Современные ТРД с осевым компрессором имеют лучшую экономичность, чем двигатели с центробежными компрессорами.
Уменьшение удельного расхода топлива в двигателях с осевыми компрессорами объясняется тем, что осевой компрессор дает высокую степень сжатия воздуха и имеет более высокий коэффициент полезного действия, чем центробежный компрессор.
Двигатели с осевыми компрессорами имеют меньший удельный вес, чем двигатели с центробежными компрессорами.
Это объясняется большим расходом воздуха через единицу площади поперечного сечения. Площадь для прохода воздуха у осевого компрессора составляет 70 — 80% от площади поперечного сечения, а у центробежного компрессора только около 30%.
Кроме этого, воздух, входящий в осевой компрессор, имеет большие скорости движения — до 200 м/сек вместо 120 — 140 м/сек у центробежного компрессора, что также увеличивает секундный расход воздуха через компрессор.
Недостатками осевого компрессора по сравнению с центробежным являются:
— большая склонность к неустойчивой работе, что усложняет эксплуатацию ТРД с осевыми компрессорами:
— большая возможность вибрации (колебания) лопаток:
— возможность поломки лопаток, изготавливаемых из алюминиевых сплавов, пр.и попадании в нагнетатель песка, снега, льда;
— большая сложность осевого компрессора в производстве;
— меньшая боевая живучесть; попадание осколка снаряда выводит осевой компрессор из строя.
Видео:Анохин В. Г. Компрессор ТРД. ПомпажСкачать
Центробежный компрессор в трд
ЦЕНТРОБЕЖНЫЙ КОМПРЕССОР В АВИАЦИОННЫХ ТУРБОРЕАКТИВНЫХ ДВИГАТЕЛЯХ
Рассмотрим устройство центробежного компрессора (рис. 13, 14). В литом корпусе на специальных подшипниках вращается колесо. Перед колесом укреплены неподвижные направляющие аппараты, которые создают предварительную накрутку потока воздуха перед входом в колесо — отклоняют поток воздуха от осевого направления движения, при этом уменьшается скорость воздуха относительно колеса. Назначение закрутки воздуха -увеличить быстроходность колеса (повысить число оборотов).
Рис. 13. Принципиальное устройство центробежного компрессора
Колесо состоит из крыльчатки и заборных лопаток.
Крыльчатка представляет собой диск, имеющий лопатки (идущие по радиусу) с одной или обеих сторон диска.
Если лопатки имеются на одной стороне, то такое колесо называется колесом с односторонним входом воздуха. Если лопатки имеются с. обеих сторон колеса, то оно называется колесом с двухсторонним входом воздуха.
Чаще всего колесо делают с двухсторонним входом воздуха для увеличения количества воздуха, прогоняемого компрессором в одну секунду,
К крыльчатке наглухо крепятся заборные стальные лопатки, загнутые в сторону вращения колеса, для обеспечения безударного входа воздуха в колесо.
Воздух из колеса попадает в диффузор, а из него через коленообразные патрубки поступает в камеры сгорания.
Рис. 14. Детали колеса компрессора
Главная рабочая часть центробежного компрессора — колесо. Оно получает энергию от газовой турбины и передает ее воздуху. За счет этой энергии повышается давление воздуха о колесе и увеличивается абсолютная скорость его движения.
Часть энергии, передаваемая колесом воздуху, тратится на преодоление гидравлических сопротивлений, возникающих при движении воздуха.
Рассмотрим подробнее движение воздуха по колесу. Поток воздуха закручивается неподвижным направляющим аппаратом и подходит к колесу со скоростью с 1 (рис. 15). Треугольник скоростей на входе в колесо составляют:
с 1 — абсолютная скорость входа воздуха на лопатки;
— и — окружная скорость вращения лопатки (знак минус показывает, что вращение колеса происходит навстречу движения частиц воздуха);
w 1 — скорость движения частиц воздуха относительна лопатки.
Колесо вращается с очень большими оборотами: 10000—15000 в минуту (160—250 оборотов в секунду). Окружная скорость на ободе колеса достигает 450— 500 м/сек и более.
Лопатки колеса, захватив частицы воздуха, увлекают их и заставляют вращаться с такой же большой скоростью.
Обозначим через т массу частички воздуха и через r радиус, где находится эта частичка.
Читайте также: Запчасти для компрессора кратон 260 24
Величина радиуса будет все время увеличиваться при движении частички от входа в колесо до выхода из него.
Центробежная сила, отбрасывающая частичку воздуха к краю колеса, определяется по известному из физики уравнению:
Значит, чем дальше будет частица воздуха удаляться от оси вращения колеса, тем больше будет ее окружная скорость и, следовательно, больше будет центробежная сила, действующая на частицу воздуха и сжимающая ее. Масса же воздуха состоит из бесчисленного количества этих элементарных частиц.
Рис. 15. Треугольники скоростей воздуха на входе и выходе колеса
Таким образом, воздух, прогоняемый колесом, сжимается, кроме того, увеличивается абсолютная скорость его движений.
Треугольник скоростей на выходе из колеса будет составлен скоростями:
с к — абсолютная окружная скорость воздуха на выходе из колеса;
u k — окружная скорость лопатки на краю колеса;
w k — относительная скорость выхода воздуха из колеса.
Вектор относительной скорости отклонен против вращения колеса, так как воздух отстает от вращающегося колеса. Величина отставания воздушного потока на выходе из колеса зависит главным образом от числа и длины лопаток колеса . Чем больше лопаток, тем труднее частице воздуха отклониться от радиального направления. Но чем больше лопаток, тем меньше канал для прохода воздуха и тем труднее воздуху проходить по этому каналу.
На выходе из колеса воздух имеет давление 2,2 — 2,5 кг/см и абсолютную скорость порядка 450 — 550 м/сек, полученные за счет энергии, сообщенной воздуху колесом. С такими параметрами воздух поступает в диффузор. Диффузор представляет расширяющийся канал, в котором происходит уменьшение скорости потока воздуха. Он служит для преобразования скоростной энергии в потенциальную, т. е. в энергию давления воздуха.
Рис. 16. Лопаточный диффузор
Диффузоры делятся на два типа: щелевые и лопаточные. Конструктивно они выполняются вместе (рис. 16, 17).
Щелевой диффузор представляет собой кольцевую щель между колесом и лопаточным диффузором; величина щели колеблется (в различных ТРД) в пределах 12 — 30 мм.
В щелевом диффузоре происходит некоторое выравнивание скоростей воздушного потока, (что улучшает устойчивость работы компрессора) и понижение скорости движения воздуха.
Рис. 17. Схема щелевого и лопаточного диффузоров
Лопаточный диффузор .представляет решетку из лопаток, расположенных по окружности.
Между лопатками образуются расширяющиеся каналы.
Установка лопаток сокращает путь частиц воздуха, что уменьшает потери на трение. При движении воздуха по расширяющемуся каналу лопаточного диффузора уменьшается скорость и повышается давление воздуха (так же как в спрямляющем аппарате осевого компрессора).
Параметры воздуха (с, р, Т) в элементах центробежного компрессора изменяются следующим образом (рис. 18). В неподвижном направляющем аппарате скорость воздуха увеличивается, давление и температура падают — участок а — 1.
В колесе за счет затраты энергии происходят сжатие воздуха и увеличение скорости его движения; температура воздуха повышается как за счет сжатия, так и за счет тепла трения (сечение в — в).
Наконец в диффузоре и коленообразных патрубках за счет уменьшения скорости потока воздуха его давление и температура увеличиваются (сечение 2 — 2).
Рис. 18. Изменение параметров воздуха в элементах центробежного компрессора
Примерные величины давления, температуры и скорости воздушного потока и элементах центробежного компрессора показаны на рис. 18.
Видео:Центробежный компрессорСкачать
Турбореактивный двигатель с центробежным компрессором
Турбореактивные двигатели, или сокращенно ТРД, по праву можно считать основой современной авиации. Именно ими оснащены практически все военные и большинство гражданских самолетов, хотя есть и исключения. ТРД относятся к семейству газотурбинных двигателей (ГТД) – тепловых машин, вырабатывающих энергию за счет сжигания топлива в камере сгорания. Все моторы этого семейства объединяет общий принцип работы и схожая конструкция с обязательным наличием турбины, о чем легко догадаться по их названиям.
Читайте также: Количество масла в компрессоре кондиционера приора
История авиационных реактивных двигателей началась в 30-хх годах, когда стало понятно, что возможности поршневых двигателей, первоначально устанавливаемых на самолеты, далеко не безграничны и уже достигли своего предела. Громоздкие и тяжелые ДВЗ стали обузой для конструкций самолетов, в которых играет роль каждый лишний килограмм, а использование воздушного винта для создания тяги не давало возможности преодолеть звуковой барьер. Именно тогда конструкторы и обратили свое внимание на небольшие и легкие газотурбинные двигатели в целом и турбореактивные двигатели в частности. Отсутствие у них воздушного винта, создание тяги только за счет реактивных сил, а также небольшой вес и компактные размеры сделали ТРД основными силовыми установками в авиастроении, и они остаются таковыми и сейчас.
Видео:Многоступенчатый центробежный компрессорСкачать
Устройство и принцип работы
Как и все газотурбинные двигатели, ТРД состоит из следующих основных узлов: компрессора, камеры сгорания, приводной турбины и сопла. Среди видов ГТД есть моторы, оснащенные также рабочим валом, который использует свободную энергию, не потраченную на вращение турбины, для вращения воздушных винтов или других элементов, создающих тягу. У ТРД такого вала нет, что значительно упрощает его конструкцию и снижает вес.
Компрессор турбореактивного двигателя может быть осевым или центробежным. Первый меньше по размерам и более эффективный, поэтому в большинстве случаев именно ему и отдается предпочтение. Центробежный компрессор постепенно уходит в прошлое авиации из-за своей громоздкости, единственное его преимущество – более простая конструкция (в случае, когда он одноступенчатый). Именно центробежным компрессорам оснащались первые реактивные двигатели, но при появлении их осевых конкурентов им пришлось уступить свое место.
Центробежный компрессор – это колесо с закрепленными на нем лопатками, которые при вращении захватывают воздух и, придавая ему угловое вращение, отбрасывают его на периферию – к стенкам корпуса. Это действие центробежных сил, отталкивающих поток воздуха от центра вращения.
В центре центробежного компрессора установлен ротор с лопатками, который находится в корпусе (диффузоре). Корпус в свою очередь тоже оснащен лопатками, только уже неподвижными, и помещен в еще один, внешний, корпус, выполненный в форме улитки. Воздух сначала попадает в ротор, где под действием подвижных лопаток закручивается и сжимается. Затем он попадает на неподвижные лопатки и при этом еще больше сжимается, после чего под давлением проходит «улитку» и попадает в камеру сгорания.
Камера сгорания ТРД может быть кольцевой, трубчатой или комбинированной. Кольцевая камера «обволакивает» корпус, ее формируют стенки наружного и внутреннего кожуха. На входе установлена жаровая труба, на конце которой – завихрители с форсунками.
Трубчатая камера сгорания представляет собой отдельную жаровую трубу, соединенную с наружным кожухом. В ее передней части размещаются завихрители и форсунки, а вся ее поверхность имеет перфорацию для более качественного сжигания топлива и воздушного охлаждения. В случае, если жаровых труб несколько, они соединяются между собой патрубками, обеспечивающими одновременный процесс горения во всех трубах. Для воспламенения топливного заряда используются запальные устройства, расположенные в камерах.
Комбинированная камера сгорания – это кольцевая камера, в которой размещаются жаровые трубы.
Основой любого ГТД является турбина – вал, на котором закреплены металлические диски с рабочими лопатками на концах. Перед рабочими лопатками устанавливаются неподвижные, которые обеспечивают осевую подачу газов, выпрямляя их движение. Совокупность направляющих и рабочих лопаток – это одна ступень, и таких ступеней на турбине может быть несколько: от 1 до 6. Как несложно заметить, принципы работы компрессора и турбины похожи, только в первом случае лопасти компрессора сами приводят в движение поток воздуха, а во втором – газы вращают лопатки турбины. Скорость вращение турбины, а значит и компрессора, составляет 20-30 тыс. об//мин.
Читайте также: Компрессор konor gqr 60 tg r 134а
Ступень турбины (статор и ротор в сборе). 1 Колесо турбины, 2 Вал, 3 Лопатки, 4 Направляющий аппарат.
Выпуск продуктов сгорания наружу обеспечивается выпускным устройством, которое состоит из конусоподобной выпускной трубы, стойки и сопла. Обычные реактивные сопла имеют постоянный диаметр и направлены в определенную сторону. На некоторых двигателях используются регулируемые сопла, в которых можно менять сечение в зависимости от режимов работы, а также контролировать направление реактивной тяги за счет их поворотов.
Но не только механика дает возможность управлять ТРД. Современные моторы оснащены сложнейшей системой автоматики, которая постоянно контролирует параметры работы, устанавливает нужные режимы в зависимости от нагрузок. Пилот управляет двигателем с помощью одного только рычага, но на каждое его движение отзываются множество датчиков.
Принцип работы ТРД характерный для двигателей всего семейства ГТД. Компрессор затягивает воздух в корпус, сжимает его и направляет в камеру сгорания. От количества воздуха и его давления на выходе из компрессора напрямую зависит степень сжатия, а значит и мощность мотора. В камере сгорания устанавливаются топливные форсунки, через которые подается топливо – авиационный керосин. Топливо воспламеняется, образуя газы, обладающие высоким зарядом энергии. Расширяясь, продукты сгорания действуют на лопасти турбины, вращая их, а сама турбина при этом вращает компрессор, закрепленный с ней на одном валу. Но далеко не вся энергия потребляется турбиной, большая ее часть под давлением вырывается наружу, проходя через сопло, что создает реактивную тягу.
Процесс сжигания топлива в ТРД непрерывный, что отличает эти типы двигателей от поршневых 2- или 4-тактных моторов, у которых в каждом рабочем цикле есть рабочий такт, которому предшествует воспламенение топливного заряда.
Видео:Центробежный воздушный компрессор DENAIR Видео 2018Скачать
Использование двигателя. Преимущества и недостатки
Современные ТРД практически не оснащаются центробежными компрессорами. В сравнение с осевым у центробежного компрессора каждая ступень сжатия более эффективная, но общее КПД при этом ниже. Это объясняется тем, что многоступенчатые центробежные компрессоры имеют очень сложную конструкцию и большие габариты, что увеличивает и их вес, тогда как многоступенчатость осевых компрессоров – не проблема. Именно поэтому они нашли широкое применение не в авиации, а «на земле» в силовых установках, используемых в системах вентиляции, на газотранспортных магистралях и т.д. Из самолетов, на которых использовались реактивные двигатели с центробежными компрессорами, можно отметить HeS 3, которым был оснащен первый реактивный самолет, английский Power Jets W.1, который использовался в первом британском истребителе, Rolls-Royce Nene, ставшим в последствии прототипом советского РД-45. Использование таких двигателей было характерным для «зари» авиастроения, сейчас же практически везде используются двигатели с осевыми компрессорами.
Несмотря на то, что реактивные двигатели устанавливаются на большинстве современных самолетов, все же и они далеко не идеальные. Есть у них и недостатки: высокая себестоимость и повышенный расход топлива. Первый недостаток объясняется тем, что для изготовления отдельных элементов реактивного двигателя нужны сверхпрочные и жаростойкие материалы, которые бы могли работать при очень высоких давлениях и температурах. Что касается расхода топлива, он действительно выше, чем, например, у его ближайшего «родственника» турбовинтового двигателя, ну а от расхода топлива напрямую зависит стоимость перелетов. Поэтому в случаях, когда нет необходимости развивать сверхзвуковые скорости, самолеты оснащаются ТВД, что дает возможность снизить цены на перелет. В основном это пассажирские и грузовые самолеты, которые летают на большие расстояния. А вот в военной авиации практически всегда используются ТРД, ведь здесь не так важна экономия, как скорость.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
🔥 Видео
Детали компрессора на 250 000 оборотов - для микро ТРДСкачать
Пятиступенчатые центробежные компрессоры Dresser RandСкачать
Центробежный компрессорСкачать
Как работает центробежный газовый компрессорСкачать
Суперчарджер. Приводной компрессор | Science Garage На РусскомСкачать
Турбина или Компрессор? Суперчарджер против Турбочарджера!Скачать
Рабочий процесс в осевой ступени турбиныСкачать
Работа двухконтурного реактивного двигателяСкачать
Центробежные компрессоры SeAH в РоссииСкачать
Прочарджер! Лучшее от Турбины и Компрессора!Скачать
Все о компрессорахСкачать
Технологический газовый центробежный компрессор Sundyne API 617Скачать
Компрессор! Как выбрать Суперчарджер! Roots Lysholm или CentrifugalСкачать
Как работает турбореактивный двигатель / How does a turbojet engine work Angel 342Скачать
Как разработает турбина #машина #машины #авто #автомобиль #автомобили #школа #москва #тачки #любовьСкачать
Учебный фильм "Трубопроводный транспорт газа" - Часть 2Скачать