В данном материале мы продолжим серию исследований различных особенностей функционирования систем на базе процессоров серии AMD Phenom, посвящённую изучению влияния опций и компонентов данных систем на их быстродействие в реальном ПО. Сегодня «героем дня» станет опция BIOS системных плат под Socket AM2+, управляющая режимом работы встроенного контроллера памяти AMD Phenom, и переключающая его в один из режимов: «Ganged» («спаренный») и «Unganged».
Официальное мнение состоит в том, что классический «спаренный» (ganged) режим обеспечивает максимальную производительность доступа к памяти при работе однопоточных приложений, в то время как unganged режим, по идее, должен обеспечивать более высокую скорость для многопоточных задач. С результатами синтетических тестов в обоих режимах можно ознакомиться, к примеру, вот в этом материале, однако сегодня нас будет интересовать не синтетика, а исключительно реальное, «рабочее» ПО.
Используемый тестовый стенд полностью аналогичен по составу тому, на котором мы уже тестировали Phenom X4 9850, за тем исключением, что в данном случае использовалась обычная DDR2-800 с таймингами 4-4-4-10-22-2T. Впрочем, учитывая то, что Phenom X4 9850 оказался вообще не очень чувствительным к скорости памяти, мы не считаем, что это могло иметь какое-то существенное значение (тем более что Ganged-режим также был перетестирован с DDR2-800). Тестовая методика — стандартная, последней версии.
Пакеты трёхмерного моделирования
Легко заметить, что более-менее существенная разница между двумя режимами наблюдается только в интерактивной части теста SPEC для 3ds max, и в этом случае режим Ganged показывает более высокий результат. В целом же по группе мы имеем мизерные 0,4%, о которых даже говорить не стоит, чьё бы преимущество они не олицетворяли.
CAD/CAM пакеты
Здесь наблюдается стабильная тенденция — режим Unganged не выиграл ни одного подтеста в группе. Но проигрыши опять мизерные: самый большой равняется 1,1%. Снова не о чем говорить.
Компиляция
Режим Ganged позволяет сэкономить 12 секунд на отрезке в полчаса.
Профессиональная работа с фотографиями
Здесь наоборот режим Ganged либо играет вничью, либо проигрывает, но значения проигрыша такие же несущественные, как и во всех предыдущих тестах.
Научно-математические пакеты
MATLAB в одном из подтестов приблизился к «рекорду» 3ds max, но в целом картина такая же индифферентная, как и во всех предыдущих тестах.
Веб-сервер
Наконец-то мы видим более-менее существенные значения — аж до 5%! При этом, что характерно, они говорят отнюдь не в пользу Unganged-режима.
Архиваторы
Разницы, можно считать, нет.
Кодирование медиаданных
Ну а в данном случае её просто нет, безо всяких «можно считать».
Игры однозначно голосуют в пользу Unganged-режима, причём три из семи — с достаточно весомыми значениями. Call of Duty — «чемпион статьи» — в этом игровом тесте разница между Ganged и Unganged режимами составила рекордные 6,5% (в пользу Unganged).
Любительская работа с фотографиями
Ещё одно приложение, достаточно серьёзно чувствительное к режиму работы встроенного контроллера памяти AMD Phenom — это ACDSee. Причём ему тоже больше по душе Unganged-режим.Заключение
Ganged | Unganged | Соотношение |
PRO SCORE |
В целом, результат исследования можно считать ничейным — за некоторыми весьма редкими исключениями, не выявлено однозначного преимущества одного из режимов над другим. Не выявлено также и каких-либо чётко прослеживаемых по классам ПО закономерностей и тенденций (в том числе в классах многопоточных и однопоточных приложений, что могло бы хоть как-то согласовываться с официальным позиционированием ganged и unganged режимов). Финальный минус 0,1% у Ganged-режима по большому счёту ни о чём не свидетельствует т.к. глядя на подробные результаты понимаешь, что результат ещё одного какого-нибудь приложения может превратить этот проигрыш в ничью, а может даже и в победу.
Так что наш вывод будет кратким: с точки зрения производительности реального, «рабочего» десктопного ПО, в подавляющем большинстве случаев абсолютно всё равно, в каком режиме работает контроллер памяти на Phenom. Случаются, конечно, исключения, но они очень редкие, и их характер вряд ли можно спрогнозировать (по крайней мере, на основании данных нашего тестирования).
Что же касается звучавшего в начале статьи вопроса о том «всё ли мы правильно делаем» — то разница в 0,1 балл (или 0,1%), пусть даже и в лучшую сторону, вряд ли может служить поводом для перехода на использование unganged-режима для Phenom в основных тестированиях. Тем более учитывая то, что режим по умолчанию, устанавливаемый системными платами — ganged, а разницу даже в 10 раз большую (1%) мы и так почти никогда не принимаем во внимание, списывая на возможные последствия погрешности измерений или округлений.
Видео:Как настроить оперативную память если настройки авто кривыеСкачать
Изучаем параметры DDR3
Рассмотрение диапазона таймингов, напряжений, частот, а также отличий от предыдущих типов – вот что является темой данной статьи.
DDR3
Стандарт Double Data Rate 3 является логическим продолжением цепочки SDR-DDR-DDR2. Как многие знают, отличие DDR от SDR состояло в том, что передача данных по интерфейсу происходила на обоих фронтах опорной частоты, а не по положительному фронту, как у SDR. Таким образом, за один такт передавалось вдвое больше информации. Чтобы информацию с вдвое большей скоростью передать контроллеру, она должна и поступать их чипов вдвое быстрее. Это реализовано с помощью удвоения внутренней ширины модуля памяти. При этом за одну команду чтения мы получаем сразу n единиц данных. Такая архитектура была названа n-prefetch. Общая формула расчёта – 2^n prefetch, где n – поколение устройства памяти. У DDR1 одной командой передаётся 2 единицы данных, у DDR2 – 4, соответственно у DDR3 – 8. При этом минимальное значение Burst Length (параметра, определяющего длину считываемого за раз пакета данных) соответственно равно 2, 4 и 8.
Понятно, что с переходом на новое поколение количество данных, передаваемых интерфейсом за такт, не меняется, иначе менялось бы название (QDR, ODR). Меняется только ширина внутренней шины модуля. Таким образом, в модуле DDR 400 опорная частота составляет 200МГц (DDR), частота чипов 200МГц (2n-prefetch). В модулях DDR2-800 опорная частота равна 400МГц (DDR), внутренняя частота чипов – 200МГц (4n-prefetch). В модуле DDR3-800 опорная частота равна 400МГц, а частота чипов – 100МГц (8n-prefetch).
Отсюда становится ясно, почему всё время растут тайминги памяти. Если чипам нужно 10нс для тайминга CL (это CL=2 на DDR400), то в модуле DDR2-800 этот тайминг будет равняться 4, при той же частоте чипов, т.к. абсолютное значение времени не изменилось (10нс), а относительное (из-за уменьшения вдвое длительности одного такта) увеличилось вдвое. Для DDR3-1600 этот тайминг уже будет составлять 8 тактов. Хочется добавить по поводу таймингов при одинаковой частоте интерфейса – DDR2-800 и DDR3-800, к примеру. Тайминги у них равны, а вся разница вытекает из обкатанности одного процесса к моменту выпуска другого поколения, то есть из-за сравнения необкатанной новой технологии и обкатанной старой.
От слов к делу.
Основные нововведения:
Частоты 800/1066/1333/1600МГц
Напряжение питания 1.5В
Дифференциальный фронт сигнала
Burst Length 4(Burst terminate), 8
Динамическая терминация сигнала на чипе (Dynamic ODT)
Поддержка программируемого CAS Latency в (4), 5, 6, 7, 8, 9, 10, 11 тактов
Поддержка программируемого Additive Latency в режимах 0, CL-1, CL-2.
Программируемый CAS Write Latency (CWL) в 5, 6, 7, 8 тактов
Переключение BL на лету
8 логических банков
Наличие встроенного термодатчика (является нововведением для десктопной платформы, но уже было реализовано в FB-DIMM).
Выбор мощности сигналов с помощью EMRS
Поддержка Auto Self Refresh
8 бит предвыборка
На данный момент представлены чипы двух плотностей – 512Mbit и 1Gbit.
Количество банков составляет 8, что означает использование тайминга tFAW на всех модулях. Напряжение по спецификации составляет 1,5В. Модули, предназначенные для разгона или разогнанные производителем, будут работать традиционно при большем напряжении. Согласно даташиту Hynix DDR3 SDRAM Unbuffered DIMMs Based on 1Gb Z ver., максимальное допустимое напряжение составляет 1.975В, то есть модули будут работать при напряжениях до 2,0В. Оверклокеры-экстремалы будут использовать и большие значения, но очень маловероятно, что для постоянного использования напряжение будет превышать 2,1В. Об этом можно судить как по процентному соотношению напряжения при разгоне DDR2, так и вольтмодам GDDR3. Частоты этого типа памяти, как я писал ранее будут начинаться с 800МГц и дойдут до 1600МГц. Отсюда, кстати, можно сделать интересное наблюдение – частота чипов не меняется с течением времени. У DDR внутренняя частота была в диапазоне 100-200МГц (DDR200-DDR400), у DDR2 – то же самое, начиналось со 100 и заканчивалось 200МГц (DDR2-400 – DDR2-800). Стандарт DDR3 продолжает эту тенденцию со своим диапазоном частот DDR3-800 – DDR3-1600 (реальная внутренняя те же 100-200МГц). Стало быть, DDR4, наиболее вероятно, будет работать на частотах интерфейса от DDR4-1600 до DDR4-3200. Это ниже, чем рамки частот GDDR. Связано это с более жесткими ограничениями на подаваемую чипам мощность и требованиями к охлаждению и таймингам. Исследование вопроса диапазона частот GDDR разных версий и DDR во внештатном режиме может быть исследовано позднее.
Наличие термодатчика позволит обычным пользователям узнать условия работы модулей памяти. Эта функция перекочевала из серверного рынка, где крайне важна стабильность системы и проработан детальный механизм троттлинга (замедления) чипа при превышении допустимой температуры. Также меняются такие характеристики как обновление памяти и другое, направленное на повышение стабильности горячего модуля и его охлаждение. Но в декстопной платформе маловероятно, что обычный пользователь станет интересоваться такого рода информацией. Другое дело — оверклокер, который разгоняет с повышение напряжения до 30% и выше, ставит водяное охлаждение или обкладывает их сухим льдом. Для проверки эффективности охлаждения и послужит этот механизм при нормальной его реализации (то есть с возможностью удобного считывания такого рода данных). Почти наверняка интерфейсом передачи станет шина Smbus, по которой также передаётся информация SPD модулей.
Теперь об одном из важнейших параметров нового типа памяти – таймингах. Все принятые стандартом схемы таймингов сведены в таблицу. Соответствие режимов CL-X и CWL-X с частотами дано для установления обратной совместимости различных модулей.
Отсюда видно, что уже расписаны параметры для будущих 8Гб чипов. А также факт, что подтайминги вроде WR, WTR и другие не поменялись относительно DDR2. Разница лишь в основных таймингах. Именно они и будут определять расстановку сил DDR3 vs DDR2 и привлекательность новинки. Модули уже начали появляться в продаже, но нормальных обзоров с изменением таймингов и разгоном проведено не было.
Использованная литература:
1. JEDEC STANDARD DDR2 SDRAM SPECIFICATION JESD79-2C
2. Samsung DDR3 SDRAM Specification revision 0.1
3. Samsung 512Mb E-die DDR3 SDRAM Specification
4. Hynix DDR3 SDRAM Unbuffered DIMMs Based on 1Gb Z ver.
Видео:E4 или другие E1, E2, E3 и т.д., что это?Скачать
Изучаем параметры DDR3
Рассмотрение диапазона таймингов, напряжений, частот, а также отличий от предыдущих типов – вот что является темой данной статьи.
DDR3
Стандарт Double Data Rate 3 является логическим продолжением цепочки SDR-DDR-DDR2. Как многие знают, отличие DDR от SDR состояло в том, что передача данных по интерфейсу происходила на обоих фронтах опорной частоты, а не по положительному фронту, как у SDR. Таким образом, за один такт передавалось вдвое больше информации. Чтобы информацию с вдвое большей скоростью передать контроллеру, она должна и поступать их чипов вдвое быстрее. Это реализовано с помощью удвоения внутренней ширины модуля памяти. При этом за одну команду чтения мы получаем сразу n единиц данных. Такая архитектура была названа n-prefetch. Общая формула расчёта – 2^n prefetch, где n – поколение устройства памяти. У DDR1 одной командой передаётся 2 единицы данных, у DDR2 – 4, соответственно у DDR3 – 8. При этом минимальное значение Burst Length (параметра, определяющего длину считываемого за раз пакета данных) соответственно равно 2, 4 и 8.
Понятно, что с переходом на новое поколение количество данных, передаваемых интерфейсом за такт, не меняется, иначе менялось бы название (QDR, ODR). Меняется только ширина внутренней шины модуля. Таким образом, в модуле DDR 400 опорная частота составляет 200МГц (DDR), частота чипов 200МГц (2n-prefetch). В модулях DDR2-800 опорная частота равна 400МГц (DDR), внутренняя частота чипов – 200МГц (4n-prefetch). В модуле DDR3-800 опорная частота равна 400МГц, а частота чипов – 100МГц (8n-prefetch).
Отсюда становится ясно, почему всё время растут тайминги памяти. Если чипам нужно 10нс для тайминга CL (это CL=2 на DDR400), то в модуле DDR2-800 этот тайминг будет равняться 4, при той же частоте чипов, т.к. абсолютное значение времени не изменилось (10нс), а относительное (из-за уменьшения вдвое длительности одного такта) увеличилось вдвое. Для DDR3-1600 этот тайминг уже будет составлять 8 тактов. Хочется добавить по поводу таймингов при одинаковой частоте интерфейса – DDR2-800 и DDR3-800, к примеру. Тайминги у них равны, а вся разница вытекает из обкатанности одного процесса к моменту выпуска другого поколения, то есть из-за сравнения необкатанной новой технологии и обкатанной старой.
От слов к делу.
Основные нововведения:
Частоты 800/1066/1333/1600МГц
Напряжение питания 1.5В
Дифференциальный фронт сигнала
Burst Length 4(Burst terminate), 8
Динамическая терминация сигнала на чипе (Dynamic ODT)
Поддержка программируемого CAS Latency в (4), 5, 6, 7, 8, 9, 10, 11 тактов
Поддержка программируемого Additive Latency в режимах 0, CL-1, CL-2.
Программируемый CAS Write Latency (CWL) в 5, 6, 7, 8 тактов
Переключение BL на лету
8 логических банков
Наличие встроенного термодатчика (является нововведением для десктопной платформы, но уже было реализовано в FB-DIMM).
Выбор мощности сигналов с помощью EMRS
Поддержка Auto Self Refresh
8 бит предвыборка
На данный момент представлены чипы двух плотностей – 512Mbit и 1Gbit.
Количество банков составляет 8, что означает использование тайминга tFAW на всех модулях. Напряжение по спецификации составляет 1,5В. Модули, предназначенные для разгона или разогнанные производителем, будут работать традиционно при большем напряжении. Согласно даташиту Hynix DDR3 SDRAM Unbuffered DIMMs Based on 1Gb Z ver., максимальное допустимое напряжение составляет 1.975В, то есть модули будут работать при напряжениях до 2,0В. Оверклокеры-экстремалы будут использовать и большие значения, но очень маловероятно, что для постоянного использования напряжение будет превышать 2,1В. Об этом можно судить как по процентному соотношению напряжения при разгоне DDR2, так и вольтмодам GDDR3. Частоты этого типа памяти, как я писал ранее будут начинаться с 800МГц и дойдут до 1600МГц. Отсюда, кстати, можно сделать интересное наблюдение – частота чипов не меняется с течением времени. У DDR внутренняя частота была в диапазоне 100-200МГц (DDR200-DDR400), у DDR2 – то же самое, начиналось со 100 и заканчивалось 200МГц (DDR2-400 – DDR2-800). Стандарт DDR3 продолжает эту тенденцию со своим диапазоном частот DDR3-800 – DDR3-1600 (реальная внутренняя те же 100-200МГц). Стало быть, DDR4, наиболее вероятно, будет работать на частотах интерфейса от DDR4-1600 до DDR4-3200. Это ниже, чем рамки частот GDDR. Связано это с более жесткими ограничениями на подаваемую чипам мощность и требованиями к охлаждению и таймингам. Исследование вопроса диапазона частот GDDR разных версий и DDR во внештатном режиме может быть исследовано позднее.
Наличие термодатчика позволит обычным пользователям узнать условия работы модулей памяти. Эта функция перекочевала из серверного рынка, где крайне важна стабильность системы и проработан детальный механизм троттлинга (замедления) чипа при превышении допустимой температуры. Также меняются такие характеристики как обновление памяти и другое, направленное на повышение стабильности горячего модуля и его охлаждение. Но в декстопной платформе маловероятно, что обычный пользователь станет интересоваться такого рода информацией. Другое дело — оверклокер, который разгоняет с повышение напряжения до 30% и выше, ставит водяное охлаждение или обкладывает их сухим льдом. Для проверки эффективности охлаждения и послужит этот механизм при нормальной его реализации (то есть с возможностью удобного считывания такого рода данных). Почти наверняка интерфейсом передачи станет шина Smbus, по которой также передаётся информация SPD модулей.
Теперь об одном из важнейших параметров нового типа памяти – таймингах. Все принятые стандартом схемы таймингов сведены в таблицу. Соответствие режимов CL-X и CWL-X с частотами дано для установления обратной совместимости различных модулей.
Отсюда видно, что уже расписаны параметры для будущих 8Гб чипов. А также факт, что подтайминги вроде WR, WTR и другие не поменялись относительно DDR2. Разница лишь в основных таймингах. Именно они и будут определять расстановку сил DDR3 vs DDR2 и привлекательность новинки. Модули уже начали появляться в продаже, но нормальных обзоров с изменением таймингов и разгоном проведено не было.
Использованная литература:
1. JEDEC STANDARD DDR2 SDRAM SPECIFICATION JESD79-2C
2. Samsung DDR3 SDRAM Specification revision 0.1
3. Samsung 512Mb E-die DDR3 SDRAM Specification
4. Hynix DDR3 SDRAM Unbuffered DIMMs Based on 1Gb Z ver.
🎬 Видео
Как работает оперативная память компьютера (RAM, ОЗУ). Типы памяти, модули, частоты DDR SDRAMСкачать
Как проверить двухканальный режим ОЗУ?Скачать
Диагональные и радиальные шины. Разница ХТ и МТ резины LakeseaСкачать
Что такое Тайминги оперативной памяти!? Полезные FiшКiСкачать
Двухканальный режим ОЗУ. Как проверить работу двухканального режима?Скачать
Что лучше диагональные или радиальные шины? ▶️ преимущества и недостаткиСкачать
Что такое DIA диска? И как найти его размер!Скачать
Как пользоваться делительным диском на УДГСкачать
Что такое вылет дисков или ET? На что он влияет? Каким должен быть вылет дисков или ET?Скачать
Маркировка внедорожных шин: U/T, H/T, A/T, M/T – что это значитСкачать
Как Работает Оперативная Память: Что Такое Тайминги, Ранги и DDR5 // #ПолезныеFiшКiСкачать
Помощь по выбору материнской платы на сокет 775, все чипсеты, DDR2, DDR3, охлаждение, фазы питанияСкачать
Разгон памяти ддр3 fx 8350Скачать
Никогда НЕ ПОКУПАЙТЕ шины пока НЕ ПРОВЕРИТЕ ЭТО!Скачать
КИТАЙСКИЕ ШИНЫ /// которые можно братьСкачать
Как расшифровать маркировку дисков: ET, PCD, DIA и другие обозначенияСкачать
✅ Дошипун. Какой лучше выбрать?Скачать
Гайд по разгону DDR5 Hynix M-DIE на AMD. Инструкция по разгону оперативной памятиСкачать