Типы шин иерархия шин

Совокупность трактов, объединяющих между собой основные устройства ВМ (центральный процессор, память и модули ввода/вывода), образует структуру взаимосвязей вычислительной машины. Структура взаимосвязей должна обеспечивать обмен информацией между:

• центральным процессором и памятью;

• центральным процессором и модулями ввода/вывода;

• памятью и модулями ввода/вывода.

Информационные потоки, характерные для основных устройств ВМ, показаны рис. 13.1.

Типы шин иерархия шин

Рис. 13.1 . Информационные потоки в вычислительной машине

С развитием вычислительной техники менялась и структура взаимосвязей устройств ВМ (рис. 13.2). На начальной стадии преобладали непосредственные связи между взаимодействующими устройствами ВМ. С появлением мини-ЭВМ, и особенно первых микроЭВМ, все более популярной становится схема с одной общей шиной. Последовавший за этим быстрый рост производительности практически всех устройств ВМ привел к неспособности единственной шины справиться с возросшим трафиком, и ей на смену приходят структуры взаимосвязей на базе нескольких шин. Дальнейшие перспективы повышения производительности вычислений связаны не столько с однопроцессорными машинами, сколько с многопроцессорными вычислительными системами. Способы взаимосвязей в таких системах значительно разнообразнее, и их рассмотрению посвящен один из разделов учебника. Возвращаясь к вычислительным машинам, более внимательно рассмотрим вопросы, связанные с организацией взаимосвязей на базе шин.

Типы шин иерархия шин

Рис. 13.2. Эволюция структур взаимосвязей (ЦП — центральный процессор, ПАМ — модуль основной памяти, МВВ — модуль ввода/вывода)

Взаимосвязь частей ВМ и ее «общение» с внешним миром обеспечиваются системой шин. Большинство машин содержат несколько различных шин, каждая из которых оптимизирована под определенный вид коммуникаций. Часть шин скрыта внутри интегральных микросхем или доступна только в пределах печатной платы. Некоторые шины имеют доступные извне точки, с тем чтобы к ним легко можно было подключить дополнительные устройства, причем большинство таких шин не просто доступны, но и отвечают определенным стандартам, что позволяет подсоединять к шине устройства различных производителей.

Чтобы охарактеризовать конкретную шину, нужно описать (рис. 13.3):

• совокупность сигнальных линий;

• физические, механические и электрические характеристики шины;

Типы шин иерархия шин

Рис. 13.3. Параметры, характеризующие шину

• используемые сигналы арбитража, состояния, управления и синхронизации;

• правила взаимодействия подключенных к шине устройств (протокол шины).

Шину образует набор коммуникационных линий, каждая из которых способна передавать сигналы, представляющие двоичные цифры 1 и 0. По линии может пересылаться развернутая во времени последовательность таких сигналов. При совместном использовании несколько линий могут обеспечить одновременную (параллельную) передачу двоичных чисел. Физически линии шины реализуются в виде отдельных проводников, как полоски проводящего материала на монтажной плате либо как алюминиевые или медные проводящие дорожки на кристалле микросхемы.

Операции на шине называют транзакциями. Основные виды транзакций — транзакции чтения и транзакции записи. Если в обмене участвует устройство ввода/вывода, можно говорить о транзакциях ввода и вывода, по сути эквивалентных транзакциям чтения и записи соответственно. Шинная транзакция включает в себя две части: посылку адреса и прием (или посылку) данных.

Когда два устройства обмениваются информацией по шине, одно из них должно инициировать обмен и управлять им. Такого рода устройства назывют ведущими (bus master). В компьютерной терминологии «ведущий» — это любое устройство, способное взять на себя владение шиной и управлять пересылкой данных.

Ведущий не обязательно использует данные сам. Он, например, может захватить управление шиной в интересах другого устройства. Устройства, не обладающие возможностями инициирования транзакции, носят название ведомых (bus slave). В принципе к шине может быть подключено несколько потенциальных ведущих, но в любой момент времени активным может быть только один из них: если несколько устройств передают информацию одновременно, их сигналы перекрываются и искажаются. Для предотвращения одновременной активности нескольких ведущих в любой шине предусматривается процедура допуска к управлению шиной только одного из претендентов (арбитраж). В то же время некоторые шины допускают широковещательный режим записи, когда информация одного ведущего передается сразу нескольким ведомым (здесь арбитраж не требуется). Сигнал, направленный одним устройством, доступен всем остальным устройствам, подключенным к шине.

Английский эквивалент термина «шина» — «bus» — восходит к латинскому слову omnibus, означающему «для всего». Этим стремятся подчеркнуть, что шина ведет себя как магистраль, способная обеспечить всевозможные виды трафика.

Здесь рассматрим только общие вопросы, касающиеся организации, функционирования и применения шин, без ориентации на конкретные реализации.

Важным критерием, определяющим характеристики шины, может служить ее целевое назначение. По этому критерию можно выделить:

Шина «процессор-память»

Шина «процессор-память»обеспечивает непосредственную связь между центральным процессором (ЦП) вычислительной машины и основной памятью (ОП). В современных микропроцессорах такую шину часто называют шиной переднего плана и обозначают аббревиатурой FSB (Front-Side Bus). Интенсивный трафик процессором и памятью требует, чтобы полоса пропускания шины, то есть количество информации, проходящей по шине в единицу времени, была наиболбшей.

Роль этой шины иногда выполняет системная шина (см. ниже), однако в плане эффективности значительно выгоднее, если обмен между ЦП и ОП ведется по отдельной шине. К рассматриваемому виду можно отнести также шину, вызывающую процессор с кэш-памятью второго уровня, известную как шина заднего плана — BSB (Back-Side Bus). BSB позволяет вести обмен с большей скоростью, чем FSB, и полностью реализовать возможности более скоростной кэш-памяти.

Читайте также: Шины nokian nordman s2 suv 215 60 r17 96h

Поскольку в фон-неймановских машинах именно обмен между процессором и памятью во многом определяет быстродействие ВМ, разработчики уделяют связи ЦП с памятью особое внимание. Для обеспечения максимальной пропускной способности шины «процессор-память» всегда проектируются с учетом особенностей организации системы памяти, а длина шины делается по возможности минимальной.

Шина ввода/вывода

Шина ввода/вывода служит для соединения процессора (памяти) с устройствами ввода/вывода (УВВ). Учитывая разнообразие таких устройств, шины ввода/вывода унифицируются и стандартизируются. Связи с большинством УВВ (но не с видеосистемами) не требуют от шины высокой пропускной способности. При проектировании шин ввода/вывода в учет берутся стоимость конструктива и соединительных разъемов. Такие шины содержат меньше линий по сравнению с вариантом «процессор-память», но длина линий может быть весьма большой. Типичными примерами подобных шин могут служить шины PCI и SCSI.

Системная шина

С целью снижения стоимости некоторые ВМ имеют общую шину для памяти и устройств ввода/вывода. Такая шина часто называется системной. Системная шина служит для физического и логического объединения всех устройств ВМ. Поскольку основные устройства машины, как правило, размещаются на общей монтажной плате, системную шину часто называют объединительной шиной (backplane bus), хотя эти термины нельзя считать строго эквивалентными.

Системная, шина в состоянии содержать несколько сотен линий. Совокупность линий шины можно подразделить на три функциональные группы (рис. 13.4): шину данных, шину адреса и шину управления. К последней обычно относят также линии для подачи питающего напряжения на подключаемые к системной шине модули.

Типы шин иерархия шин

Рис. 13.4. Структура системной шины

Особенности каждой из этих групп и распределение сигнальных линий подробно рассматриваются позже.

Функционирование системной шины можно описать следующим образом. Если один из модулей хочет передать данные в другой, он должен выполнить два действия: получить в свое распоряжение шину и передать по ней данные. Если какойто модуль хочет получить данные от другого модуля, он должен получить доступ к шине и с помощью соответствующих линий управления и адреса передать в другой модуль запрос. Далее он должен ожидать, пока модуль, получивший запрос, пошлет данные.

Физически системная шина представляет собой совокупность параллельных электрических проводников. Этими проводниками служат металлические полоски на печатной плате. Шина подводится ко всем модулям, и каждый из них подсоединяется ко всем или некоторым ее линиям. Если ВМ конструктивно выполнена на нескольких платах, то все линии шины выводятся на разъемы, которые затем объединяются проводниками на общем шасси.

Среди стандартизированных системных шин универсальных ВМ наиболее известны шины Unibus, Fastbus, Futurebus, VME,NuBus, Multibus-II. Персональные компьютеры, как правило, строятся на основе системной шины в стандартах ISA, EISA или MCA.

Иерархия шин

Если к шине подключено большое число устройств, ее пропускная способность падает, поскольку слишком частая передача прав управления шиной от одного устройства к другому приводит к ощутимым задержкам. По этой причине во многих ВМ предпочтение отдается использованию нескольких шин, образующих определенную иерархию. Сначала рассмотрим ВМ с одной шиной.

Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Иерархия шин

Если к шине подключено большое число устройств, ее пропускная способность падает, поскольку слишком частая передача прав управления шиной от одного ус­тройства к другому приводит к ощутимым задержкам. По этой причине во многих ВМ предпочтение отдается использованию нескольких шин, образующих опреде­ленную иерархию. Сначала рассмотрим ВМ с одной шиной.

Видео:АПС Л19. ШиныСкачать

АПС Л19.  Шины

Вычислительная машина с одной шиной

В структурах взаимосвязей с одной шиной имеется одна системная шина, обеспе­чивающая обмен информацией между процессором и памятью, а также между УВВ, с одной стороны, и процессором либо памятью — с другой (рис. 4.5).

Типы шин иерархия шин

Рис. 4.5. Структура взаимосвязей с одной шиной

Для такого подхода характерны простота и низкая стоимость. Однако одношинная организация не в состоянии обеспечить высокие интенсивность и скорость транзакций, причем «узким местом» становится именно шина.

Видео:Колёса и шиныСкачать

Колёса и шины

Вычислительная машина с двумя видами шин

Хотя контроллеры устройств ввода/вывода (УВВ) могут быть подсоединены не­посредственно к системной шине, больший эффект достигается применением од­ной или нескольких шин ввода/вывода (рис. 4.6). УВВ подключаются к шинам ввода/вывода, которые берут на себя основной трафик, не связанный с выходом на процессор или память. Адаптеры шин обеспечивают буферизацию данных при их пересылке между системной шиной и контроллерами УВВ. Это позволяет ВМ под­держивать работу множества устройств ввода/вывода и одновременно «развязать» обмен информацией по тракту процессор-память и обмен информацией с УВВ.

Типы шин иерархия шин

Рис. 4.6. Структура взаимосвязей с двумя видами шин

Подобная схема существенно снижает нагрузку на скоростную шину «процес­сор-память» и способствует повышению общей производительности ВМ. В каче­стве примера можно привести вычислительную машину Apple Macintosh II, где роль шины «процессор-память» играет шина NuBus. Кроме процессора и памяти к ней подключаются некоторые УВВ. Прочие устройства ввода/вывода подключа­ются к шине SCSI Bus.

Читайте также: Что такое остаточная глубина рисунка протектора шин что это

Видео:Что означает маркировка на шинах! Значение цифр и букв на резине.Скачать

Что означает маркировка на шинах! Значение цифр и букв на резине.

Вычислительная машина с тремя видами шин

Для подключения быстродействующих периферийных устройств в систему шин может быть добавлена высокоскоростная шина расширения (рис. 4.7).

Типы шин иерархия шин

Рис. 4.7. Структура взаимосвязей с тремя видами шин

Шины ввода/вывода подключаются к шине расширения, а уже с нее через адап­тер к шине «процессор-память». Схема еще более снижает нагрузку на шину «про­цессор-память». Такую организацию шин называют архитектурой с «пристрой­кой» (mezzanine architecture).

Видео:Конструкция шиныСкачать

Конструкция шины

Распределение линий шины

Любая транзакция на шине начинается с выставления ведущим устройством ад­ресной информации. Адрес позволяет выбрать ведомое устройство и установить соединение между ним и ведущим. Для передачи адреса используется часть сиг­нальных линий шины, совокупность которых часто называют шиной адреса (ША).

На ША могут выдаваться адреса ячеек памяти, номера регистров ЦП, адреса портов ввода/вывода и т. п. Многообразие видов адресов предполагает наличие дополнительной информации, уточняющей вид, используемый в данной транзак­ции. Такая информация может косвенно содержаться в самом адресе, но чаще пе­редается по специальным управляющим линиям шины.

Разнообразной может быть и структура адреса. Так, в адресе может конкрети­зироваться лишь определенная часть ведомого, например, старшие биты адреса могут указывать на один из модулей основной памяти, в то время как младшие биты определяют ячейку внутри этого модуля.

В некоторых шинах предусмотрены адреса специального вида, обеспечиваю­щие одновременный выбор определенной группы ведомых либо всех ведомых сразу (broadcast). Такая возможность обычно практикуется в транзакциях записи (от ведущего к ведомым), однако существует также специальный вид транзакции чте­ния (одновременно от нескольких ведомых общему ведущему). Английское назва­ние такой транзакции чтения broadcall можно перевести как — «широковещательный опрос». Информация, возвращаемая ведущему, представляет собой результат поби­тового логического сложения данных, поступивших от всех адресуемых ведомых.

Число сигнальных линий, выделенных для передачи адреса (ширина шины ад­реса), определяет максимально возможный размер адресного пространства. Это одна из базовых характеристик шины, поскольку от нее зависит потенциальная емкость адресуемой памяти и число обслуживаемых портов ввода/вывода.

Совокупность линий, служащих для пересылки данных между модулями системы, называют шиной данных (ШД). Важнейшие характеристики шины данных — ширина и пропускная способность.

Ширина шины данных определяется количеством битов информации, которое может быть передано по шине за одну транзакцию (цикл шины). Цикл шины сле­дует отличать от периода тактовых импульсов — одна транзакция на шине может занимать несколько тактовых периодов. В середине 1970-х годов типовая ширина шины данных составляла 8 бит. В наше время это обычно 32,64 или 128 бит. В лю­бом случае ширину шины данных выбирают кратной целому числу байтов, при­чем это число, как правило, представляет собой целую степень числа 2.

Элемент данных, задействующий всю ширину ШД, принято называть словом, хотя в архитектуре некоторых ВМ понятие «слово» трактуется подругому, то есть слово может иметь разрядность, не совпадающую с шириной ШД.

В большинстве шин используются адреса, позволяющие указать отдельный байт слова. Это свойство оказывается полезным, когда желательно изменить в памяти лишь часть полного слова.

При передаче по ШД части слова пересылка обычно производится по тем же сигнальным линиям, что и в случае пересылки полного слова, однако в ряде шин «урезанное» слово передается по младшим линиям ШД. Последний вариант мо­жет оказаться более удобным при последующем расширении шины данных, по­скольку в этом случае сохраняется преемственность со «старой» шиной. Ширина шины данных существенно влияет на производительность ВМ. Так, если шина данных имеет ширину вдвое меньшую чем длина команды, ЦП в тече­ние каждого цикла команды вынужден осуществлять доступ к памяти дважды.

Пропускная способность шины характеризуется количеством единиц информации (байтов), которые допускается передать по шине за единицу времени (се­кунду), а определяется физическим построением шины и природой подключае­мых к ней устройств. Очевидно, что чем шире шина, тем выше ее пропускная способность.

Последовательность событий, происходящих на шине данных в процессе од­ной транзакции, иллюстрирует рис. 4.9. Пусть устройство А на одном конце шины передает данные устройству В на другом ее конце.

Типы шин иерархия шин

Рис. 4.9. Временная диаграмма пересылки данных

Сначала устройство А выставляет данные на шину. Здесь tn — это задержка между моментом выставления данных устройством А и моментом их появления на шине. Этот интервал времени может составлять от 1 до 4 не. Как уже отмечалось, скорость распространения данных по шине реально не в состоянии превысить 70% от скорости света. Единственный способ уменьшения задержки распространения tpc — сокращение длины шины. Когда сигнал достигает устройства, он должен быть «захвачен». Захват данных устройством В может быть произведен только по про­шествии некоторого времени стабилизации. Время стабилизации tcт — это время, в течение которого данные на входе устройства В должны стабилизироваться с тем, чтобы их можно было однозначно распознать. Необходимо также упомянуть и вре­мя удержания tуд — интервал, в течение которого информация должна оставаться на шине данных после того, как они были зафиксированы устройством В. Общее время передачи данных по шине tп определяется выражением tп = tзд + tрс.+ tст + tуд. Если подставить типовые значения этих параметров, получим 4 + 1,5 + 2 + 0 = 7,5 не, что соответствует частоте шины 109/7,5 = 133,3 МГц.

Читайте также: Давление в шинах в автомобиле додж

На практике передача данных осуществляется с задержкой на инициализацию транзакции (£„). Учитывая эту задержку, максимальную скорость передачи можно определить как

Типы шин иерархия шин

Некоторые шины содержат дополнительные линии, используемые для обнару­жения ошибок, возникших в процессе передачи. Выделение по одной дополни­тельной линии на каждый отдельный байт данных позволяет контролировать лю­бой байт по паритету, причем и в случае пересылки по ШД лишь части слова. Возможен и иной вариант контроля ошибок. В этом случае упомянутые дополни­тельные линии используются совместно. По ним передается корректирующий код, благодаря которому ошибка может быть не только обнаружена, но и откорректи­рована. Такой метод удобен лишь при пересылке по шине полных слов.

Если адрес и данные в шине передаются по независимым (выделенным) сиг­нальным линиям, то ширина ША и ШД обычно выбирается независимо. Наибо­лее частые комбинации: 16-8, 16-16, 20-8, 20-16, 24-32 и 32-32. Во многих ши­нах адрес и данные пересылаются по одним и тем же линиям, но в разных тактах цикла шины. Этот прием называется временным мультиплексированием и будет рассмотрен позже. Здесь же отметим, что в случае мультиплексирования ширина ША и ширина ШД должны быть взаимоувязаны.

Применение раздельных шин адреса и данных позволяет повысить эффектив­ность использования шины, особенно в транзакциях записи, поскольку адрес ячейки памяти и записываемые данные могут передаваться одновременно.

Помимо трактов пересылки адреса и данных, неотъемлемым атрибутом любой шины являются линии, по которым передается управляющая информации и ин­формация о состоянии участвующих в транзакции устройств. Совокупность та­ких линий принято называть шиной управления (ШУ), хотя такое название пред­ставляется не совсем точным. Сигнальные линии, входящие в ШУ, можно условно разделить на несколько групп.

Первую группу образуют линии, по которым пересылаются сигналы управле­ния транзакциями, то есть сигналы, определяющие:

тип выполняемой транзакции (чтение или запись);

количество байтов, передаваемых по шине данных, и, если пересылается часть слова, то какие байты;

какой тип адреса выдан на шину адреса;

какой протокол передачи должен быть применен.

На перечисленные цели обычно отводится от двух до восьми сигнальных ли­ний.

Ко второй группе отнесем линии передачи информации состояния (статуса). В эту группу входят от одной до четырех линий, по которым ведомое устройство может информировать ведущего о своем состоянии или передать код возникшей ошибки.

Третья группалинии арбитража. Вопросы арбитража рассматриваются не­сколько позже. Пока отметим лишь, что арбитраж необходим для выбора одного из нескольких ведущих, одновременно претендующих на доступ к шине. Число линий арбитража в разных шинах варьируется от 3 до 11.

Четвертую группу образуют линии прерывания. По этим линиям передаются запросы на обслуживание, посылаемые от ведомых устройств к ведущему. Под собственно запросы обычно отводятся одна или две линии, однако при одновре­менном возникновении запросов от нескольких ведомых возникает проблема ар­битража, для чего могут понадобиться дополнительные линии, если только с этой целью не используются линии третьей группы.

Пятая группа — линии для организации последовательных локальных сетей. Наличие от 1 до 4 таких линий стало общепринятой практикой в современных шинах. Обусловлено это тем, что последовательная передача данных протекает значительно медленнее, чем параллельная, и сети значительно выгоднее строить, не загружая быстрые линии основных шин адреса и данных. Кроме того, шины этой группы могут быть использованы как полноценный, хотя и медленный, из­быточный тракт для замены ША и ШД в случае их отказа. Иногда шины пятой группы назначаются для реализации специальных функций, таких, например, как обработка прерываний или сортировка приоритетов задач.

В некоторых ШУ имеется шестая группа сигнальных линий — от 4 до 5 линий позиционного кода, подсоединяемых к специальным выводам разъема. С помощью перемычек на этих выводах можно задать уникальный позиционный код разъема на материнской плате или вставленной в этот разъем дочерней платы. Такой код может быть использован для индивидуальной инициализации каждой отдельной платы при включении или перезапуске системы.

Наконец, в каждой шине обязательно присутствуют линии, которые в нашей классификации входят в седьмую группу, которая по сути является одной из важ­нейших. Это группа линий тактирования и синхронизации. При проектировании шины таким линиям уделяется особое внимание. В состав группы, в зависимости от протокола шины (синхронный или асинхронный), входят от двух до шести линий.

В довершение необходимо упомянуть линии для подвода питающего напряже­ния и линии заземления.

Большое количество линий в шине предполагает использование разъемов со значительным числом контактов. В некоторых шинах разъемы имеют сотни кон­тактов, где предусмотрены подключение вспомогательных шин специального на­значения, свободные линии для локального обмена между дочерними платами, множественные параллельно расположенные контакты для «размножения» пи­тания и «земли». Значительно чаще число контактов разъема ограничивают. В табл. 4.1 показано возможное распределение линий 32-разрядной шины в 64-кон­тактном разъеме.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле

    🔥 Видео

    Системная шина процессораСкачать

    Системная шина процессора

    Что означает МАРКИРОВКА НА ШИНАХ / Значение всех цифр и букв на резинеСкачать

    Что означает МАРКИРОВКА НА ШИНАХ / Значение всех цифр и букв на резине

    С чего начать ремонт ЭБУ: Типы шин данных, CANСкачать

    С чего начать ремонт ЭБУ: Типы шин данных,  CAN

    Левые и правые шины. Асимметричные и направленные. Разница?Скачать

    Левые и правые шины. Асимметричные и направленные. Разница?

    Типы грузовых шин (протектор, применяемость по оси)Скачать

    Типы грузовых шин (протектор, применяемость по оси)

    Структура шин данных BMWСкачать

    Структура шин данных BMW

    АПС Л14. ШиныСкачать

    АПС Л14. Шины

    💥Как делают шины? Производство шин! Как делают шины на заводе?💥Скачать

    💥Как делают шины? Производство шин! Как делают шины на заводе?💥

    Маркировка автомобильной шины Все секреты в одном видеоСкачать

    Маркировка автомобильной шины Все секреты в одном видео

    Маркировка внедорожных шин: U/T, H/T, A/T, M/T – что это значитСкачать

    Маркировка внедорожных шин: U/T, H/T, A/T, M/T – что это значит

    Колеса и шины.Скачать

    Колеса и шины.

    Структура шин данных BMW e70 e71Скачать

    Структура шин данных BMW e70 e71

    Что лучше диагональные или радиальные шины? ▶️ преимущества и недостаткиСкачать

    Что лучше диагональные или радиальные шины? ▶️ преимущества и недостатки

    лекция 403 CAN шина- введениеСкачать

    лекция 403  CAN шина- введение

    ✅ КАКОЙ ВЫБРАТЬ ЛУЧШИЙ РИСУНОК ПРОТЕКТОРА? НАПРАВЛЕННЫЙ СИММЕТРИЯ АСИММЕТРИЧНЫЙСкачать

    ✅ КАКОЙ ВЫБРАТЬ ЛУЧШИЙ РИСУНОК ПРОТЕКТОРА? НАПРАВЛЕННЫЙ СИММЕТРИЯ АСИММЕТРИЧНЫЙ
Поделиться или сохранить к себе:
Технарь знаток