорной машины следует осуществлять следующим образом:

где
Q — суммарный объем воздуха, который потребляют все потребители пневматической системы в целом, измеряемый в литрах/минуту;
β — коэффициент, который закладывает производитель для учета конструктивных особенностей своего компрессорного оборудования;
η — КПД компрессорного устройства.
В качестве справочной информации ниже приведены значения β и η для работы компрессорного устройства в диапазоне рабочих давлений от 6 до 8 бар.

3. Не менее важным параметром при выборе компрессорного устройства является выбор объема ресивера V (л). Производители компрессорного оборудования рекомендуют при выборе величины объема ресивера предусматривать её в следующем диапазоне A:

Выбор правильного ресивера, а также увеличение его объема способствуют компенсации и сглаживанию давления, что, в свою очередь, делает пневматическую систему более гибкой в отношении восприятия нагрузок.

4. При подборе компрессора по давлению придерживаются правила, что создаваемое компрессорным устройством давление должно быть выше давления, на котором работают потребители сжатого воздуха. Любой компрессор накачивает воздух до максимального рабочего давления Рмакс., а затем отключается. Повторно компрессор включается уже при падении давления до Рмин. Разница между максимальным и минимальным давлениями компрессорного устройства составляет 2 бара.

5. Продолжая тему подбора компрессорного устройства, важно определиться с его назначением: решить, как и для каких целей будет использоваться данное устройство. Важно определить продолжительность его постоянной работы, максимальный объем необходимого сжатого воздуха, рабочее давление и прочие подобные технические характеристики, о которых уже шла речь выше.

Тип компрессора: вот тот показатель, от которого в полной мере зависят все остальные выше названные характеристики. Просчитав все суммарные потребляемые мощности, можно делать выводы. В случае, когда требуется компрессор для краскопульта или иного пневматического инструмента с небольшим рабочим давлением, лучшим вариантом будет компрессор поршневого типа. Если идет речь о больших мощностях и нескольких потребителях воздуха, следует задуматься о таких компрессорных машинах, как винтовые или спиральные. Не следует забывать и о расстоянии, на которое будет подаваться пневматическая среда, т.е. сжатый воздух.

6. На компрессорные характеристики, особенно на показатели мощности, также влияют такие факторы, как местоположение над уровнем моря, температура окружающей среды и атмосферное давление. Чем выше нахождение над уровнем моря, тем ниже параметры температуры и давления окружающего воздуха. При эксплуатации воздушного компрессора в таких условиях следует учитывать это обстоятельство, поскольку эти условия оказывают влияние на показатели производительности компрессорного устройства и на номинальный расход сжатого воздуха. Поэтому если компрессорное устройство будет эксплуатироваться на большой высоте, то характеристики его производительности на выходе будут определенным образом отличаться от указанных в техническом паспорте характеристик.

Известно, что воздух на высоте разряжается, а это приводит к ухудшению охлаждения электродвигателя воздушного компрессора и его комплектующих частей, которые подвержены нагреву. Двигатель работает с номинальными характеристиками на максимальной высоте 1000 м над уровнем моря и температуре макс. 40°С (См. таблицу ниже, в которой указано, как ведут себя различные двигатели, в зависимости от высоты и температуры). Некоторые типы компрессорных устройств оснащены электродвигателями, которым на большой высоте свойственна потеря мощности. Соответственно, на вал компрессора также подаётся пониженная мощность.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


Поделиться или сохранить к себе:
Технарь знаток