Пока все колёса вращаются, тормозные силы, действующие на транспортное средство, могут быть предсказаны с помощью Уравнения (3-19). Тем не менее, тормозная сила может увеличиться только до предела трения сцепления между шиной и дорогой.
Есть два основных механизма, ответственных за трение сцепления, как показано на Рисунке 3.4. Поверхностное сцепление возникает в результате межмолекулярных связей между резиной и заполнителем в дорожном покрытии. Сцепление компонентов является большим из двух механизмов на сухих дорогах, но значительно снижается, когда дорожная поверхность покрыта водой; следовательно, на мокрой дороге трение уменьшается.
Рис. 3.4. Механизмы трения между шиной и дорогой [4].
Механизм запаздывания (гистерезиса) в материале представляет потери энергии в резине, так как она деформируется при скольжении по заполнителю дороги. Трение материала (или гистерезисное) не сильно зависит от воды на поверхности дороги, таким образом, лучшее сцепление на мокрой поверхности достигается с шинами, которые имеют в протекторе высокогистерезисную резину.
И трение сцепления, и гистерезисное трение зависят от скольжения небольшой величины, происходящего при взаимодействии шины с дорогой. Дополнительное скольжение наблюдается в результате деформации резиновых элементов протектора шины, так как они деформируются, чтобы развивать и поддерживать тормозное усилие. Этот механизм проиллюстрирован на Рисунке 3.5. Когда такой элемент входит в контактное пятно шины, он недеформирован. Когда он доходит до центра контакта шины, для поддержания силы трения в шине должна произойти деформация. Деформация увеличивается от передней к задней части пятна контакта шины, а сила, развиваемая каждым элементом, пропорционально увеличивается в направлении спереди назад. При высоком уровне торможения элементы на заднем краю пятна контакта начинают скользить по поверхности, а тормозное усилие от шины может начать снижаться.
Рис. 3.5. Тормозные деформации в пятне контакта.
Из-за этих механизмов тормозное усилие и скольжение проявляются совместно. Сила торможения (выраженная в виде коэффициента F x /F z ) в зависимости от скольжения показана на Рисунке 3.6.
Рис. 3.6. Зависимость тормозного коэффициента от скольжения [4].
Скольжение шины определяется отношением скорости скольжения в пятне контакта (скорость движения вперёд — скорость окружности шины) к скорости движения вперёд:
V = Скорость движения вперёд транспортного средства
ω = Скорость вращения шины (рад/сек)
Коэффициент торможения, получающийся из трения сцепления и гистерезисного трения, с увеличением скольжения в зависимости от условий возрастает по величине от 10 до 20%. При мокрой дороге вклад трения сцепления уменьшается, таким образом, суммарный коэффициент ниже. Пиковый коэффициент является ключевым свойством, обычно обозначаемым μ р . Он отражает максимальное тормозное усилие, которое может быть получено от конкретной пары трения шина-дорога. При более высоком скольжении этот коэффициент уменьшается, достигая наименьшего значения при 100% скольжении, представляющего состояние полной блокировки и обозначаемого μ s . В ситуации торможения μ р соответствует наивысшей силе торможения, которая может быть создана, и которую можно достичь только теоретически, потому что в этой точке система неустойчива. Для заданного выходного уровня тормозного момента, как только колесо замедляется, чтобы достичь μ p , любое нарушение этого условия приводит к избытку тормозного момента, что вызывает дальнейшее замедление колеса. Увеличение скольжения уменьшает тормозное усилие, так что замедление колеса продолжается, и колесо приближается к блокировке. Только отпускание тормоза (как при контроле антиблокировки) может вернуть колесо к работе при μ p .
В дополнение к шине и дороге, как ключевым элементам в определении доступного трения сцепления, как показано далее, важными являются и другие переменные.
Видео:Важность скольжения шинСкачать
Круг трения
Общее влияние на боковую силу при выполнении торможения показано в области тяги на Рисунке 10.23. Отдельные кривые показывают боковую силу при заданном угле увода. При воздействии тормозного усилия боковая сила постепенно уменьшается за счёт дополнительного скольжения, создаваемого в зоне контакта при торможении.
Рис. 10.23. Зависимость боковой силы от продольной силы при постоянных углах увода.
Этот тип отображения поля тяги шины является основой для концепции «круга трения» (или эллипса трения, friction circle или friction ellipse) [11]. Признавая, что предел трения для шины, независимо от направления, будет зависеть от коэффициента трения, умноженного на нагрузку, становится ясно, что трение может быть использовано для боковой силы, или тормозной силы, или комбинации их обоих, либо в положительном, либо в отрицательном направлении. Но в любом случае не может быть общего вектора двух сил, превышающего предел трения. Таким образом, предел представляет собой круг в плоскости боковых и продольных сил. Часть круга на рисунке представляет собой круг трения для положительного квадранта поля тяги. Предел характеризуется кругом трения для шин, которые имеют в действительности одинаковые пределы для боковых и тормозных сил. Однако, некоторые специализированные шины могут быть оптимизированы для боковой тяги или тормозного сцепления с дорогой, и в этом случае пределом будет не круг, а эллипс.
Читайте также: Как узнать дату производства шин toyo
В последние годы концепция круга трения была использована как средство для оценки водителей гоночных автомобилей, с помощью ведения непрерывной записи боковых и продольных ускорений, поддерживаемых на треке. Для получения максимальной эффективности при прохождении круговой трассы шины должны постоянно работать на предельных режимах либо в повороте, либо при торможении/ускорении. Таким образом, комбинированные боковые и продольные ускорения, измеренные на машине, всегда должны выжимать предельное трение, и наиболее эффективный водитель тот, кто может наиболее точно поддерживать этот оптимум. После построения записи этих двух ускорений в полярных координатах, аналогично Рисунку 10.23, получается визуальная информация о эффективности водителя, если посмотреть на процент времени, проведённого на предельном трении.
Рисунок 10.23 иллюстрирует ещё одно наблюдение, которое часто делается в условиях комбинированной тяги. Обратите внимание, что на промежуточных углах увода вблизи 4 градусов, применение умеренных уровней тормозного усилия на самом деле увеличивает боковую силу, развиваемую при таком угле увода. Это явление показано более точно на графике на Рисунке 10.24, который показывает боковую силу и стабилизирующий момент от тяговых сил в направлениях торможения и движения [12].
Рис. 10.24. Зависимость боковой силы и стабилизирующего крутящего момента от тягового усилия.
Использование в качестве точки отсчёта значений боковой силы свободного качения (при нулевой силе тяги) видно, что при действии тормозной (отрицательной) силы боковая сила увеличивается незначительно, а стабилизирующий момент уменьшается. По сути, наличие тормозного усилия действует как придающее жёсткость конструкции шины (боковинам и/или протектору) по отношению к механизму, который создаёт боковое усилие. Снижение стабилизирующего момента предполагает значительное перераспределение поперечных сил в пятне контакта. Когда тормозное усилие возрастает до максимального значения, боковая сила уменьшается, потому что достигается предел трения. Одновременно с этим уменьшается стабилизирующий момент до точки, где он вблизи тормозного предела может на самом деле стать отрицательным. Отрицательный стабилизирующий момент пытается направить колёса в сторону большего угла увода и может негативно повлиять на стабильность при торможении, в частности, оказывая влияние на систему рулевого управления [13].
При обычном вождении наблюдаются противоположные эффекты (положительного) тягового усилия. Боковая сила уменьшается незначительно, хотя стабилизирующий момент резко возрастает. На уровнях вблизи предела трения и боковая сила, и стабилизирующий момент снижаются. Однако, в отличие от торможения стабилизирующий момент никогда не становится отрицательным вблизи границы движущей силы.
Хотя тип шины (радиальная или диагональная) и внутреннее давление оказывают значительное влияние на жёсткость в поворотах, поведение при комбинированном скольжении качественно похоже на показанное выше. Это поведение нечувствительно к скорости и зависит только от состояния поверхности, которое влияет на пределы трения.
Видео:Коэффициент тренияСкачать
Колесо и дорога. Силы действующие на колесо
Как будто все просто: вращение вала автомобильного двигателя, переданное через механизмы силовой передачи, заставляет вращаться колеса, колеса катятся по дороге; оси вращения при перекатывании колес перемещаются вперед; оси так или иначе связаны с рамой и кузовом автомобиля; значит, вместе с осями перемещается и кузов, и автомобиль. Однако такого описания недостаточно. Необходимо знать, какие силы действуют на колесо. Вот они:
- вращающий момент Мк, заставляющий колесо вращаться и создающий тяговую силу Рк
- сила тяжести, соответствующая нагрузке на колесо Gk
- вертикальная реакция дороги Z и горизонтальная X, действующая в направлении движения (т.е. обратном действию силы Рк).
Тяговая сила Рк (в кг) равна подводимому к колесам вращающему моменту Мк (в кгм), деленному на радиус качения колеса (в м):
Момент Мк зависит от крутящего момента двигателя Ме, передаточных чисел в системе силовой передачи и коэффициента полезного действия n силовой передачи, который для обычных автомобилей равен 0,9. Чем больше передаточные числа в коробке передач и в заднем мосту, тем больше подводимый к колесам вращающий момент:
где iк — передаточное число в коробке передач;
i0 — передаточное число главной передачи.
Рис. Слева — силы, действующие на колесо. Справа — дорога толкает колесо, ось перемещается вперед и толкает рессоры, рессоры толкают кузов.
Таким образом, тяговая сила на ведущих колесах автомобиля:
Читайте также: Авторевю шины 2018 2019
Теперь можно высказать два на первый взгляд неожиданных положения:
- Движение колеса происходит под действием силы (реакции) X, т. е. дорога толкает автомобиль. Выше был приведен пример действия силы прыгуна на площадку и силы противодействия площадки. Точно так же и ведущее колесо автомобиля отталкивает от себя назад дорогу с силой Рк, а дорога противодействует этому силой (реакцией) X. Реакция X толкает вперед колесо, а оно через ось и подвеску толкает вперед весь автомобиль.
- В каждое отдельно взятое мгновение ближайшие к дороге точки колеса неподвижны, не перемещаются относительно поверхности дороги. Более того, если бы они перемещались, автомобиль не двигался бы, а колесо скользило бы по поверхности дороги. Происходило бы то, что называется на языке автомобилистов буксованием колеса.
Чтобы точки контакта колеса с дорогой были неподвижными, требуется хорошее сцепление шины с поверхностью дороги.
Сцепление шины с дорогой оценивают так называемым коэффициентом сцепления Ф («фи»).
Рис. Величина коэффициента сцепления зависит от состояния поверхности дороги.
Коэффициент сцепления равен отношению наибольшей величины реакции X (при проскальзывании, буксовании колеса) к величине реакции Z:
Величина коэффициента сцепления Ф колеблется в пределах 0,5—0,8 для сухих твердых дорог и 0,15—0,4 для обледенелых или мокрых. Из приведенного графика видно, как влияет состояние поверхности асфальтовой дороги на коэффициент сцепления.
Коэффициент сцепления на сухой дороге лишь незначительно изменяется в зависимости от изменений нагрузки на колесо, давления в шине и скорости движения, но на мокрой или обледенелой дороге с увеличением скорости происходит резкое уменьшение коэффициента сцепления, так как шина не успевает выдавливать влагу, находящуюся в области контакта шины с дорогой, и остающаяся пленка влаги облегчает скольжение шины.
Необходимое для движения сцепление шины с дорогой связано с нежелательным трением. Но о каком трении может идти речь, если соприкасающиеся точки неподвижны? При внимательном изучении ближайшего к поверхности дороги участка шины видим, что:
- шина сжимается, деформируется; происходит местное сжатие, а затем снова расширение шины; сжатие и расширение содержащегося в камере шины воздуха, взаимное перемещение частиц резины и частиц воздуха вызывает трение между ними;
- к точке контакта шины с дорогой все время подходят сжатые элементы шины, а от точки отрыва шины от дороги отходят, наоборот, растянутые; так как резина эластична и прочна, шина не разрывается, а только сжимается и растягивается в области контакта ее с дорогой, поэтому происходит некоторое скольжение отдельных частиц шины по поверхности дороги и, как следствие, трение;
- в углублениях поверхности дороги и рисунка протектора находится воздух; набегая на дорогу, участки протектора сплющиваются, резина заполняет углубления, выжимает из них воздух и как бы присасывается к поверхности дороги, и на отрыв шины от дороги требуется затрата дополнительной силы.
Рис. Работа колеса вызывает деформацию (изменение формы) шины.
Нетрудно сделать вывод, что описанные явления трения или сопротивления качению должны усиливаться при понижении давления в шине (так как при этом увеличиваются ее деформации) и при возрастании окружной скорости шины, а также при неровной или шероховатой поверхности дороги и при наличии заметных выступов и углублений в рисунке протектора шины.
Это на твердой дороге. А мягкую или не очень твердую дорогу, даже размягченный жарой асфальт, шина проминает и на это тоже приходится затрачивать часть тяговой силы.
Сопротивление качению колеса оценивается коэффициентом сопротивления качению f.
Коэффициент сопротивления качению равен отношению величины силы Pf, необходимой для качения колеса, к величине реакции Z:
Величина коэффициента сопротивления качению f возрастает с уменьшением давления в шине, с увеличением скорости движения (при малых скоростях увеличение коэффициента f незначительно) и с увеличением неровности дороги. Изменение величины f ясно видно из рассмотрения графика зависимости коэффициента f от скорости движения и давления в шине (на асфальте). Ниже даны значения этого коэффициента для различных видов дорог для скорости 30—60 км/час и при давлении в шинах около 2,5 кг/см2.
Коэффициент сопротивления качению | |
Асфальт | 0,015 |
Булыжник в хорошем состоянии | 0,018 |
Былыжник в плохом состоянии | 0,023 |
Брусчатая мостовая | 0,017 |
Гравийное шоссе в хорошем состоянии | 0,022 |
Гравийное шоссе в плохом состоянии | 0,028 |
Ровная твердая проселочная дорога | 0,023 |
Проселочная дорога среднего качества | 0,026 |
Тяжелая проселочная дорога | 0,03 |
Песок средней рыхлости | 0,15 |
Снег утрамбованный | 0,029 |
Читайте также: Шины victra z1 ma z1 205 r w94
Так как сопротивление качению находится в прямой зависимости от величины коэффициента можно установить, что если для движения автомобиля по асфальту требуется определенная сила, то для движения по булыжнику и по гравийному шоссе нужна в 1,5 раза большая сила, для движения по проселку — в 2 раза, по песку — в 10 раз.
Из уравнения следует, что сила сопротивления качению равна:
или, так как реакция Z равна нагрузке на колесо,
Подсчитав силы сопротивления качению для отдельных колес и сложив их, получаем силу сопротивления качению автомобиля. Хотя сопротивление качению передних, задних, левых и правых колес неодинаковое, без большой ошибки допустимо подсчитывать суммарную силу сопротивления качению для движения с определенной скоростью по уравнению:
где Ga — полный вес автомобиля в кг.
Рис. Коэффициент сопротивления качению увеличивается с возрастанием скорости и с понижением давления в шинах.
На преодоление сопротивления качению затрачивается энергия и нужно уметь вычислить расходуемую при этом мощность.
Прежде чем перейти к мощности, вспомним, что отрезок пути S, пройденный автомобилем в единицу времени t, называется скоростью движения:
Путь измеряют метрами или километрами, а время — секундами или часами; поэтому единицами измерения скорости будут либо метры в секунду (Vа м/сек), либо километры в час (Vа км/час), причем 1 м/сек = 3,6 км/час.
Мощность вычисляют как отношение работы (PS кгм) ко времени (t сек.); так как отношение пути ко времени выражает скорость, то мощность можно вычислить и как произведение силы на скорость:
Значит, чтобы узнать мощность Nf в л.с., расходуемую на сопротивление качению, нужно помножить силу сопротивления Pf на скорость движения va в м/сек и разделить на 75, так как 1 л. с. соответствует механической работе в 75 кгм в 1 сек. Если скорость V выражена в км/час, нужно умножить полученное уравнение мощности на 1000 (метров в километре) и разделить на 3600 (секунд в часе):
Для того чтобы автомобиль двигался, тяговая сила Рк на ведущих колесах должна быть меньше силы сцепления колес с грунтом (иначе колеса будут скользить, буксовать) и не меньше силы сопротивления движению, которую при езде по горизонтальной дороге с невысокой постоянной скоростью (когда сопротивление воздуха незначительно) можно считать равной силе сопротивления качению, иначе колеса не смогут вращаться и двигатель перестанет работать.
В зависимости от числа оборотов вала двигателя и от открытия дроссельной заслонки крутящий момент двигателя изменяется. Почти всегда можно сочетать различные значения момента двигателя и передаточных чисел в коробке передач таким образом, чтобы, как сказано выше, тяговая сила была меньше силы сцепления и не меньше силы сопротивления движению.
Для небыстрого движения по асфальту всем автомобилям требуется значительно меньшая сила тяги, чем они могут развить даже на высшей передаче, поэтому ехать нужно с прикрытой дроссельной заслонкой. Как говорят, автомобили в этом случае обладают большим запасом тяги.
На проселочной дороге дело несколько меняется. Легковые автомобили, если нет ухабов, могут ехать на высшей передаче, но при сильном нажатии на педаль подачи топлива. У грузовых автомобилей (с полной нагрузкой) разница между максимальной тяговой силой на высшей передаче и силой сопротивления качению на проселке очень невелика. Поэтому незначительное отклонение от скорости, соответствующей наибольшему крутящему моменту двигателя (40—32 км/час), вызывает необходимость включения следующей передачи (вспомним, что при уменьшении числа оборотов или подачи топлива крутящий момент уменьшается, а вместе с ним и тяговая сила).
Для движения легковых автомобилей по песку тяговой силы на прямой передаче вообще недостаточно, а на второй передаче движение возможно лишь с определенной скоростью (32—26 км/час) и при полной подаче топлива; практически нужно ехать на первой передаче. Автомобиль ГАЗ-51 способен идти по песку только на первой передаче, а ЗИЛ-150 — только на первой и второй передачах. Следует оговориться, что есть такие пески, по которым обычный автомобиль и на первой передаче проехать не может.
Сила сцепления на сухом асфальте больше тяговой силы на любой передаче у любого из рассматриваемых автомобилей. Но на мокром или обледенелом асфальте движение на пониженных передачах и трогание с места без буксования возможно на легковых автомобилях только при неполном открытии дроссельной заслонки, т. е. со сравнительно небольшим крутящим моментом двигателя; для грузовых автомобилей это относится к первой и второй передачам.
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
🎦 Видео
Трение каченияСкачать
Сила трения покоя и сила трения скольженияСкачать
Круг трения и блокировка дифференциалаСкачать
Сила тренияСкачать
Урок 39 (осн). Сила трения. Коэффициент тренияСкачать
Как работает колесоСкачать
Понимание сопротивления качению!Скачать
Сила трения. Трение покоя | Физика 7 класс #23 | ИнфоурокСкачать
Сила трения (для чайников)Скачать
Минимальное трение шин)Скачать
Сравнение сил трения, скольжения и каченияСкачать
Различные виды тренияСкачать
Урок 40 (осн). Трение качения. Трение в жидкостях и газахСкачать
§ 7.2. Трение каченияСкачать
Управление мотоциклом: Круг тренияСкачать
Как работает колесо (часть 2): трение каченияСкачать
Сила трения покоя, скольжения, качения.Скачать
§ 7.1. Трение скольженияСкачать