Цифровое управление освещением

Цифровое управление освещением

Система цифрового управления освещением помимо самого источника света включает в себя:

  • контроллер цифровой шины управления (КШ);
  • цифровую шину управления (ШУ);
  • командные органы (КО);
  • исполнительные органы (ИО).

Существуют также различные шлюзы, переходные модули для сопряжения системы управления с другими системами диспетчеризации или информационными системами, а также для взаимодействия с аппаратами, изначально не рассчитанными на работу в составе цифровой системы управления освещением.

Контроллер цифровой шины — электронный блок, обладающий памятью, средствами обмена данными с оператором-программистом, модулями обработки сигналов от КО, модулями формирования команд для ИО. Обычно устанавливается в щите освещения или управления освещением, но встречаются КШ для открытой установки.

Цифровая шина управления — физическая среда, предназначенная для обмена цифровыми сигналами между КШ и КО, КШ и ИО, обычно представляет собой кабель с медными жилами небольших сечений. Применяются как силовые, так и контрольные и сигнальные кабели. В особых случаях также используется кабель типа «витая пара».

Существует несколько вариантов организации топологии сети, в данном случае применяются кольцо и шина. При использовании протокола DALI (Digital Addressable Lighting Interface — цифровой адресуемый осветительный интерфейс) — только шина.

Командные органы — аппараты, используемые для выработки команды на изменение режима работы ОУ, подлежащей управлению. Побуждением на выработку команды может быть действие оператора (нажатие на кнопку выключателя или ИК-пульта, поворот регулятора, выбор пункта меню на сенсорной панели) или изменение условий в окружающем пространстве (изменение освещенности, появление в зоне видимости движущегося объекта и т. п). Командные органы обычно имеют адрес (свой личный или адрес группы).

Исполнительные органы — аппараты, которые по команде КШ передают управляющее воздействие непосредственно ОУ для изменения режима ее работы. Для светильников с газоразрядными лампами и светодиодных модулей ИО совмещен с ЭПРА.

Для светильников с ГЛН низкого напряжения ИО совмещен с питающим лампу электронным трансформатором. Для светильников с лампами накаливания или ГЛН на сетевое напряжение ИО представляет собой регулятор напряжения, исполненный в виде пенала рядом со светильником либо установленный в щите. Исполнительный орган так же как и КО, имеет адрес на шине, присвоенный индивидуально или группе.

При использовании цифровой системы диспетчеризации здания система управления освещением обычно строится на основе протокола DALI, который принят ведущими производителями светотехнического оборудования, такими как Philips, OSRAM, Helvar, Tridonic. Atco, Zumtobel Staff в качестве промышленного стандарта.

Цифровое управление освещением

В системе DALI, так же как в аналоговом протоколе 0 — 10 В, интенсивностью светового потока светильника управляет электронный балласт. В случае, если управлению подлежат светильники с обычными ЛН или ГЛН 220 В, где изначально не было никакого электронного балласта, регулятор напряжения лампы выносится к светильнику или встраивается в него. Командные органы также подключаются к шине DALI.

Каждый балласт и каждый КО обладает своим собственным адресом. Всего один контроллер DALI может работать с 64 устройствами, максимум в 16 управляемых отдельно группах. Контроллеры DALI далее интегрируются в общую шину диспетчеризации здания (такую, как Е1В, LonWorks, C-Bus и т.п.) через соответствующие шлюзы. Для небольших объектов возможно и отдельное функционирование DALI-контроллера, которому помимо непосредственно управления освещением могут быть поручены управление приводами жалюзи и ворот, а также простейшие системы безопасности.

Сигнал управления DALI передается по двум проводам на напряжении 15 В (это может быть любая медная пара, будь то витая пара или дополнительно проложенный силовой кабель). Максимальная длина линии управления не должна превышать 300 м, соблюдать полярность не обязательно.

Управляемые по DALI балласты могут сообщать контроллеру о неисправностях, таких как перегоревшая лампа или срабатывание тепловой защиты самого балласта. Контроллер DALI может хранить до 16 световых сцен, вызываемых по необходимости.

Одним из преимуществ DALI является то, что все КО и ИО могут быть гальванически разделены, нет никакой необходимости вести к выключателям ту же фазу, что и к светильникам, да и разводка силовых групп по светильникам вовсе не обязана совпадать с логически определенными группами управления (световыми сценами).

Принципиальная схема управления освещением по цифровой системе представлена на рис. 1.

Цифровое управление освещением

Рис. 1. Управление освещением по цифровой схеме

В роли КО выступают: датчики присутствия/движения, кнопочные и дистанционные выключатели и регуляторы уровня, таймеры, датчики освещенности, сенсорные панели, ИК-приемники, управляемые с пульта, а также компьютеры, управляющие инженерными системами здания. Сенсорные панели могут быть как специально разработанными для протокола DALI, так и сопрягаемыми с ним через шлюзы.

Видео:Установка ПУЛЬТА УПРАВЛЕНИЯ СВЕТОМ который заменяет ШТРОБЛЕНИЯ стен и настенный выключательСкачать

Установка ПУЛЬТА УПРАВЛЕНИЯ СВЕТОМ который заменяет ШТРОБЛЕНИЯ стен и настенный выключатель

Световые сцены могут вызываться с помощью любых КО, будь то сенсорные панели или даже обычные выключатели, традиционно используемые для неуправляемого освещения.

В роли ИО выступают: ЭПРА газоразрядных ламп, электронные трансформаторы 220/12 В для галогенных ламп накаливания, пенальные и щитовые диммеры для ламп накаливания и галогенных ламп 220 В, ПРА светодиодных светильников, приводы ворот, жалюзи, контроллеры микроконтакторов, релейные модули. Существуют также переходные модули, позволяющие DALI-контроллеру управлять аналоговыми балластами 0 — 10 В.

Достоинства и недостатки цифрового управления освещением.

Цифровое управление освещением

Необходимость собственно управления освещением не нуждается в доказательстве, всё определяется лишь волей заказчика. В то же время не всегда требуется построение именно цифровой системы, ибо цена ее в настоящее время достаточно высока по сравнению с аналоговой. Поэтому рассмотрим плюсы и минусы цифровых систем и возможные области их применения.

— простота организации — организация групп управления никак не влияет на организацию питания светильников. Количество светильников на фазу ограничивается лишь требованиями ПУЭ по максимальному числу ламп соответствующей мощности;

— гибкость структуры — если требуется, можно изменить логику управления светильниками, число и состав групп всего лишь изменением программы КШ. Перекладывать какие-либо кабели нет необходимости. Подключение КШ через шлюз к компьютеру или другому интеллектуальному устройству позволяет иметь практически неограниченное количество световых сценариев и частоту их смены;

  • расширяемость — возможность управления множеством мелких групп светильников, до одной штуки в группе, без существенного усложнения структуры;
  • простота монтажа — подключение новых устройств не сопровождается дополнительными операциями, кроме установки самих устройств, подключения к шине и изменения программы КШ;
  • унификация — все КО и ИО поключаются по единому принципу, совместимы с компонентами других производителей для того же протокола;
  • безопасность — нет необходимости подводить сетевое напряжение к выключателям, достаточно напряжения шины, которое всегда меньше допустимых 50 В;
  • удобство эксплуатации — ИО могут сообщать контроллеру о возникших неисправностях, а тот — формировать предупреждающий сигнал диспетчеру.
  • высокая цена компонентов — цифровые устройства имеют пока более высокую цену, чем аналоговые. Часто поставщики еще и завышают цену «за престижность», «модность» системы. Косвенно это также приводит к увеличению опасности воровства компонентов, установленных в зонах неконтролируемого доступа;
  • высокая стоимость ядра. Даже простая цифровая система требует начального комплекта аппаратов для своего функционирования. Управление даже одним светильником потребует и КШ, и ИО, и КО;
  • необходимость высокой квалификации персонала. Для проектирования, ремонта и наладки цифровых систем требуются особые технические знания и высокая квалификация. Персоналу, ими обладающему, необходима большая заработная плата, чем проектировщикам-наладчикам аналоговых систем.

Анчарова Т. В. Осветительные сети производственных зданий.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Технология KNX для систем автоматизации

При обсуждении тематики домашней автоматизации нельзя обойти стороной давно существующие на рынке технологии. Сегодня KNX является одним из наиболее распространенных решений для использования в средних и крупных системах автоматизации домов, офисов и коммерческих помещений. Он появился на рынке более двадцати лет назад и сегодня поддерживается многими крупными производителями электротехнического оборудования.

Цифровое управление освещением

В ассоциацию KNX сегодня входят более 350 компаний по всему миру. Число сертифицированных продуктов — более 7000. Общее число установленных в мире устройств, отвечающих этому стандарту, составляет по некоторым оценкам более десяти миллионов. Наиболее известными производителями оборудования KNX сегодня являются ABB, Gira и Schneider Electric.

Цифровое управление освещением

Основными ключевыми особенностями KNX является гарантированная совместимость продуктов разных производителей, единый программный инструмент (Engineering Tool Software, сокращенно — ETS) для планирования, разработки и реализации проекта, а также официальные курсы подготовки и сертификации специалистов. С технической точки зрения, решения позволяют реализовать все популярные сценарии автоматизации, включая освещение, управление климатом и безопасность.

Широко осветить данный вопрос в одном единственном материале просто невозможно и данная статья скорее может претендовать на краткое введение в технологию и обзор ее особенностей для незнакомых с ней читателей. Основная часть информации для материала была собрана из документации, источников в сети Интернет, выставок, презентаций и курсов. Однако надеемся, что статья окажется полезеной нашим читателем и позволит им оценить возможности технологии для решения собственных задач. Если данная тематика будет интересна, мы постараемся вернуться к ней уже с более подробными материалами.

По понятным причинам, полномасштабное тестирование в данном случае провести затруднительно, но без практики статья была существенно менее полезной. Познакомиться с продуктами KNX нам помог отечественный разработчик и производитель оборудования для систем автоматизации — компания Evika. Она известна своими логическими контроллерами, существенно расширяющими возможности решений не только на нашем рынке, но и далеко за его пределами, однако в этом материале мы ограничимся изучением только основных принципов построения систем на базе KNX.

Читайте также: Инструкция по соединению контактных соединений шин

Шина KNX

Видео:Дистанционное управление освещением.Скачать

Дистанционное управление освещением.

Подавляющее большинство проектов KNX основаны на использовании специальной выделенной проводной шины (витой пары), так что информация в данном материале будет относиться в основном именно к этому варианту. Все контроллеры, датчики и исполнительные устройства подключаются к проводной шине. На практике это означает необходимость разработки проекта и прокладку необходимых коммуникаций во время стройки или ремонта. Формально в стандарте существуют и другие среды передачи (в частности сеть электропитания и радиосвязь), однако они относительно редко встречаются в проектах. В качестве альтернативного варианта, не требующего прокладки дополнительной контрольной шины, достаточно часто используются схемы с выводом всех индивидуальных потребителей на общий щиток. Обе версии имеют свои плюсы и минусы. При этом допускается и их совмещение, если сохраняется соответствие спецификациям KNX.

Цифровое управление освещением

Топология проводной шины может быть выбрана достаточно гибко. Допускается использование линейных шин, дерева и звезд. Терминация здесь не требуется, но рекомендуется уделить внимание защите от перенапряжения и гроз. Базовым элементом логической структуры является сегмент, который содержит до 64 узлов. До четырех сегментов могут быть объединены в линии, которые могут быть в свою очередь объединены в область (до 15 линий). На самом верхнем уровне можно объединить в систему до 15 областей. Общее число устройств в одной сети составляет около 58 тысяч.

Рекомендуется использовать для шины кабель 2×2×0,8, хотя собственно для работы KNX достаточно одной пары линий данных. Вторая пара может использоваться для подачи дополнительного питания (некоторые устройства могут питаться от самой шины KNX) или как резерв.

Цифровое управление освещением

При необходимости, можно использовать на сегменте несколько блоков питания. Интересно, что блок питания должен выдерживать пропадание питания до 100 мс, что повышает надежность работы системы. При создании проекта у вас есть возможность проконтролировать потребление всех устройств на линии на основании их характеристик, предоставленных производителем. Общие характеристики шины следующие:

  • максимальная длина кабелей в сегменте — 1000 м;
  • максимальное расстояние от устройства до блока питания — 350 м;
  • максимальное расстояние между двумя устройствами — 700 м;
  • минимальное напряжение на устройствах — 21 В.

Для объединения сегментов и линий используется специальное соединительное оборудование, способное выполнять функции повторителей, мостов, маршрутизаторов и фильтров пакетов. Обычно все эти функции могут выполняться одним и тем же оборудованием, а действительный алгоритм его работы записывается в момент программирования. Следующий этап масштабирования системы достигается за счет использования мостов в традиционные IP-сети.

Взаимодействие устройств по шине происходит путем обмена пакетами данных. Скорость обмена составляет 9600 бит/с, а для обработки коллизий используются технология CSMA/CA. Протокол описывает все возможные форматы информационных посылок и типов данных используемых переменных. В частности, в пакете указываются адреса передатчика и приемника, сами данные и контрольная сумма. Общая длина пакета обычно не превышает 23 байт. Время передачи составляет 20-40 мс. Отзывчивость зависит от загруженности шины и числа устройств в ней. В случае простых вариантов контроля освещения, работа выключателей визуально не отличается от прямого управления. Но в крупных нагруженных сетях, в том числе и объединенных по IP, могут потребоваться дополнительные операции оптимизации в зависимости от требований заказчика.

Предусмотрена схема подтверждения доставки и повторных отправок в случае неудачи, некоторые возможности приоритезации. Интересно, что в стандарте, кроме традиционных бинарных, целых и текстовых переменных, напрямую записаны форматы для работы с яркостью, температурой, давлением, временем, мощностью и другой информацией. Наиболее популярные варианты команд и типы данных включают в себя переключение, управление приводом (включить движение, остановка, шаг), диммирование (относительное, остановка, абсолютное значение) и передачу физических величин (например, температуры).

Штатных средств для контроля состояния устройств на шине здесь нет. Некоторые производители предусматривают в своих продуктах функцию Heartbeat, но обрабатывать эти сигналы нужно будет внешним контроллером.

Устройства

Разнообразие устройств данного стандарта можно оценить по представленным на сайтах крупнейших производителей каталогам. В частности последние версии у ABB и Schneider Electric имеют примерно 200 страниц, а у Gira — около 100 (часть каталога о решениях KNX). Конечно, это достаточно грубая оценка, но она вполне дает представление об интересе производителей к данной продукции. Даже одно перечисление возможных групп товаров займет не одну строку: реле (включая управление шторами, жалюзи, воротами), диммеры, кнопки и выключатели, бинарные и аналоговые входы и выходы, датчики (движения, освещенности, температуры, энергопотребления, погоды, протечки воды, дыма, утечки газа), управление климатом (нагрев, вентиляция, кондиционирование), сенсорные панели, мосты в другие системы (IP, DALI, SMS, телефон, электронная почта, домофон, охранные системы), системные компоненты (блоки питания, мосты, интерфейсы программирования, контроллеры).

Цифровое управление освещением

При этом модели могут быть как устанавливаемые в стандартные распределительные коробки, так и для монтажа на DIN-рейку. Во втором случае часто используются устройства на большое число каналов управления (в частности реле и диммеры). Обычно устройства подключаются только к шине KNX и непосредственно датчикам или управляемым устройствам, дополнительное питание в этом случае не требуется.

Все устройства KNX сертифицируются. Для программирования обязательно иметь соответствующий устройству файл конфигурации. Обычно он загружается с сайта производителя и интегрируется в программу ETS. В этой же программе вы можете изменить конфигурацию устройств по предусмотренной производителем схеме. В частности можно выбирать режимы работы выключателей и двоичных входов, скорости регулировки диммеров, корректировать температуру в термостатах.

В подавляющем большинстве случаев, устройства имеют в своем составе несколько объектов, которые являются минимальной единицей для участия в группах, приема и отправки сообщений, настройки параметров и других элементах проекта.

Стоит отметить, что гибкость технологии позволяет использовать одни и те же аппаратные устройства для реализации разных функций, что достигается возможностью загрузки в них разных внутренних программ. В качестве примера можно привести трансформацию блока с несколькими реле в устройство управления шторами.

Адресация и команды

Базовая конфигурация KNX-проектов может считаться децентрализованной — обмен данным между устройствами осуществляется напрямую, без непосредственного участия какого-либо отдельного специализированного контроллера. Такой подход имеет как свои плюсы, так и минусы и нужно рассматривать вопрос в применении к конкретным задачам проекта. Например, таким образом можно реализовать автономный сегмент для управления освещением в доме на базе запрограммированных сцен и алгоритмов. Однако надо отдавать себе отчет в том, что сами устройства относительно простые и при необходимости более сложных алгоритмов взаимодействия потребуется установка дополнительного контроллера. Дальнейшее описание в этом материале касается именно штатных возможностей протокола KNX.

Цифровое управление освещением

Адресация устройств обычно использует схему «область-линия-устройство». Размер поля адреса — 16 бит. При этом собственные адреса необходимо прописывать в каждое устройство на этапе программирования системы через ETS. Заметим, что данная операция требует физического доступа (обычно — нажатия на кнопку на корпусе), а после установки адреса можно осуществлять все операции удаленно. В дальнейшем эти адреса можно изменить. В последних поколениях были добавлены индивидуальные серийные номера, что более удобно для программирования, и дополнительная защита для удаленного чтения-записи данных устройства (проверка 4-байтового кода).

Важными логическими элементами системы являются групповые адреса. Они представляют собой собранные по функциональному признаку устройства. При этом датчик/сенсор (например, кнопка) может отправлять команды только в одну группу, а исполнительные устройства (например, реле) могут принимать информацию сразу в нескольких группах. Отметим, что все устройства в группе должны иметь совпадающие типы данных. Например, нельзя связать отправку бинарного сигнала с выключателя для регулировки яркости. Однако часто бывает так, что одно и то же устройство может отправлять или получать данные разных типов, что может помочь в данной ситуации. Например, диммер может предоставлять интерфейс для нескольких групповых объектов и понимать команды включить/выключить, увеличить/уменьшить яркость и установку заданной яркости в процентах.

Использование такой схемы позволяет реализовать упрощенное управление группой устройств путем отправки одного сообщения на групповой адрес вместо индивидуальной адресации. Ограничения на максимальное число групповых адресов обычно индивидуальны и указаны в спецификациях оборудования. Для упрощения структуры можно разбивать групповые адреса по определенным категориям. Например, по схеме «этаж-комната-освещение». Размер поля группы также составляет 16 бит.

Заметим, что кроме непосредственно отправки команд исполнительным устройствам, предусмотрены и другие типы сообщений, например получение статуса. В частности, таким образом можно реализовать сохранение индивидуального управления лампой одной кнопкой (нажатие вызывает переключение) с одновременным участием этого источника света в сцене.

Здесь стоит обратить внимание на то, что в схеме не предусмотрено никаких программ, в том числе логических действий, проверки условий, задержек, циклов и других операций. Иногда встречаются устройства, внутри которых присутствуют базовые логические операции, а также модели, способные выступать в роли внешних логических блоков на несколько операций (например, сравнений).

Отдельный класс устройств представляют собой контроллеры. Они оборудованы собственным процессором, адаптером шины KNX, а также могут иметь и другие интерфейсы. Здесь никаких ограничений нет, все определяется разработчиком. Эти устройства способны выполнять множество дополнительных операций, включая работу с таймерами и временем, сценами, проверкой логических условий (например, по состоянию датчиков), взаимодействие с внешними устройствами и другими системами.

Видео:Управление освещением в интерьере! Система автоматизации освещения и все что нужно знать.Скачать

Управление освещением в интерьере! Система автоматизации освещения и все что нужно знать.

Читайте также: Зимние шины himalaya r17

Программирование

Все программирование системы KNX осуществляется в программе ETS (Engineering Tool Software). Это обеспечивает унификацию и совместимость решений разных производителей.

Рабочим документом в ней является проект. При этом можно использовать несколько проектов в одной сети (например, в крупном здании) или несколько сетей с одним проектом (например, в однотипных номерах отеля). Непосредственная работа с проектом не требует доступа к инсталляции, однако для загрузки конфигурации и диагностики, конечно, нужно будет подключиться к сети KNX. Осуществляется эта операция или через локальные (USB или RS-232) интерфейсы или IP-мост.

Программа работает только с операционными системами Windows, интерфейс есть на нескольких европейских языках, варианта на русском нет (однако он может использоваться в файлах конфигурации устройств). Бесплатная версия позволяет тренироваться на проектах из пяти устройств, а полноценная работа требует обязательного лицензирования с использованием USB-ключа. Стоимость последней версии на момент написания статьи составляла €200 для версии Lite (до 20 устройств) и €1000 для версии Professional, в которой ограничения отсутствуют.

В общем случае процесс программирования системы автоматизации состоит из нескольких шагов:

  • Создание файла проекта;
  • Импортирование информации об используемых устройствах в каталог программы;
  • Создание структуры здания;
  • Добавление устройств из каталога в проект;
  • Выбор адресов, настройка параметров, добавление комментариев для устройств;
  • Создание структуры групповых адресов;
  • Распределение устройств по групповым адресам;
  • Загрузка проекта в систему автоматизации;
  • Проверка работоспособности, диагностика.

При создании проекта нужно обратить внимание на выбор типа шины, а также схемы организации адресов. В частности для небольших проектов можно работать с двухуровневой адресацией, а для крупных может быть более удобна реализация в виде трех уровней. При подготовке этого материала использовался второй вариант.

Как мы говорили выше, для успешного программирования устройства необходимо, что бы в каталоге присутствовало его описание в специальном формате. Эти файлы конфигурации предоставляет производитель, или же можно воспользоваться встроенным в программу ETS электронным каталогом.

В случае использования некоторых типов «сложных» устройств, логика работы с которыми не укладывается в возможности программного обеспечения ETS, производитель предлагает дополнительные утилиты для работы с ними, которые интегрируются в основную оболочку программы.

При создании структуры здания предусмотрено использование таких элементов как этажи, лестницы, комнаты, коридоры, монтажные шкафы. Далее вы используете устройства из каталога для размещения их на получившейся структуре здания. Это позволяет удобно создавать практически любые конфигурации, что способствует упрощению дальнейшей работы над проектом. Конечно, надо понимать, что в общем случае такое разделение в некотором смысле условно, поскольку физической привязки устройств к комнатам может и не быть (например, в случае централизованной схемы). Однако с точки зрения сохранения порядка в проекте, особенно если над ним работает несколько сотрудников, продумать заранее данный момент очень полезно.

При этом не нужно забывать, что с точки зрения шины KNX и непосредственных физических соединений проект имеет собственную, отличную от логической структуры здания, топологию. На верхнем уровне стоят области, в них присутствуют линии, а на линиях уже подключены устройства.

Во многих случаях, установку адресов устройств можно доверить программе. При необходимости в дальнейшем их можно будет изменить. Перед переходом к следующему шагу, необходимо проверить конфигурации всех использованных устройств, поскольку от них зависят выполняемые сценарии и доступные функции. Здесь же для удобства можно добавить комментарии.

Групповые адреса имеют собственную, отличную от здания и топологии, логическую структуру. При этом вы можете использовать, в частности, группировку по этажи или по функциональному назначению. Для трехуровневой схемы можно предусмотреть и дополнительное деление, например по комнатам.

Далее на нижнем уровне создаются уже сами групповые адреса и в них добавляются требуемые объекты устройств. Как мы писали выше, здесь важно соблюдать соответствие типов данных, а также настроить флаги.

Отметим, что до этого момента инсталлятору не требовались непосредственно сами устройства и работающая сеть KNX для работы над проектом

Для загрузки проекта в установленную систему автоматизации потребуется подключить к ней компьютер по одному из поддерживаемых интерфейсов. Непосредственно для работы этот интерфейс не требуется, но часто он остается в инсталляции для удобства внесения изменений в конфигурацию.

Загрузка конфигурации в может осуществляться в нескольких режимах, включая полный (в нем записываются и адреса, что требует нажатий на кнопку на каждом устройстве) и частичный (записываются только изменения конфигурации, поскольку адреса уже должны быть прописаны, система работает с ними и нажимать на кнопки не нужно).

Заметим, что полностью восстановить («прочитать») файл конфигурации проекта из работающей системы невозможно. Так что если вы являетесь заказчиком и не уверены в своем инсталляторе желательно предусмотреть передачу этих данных после завершения настройки.

Ну и конечно не стоит забывать, что после завершения программирования системы автоматизации желательно проверить ее работоспособность. Здесь могут быть полезны такие функции ETS как монитор шины и монитор групповых адресов. В первом случае обязательно подключение к KNX через мосты в RS-232 или USB, а контроль групповых операций возможен и через IP.

Практическое знакомство

Для тестирования нам не нужно было проводить какие-либо предварительные работы, однако в реальных проектах подготовительная часть не менее важна, чем реализация. Вам потребуется подробно описать требования заказчика, определиться с функциями системы, выбрать устройства, разработать план кабельной структуры, продумать возможные варианты резервирования и будущего расширения. В данном случае, большинство изменений, таких как «добавить лампочку» или «перенести панель управления», после прокладки кабелей достаточно трудоемки и очень желательно их избежать. С другой стороны, поменять выключатель с парой кнопок на модель на четыре кнопки несложно. А при коммутации нагрузок в общий щиток, перенести управление светом через реле на диммер также вполне возможно. В любом случае, еще раз обращаем внимание на важность этой части работы над проектом.

Информация подготовительного этапа обязательно потребуется для определения используемых в проекте устройств и их количества, создании структуры здания, топологии сети, схемы групповых адресов и непосредственно программирования логики работы системы.

При определенном опыте, грубые предварительные оценки проектов небольших масштабов можно получить достаточно быстро. Например, в виде «двенадцать каналов реле для света, три канала диммирования, десять выключателей». При использовании централизованного варианта проводки, логика для этой системы может быть реализована очень гибко.

Цифровое управление освещением

Для практического знакомства мы собрали небольшой стенд из оборудования компании Evika: дросселя питания Choke-KNXv3, контроллера LogicMachine4, восьмиканального универсального блока UIO8-KNXv3, четырехканального LED-диммера LED4-KNX, адаптера для выключателя ABB серии Busch-Jaeger. Дополнительно использовался внешний блок питания на 24 В 0,8 А, четыре реле с блоками для установки на DIN-рейку, провода и колодки.

Расскажем немного про сами устройства, большинство из которых рассчитаны на установку на DIN-рейку. Дроссель занимает на ней три места и используется для разделения сигналов шины KNX и питания. В нем предусмотрено использование до трех источников питания 24—29 В, есть прямой выход питания 24 В для дополнительной нагрузки, разъем для подключения аккумуляторной батареи и два светодиодных индикатора. Устройство обеспечивает максимальный ток в 640 мА и имеет защиту от перегрузки.

Видео:Управление освещением ч.1Скачать

Управление освещением ч.1

Контроллер LogicMachine4 в данном материале использовался нами как мост IP—KNX, что составляет только одну из его многочисленных функций. Его корпус имеет формат 4 DIN, требует дополнительного внешнего питания 24 В, оборудован несколькими интерфейсами (включая 1-Wire, USB, RS-485 и DALI), имеет быстрый процессор, 128 МБ оперативной памяти и 4 ГБ энергонезависимой. Возможности устройства заслуживают отдельной статьи или даже нескольких, так что мы постараемся к нему еще вернуться.

Универсальный блок ввода-вывода формата 2 DIN позволяет реализовать на каждом из восьми своих каналов любую из пяти функций: аналоговый вход, бинарный вход, импульсный счетчик, детектор импульса (короткое или длительное нажатие), шаговый диммер и бинарный выход. Режимы и их параметры программируются через ETS. Для управления внешними реле потребуется подвести к модулю дополнительное питание. Модель может быть интересна с точки зрения сокращения используемых блоков и увеличения гибкости в инсталляциях среднего размера.

LED-диммер также имеет формат 2 DIN и предоставляет четыре канала для ШИМ-управления светодиодными лентами с напряжением питания 24 В с общим плюсом. Для него необходимо подключение внешнего источника питания исходя из параметров лент, а максимальный ток на одну линию составляет 5 А. Устройство имеет настройку частоты модуляции и возможность программирования двенадцати сцен с выбором эффекта перехода между ними.

Адаптер для выключателей позволяет превратить эти стандартные электроустановочные изделия в контроллер для шины KNX. Питание устройство получает по шине KNX. Поддерживается подключение двух кнопок выключателя и еще трех внешних через специальный кабель. Также в адаптере присутствует датчик температуры, который может использоваться для реализации функции термостата. Кнопки программируются как бинарные датчики, а также могут работать для диммирования или с определением короткого и длительного нажатий.

Читайте также: 84v шины что это

Даже при создании тестовой конфигурации мы очень рекомендуем для шины использовать фирменные кабели с жилами диаметром 0,8 мм, а не близкую на первый взгляд стандартную сетевую витую пару. Это сбережет вам и время и нервы, поскольку с фирменными самозажимными разъемами Wago эти провода работают идеально, а все остальное заставит вас помучаться. В каждом разъеме предусмотрено четыре места для провода, что позволяет реализовать возможности гибкой шинной архитектуры KNX. В общем случае, данные разъемы считаются одноразовыми, но при определенной сноровке вытащить провод из них можно. Конечно для стационарных инсталляций этого лучше не делать.

Собственно сборка системы не вызывает затруднений у имеющего базовые навыки электромонтажа специалиста. На используемом оборудовании дополнительно присутствуют винтовые зажимы и многоразовые зажимы с плоским пружинным контактом для кабелей питания и входов/выходов. В них можно подключать одножильные провода в широком диапазоне — от обычной витой пары до 0,75 мм² и более.

На компьютер мы установили ETS5 с лицензией Demo, которой нам будет вполне достаточно для знакомства с системой. Обратите внимание, что ETS в некоторых аспектах отличается от большинства привычных программ для работы с документами. Все рабочие данные программа хранит во внутренней базе данных на компьютере, где она установлена. Для обмена файлами между разными системами или пользователями требуются явные операции экспорта и импорта проектов. Здесь нельзя открыть одновременно несколько файлов. Все вносимые правки сразу же отражаются в проекте. Истории изменений и возможности «отката» не предусмотрено. Это, безусловно, требует повышенного внимания при работе с программой. Также очень желательно использовать монитор с разрешением не менее FullHD, поскольку для многих операций требуется иметь доступ сразу к нескольким окнам. По этой причине, приведенные далее скриншоты желательно рассматривать в полном размере.

На первом шаге создаем новый проект, выбираем название, тип шины и адресацию.

Цифровое управление освещением

Далее скачиваем с сайта производителя устройств конфигурационные файлы и добавляем их в каталог программы. Некоторые производители, у которых большой ассортимент продукции, в каталоге используют многоуровневую группировку по типу устройств (например, Свет — Светодиоды). Заметим, что для знакомства с возможностями устройств в программе не обязательно иметь их в наличии.

Цифровое управление освещением

Устройств у нас мало, так что делать сложную структуру здания не обязательно. Ограничимся одним этажом, одной комнатой и коридором.

Цифровое управление освещением

Далее открываем одновременно окна топологии и каталога и добавляем три устройства на нашу единственную линию шины. Адреса устройства получают автоматически.

Цифровое управление освещением

Теперь можно расставить устройства по комнатам, но можно отложить эту операцию и на попозже.

Цифровое управление освещением

На следующем этапе необходимо проверить и настроить параметры всех устройств и их объектов. Для LED-диммера мы запрограммируем три внутренние сцены и параметры для их автоматического проигрывания.

Цифровое управление освещением

Использовать выключатель в нашем случае будем для режима «ночь», так что настроим его первый вход для отправки «0» (команды выключения) при замыкании контакта.

Цифровое управление освещением

А для UIO8 потребуется больше настроек. По умолчанию все каналы у него отключены и в дереве устройства нет никаких объектов, кроме Heartbeat. Четыре последних канала у нас будут работать как бинарные выходы для реле.

Цифровое управление освещением

Обратите внимание, что выходы имеют множество опций, включая начальное состояние, инверсию и таймеры. Кроме того, для каждого из них можно создать парный виртуальный объект, который доступен для записи и работает с логической операцией «и»/«или».

Видео:Беспроводное управление освещением ПУ-МК: распаковка, подключение, советы.Скачать

Беспроводное управление освещением ПУ-МК: распаковка, подключение, советы.

Цифровое управление освещением

Первые четыре канала будут использоваться как входы. На первом и втором стоят кнопки без фиксации, к третьему у нас подключен выключатель с двумя положениями, а четвертый работает в режиме аналогового входа с переменным резистором.

Цифровое управление освещением

При выборе режимов каналов в устройстве автоматически появились соответствующие объекты со своими параметрами. В частности для выключателя настроим отправку 1 при замыкании и 0 при размыкании, для кнопок — переключение при замыкании, для аналогового входа важным является максимальное напряжение (ставим здесь 24 В), а также режим отправки телеграмм — при изменении состояния или по таймеру.

Цифровое управление освещением

Переходим к групповым адресам. Трехуровневая структура в нашем проекте конечно избыточна, но особого неудобства это не вызывает. У нас только пять органов управления, так что достаточно будет ограничиваться пятью групповыми адресами. Заметим, что мы попробовали придумать непростые сценарии и по этой причине нам в некоторых местах не хватило кнопок.

Цифровое управление освещением

В первом мы используем выключатель, три линии LED, первое реле (предположим, что к нему подключены светильники в доме), а второе реле у нас будет отвечать на освещение в саду, так что у соответствующего выхода в UIO8 включим инверсный режим. Отметим, что данные реле включать (выключать) нам уже нечем, так что схема интересна только для демонстрации.

Цифровое управление освещением

Вторая будет использоваться для запуска и остановки проигрывания светодиодных сцен от переключателя на третьем канале UIO8.

Цифровое управление освещением

Третья группа — установка яркости светодиодной ленты (всеми каналами сразу, для получения белого цвета) от аналогового регулятора на четвертом канале UIO8.

Цифровое управление освещением

Четвертая и пятая группы совместно последними кнопками и реле будут эмулировать управление воротами. Для этого первая кнопка отправляет «1» при нажатии, вторая «0» при нажатии, второе реле инвертирует принимаемый сигнал, а также есть задержки в одну секунду на выполнение команд включения для корректной работы механизмов. В реальном проекте, скорее всего, потребуются таймеры или датчики положения, а также режим «стоп».

Теперь настало время для загрузки проекта в систему автоматизации. Для этого нужно вернуться на стартовый экран ETS и на закладке Bus настроить интерфейс, через который будет осуществляться работа с шиной. В нашем случае это мост в IP, реализованный через LogicMachine4.

Цифровое управление освещением

Если загрузка производится в первый раз, необходимо прописывать адреса во все устройства. Для этого нужен будет физический доступ к ним для нажатия кнопки программирования. В зависимости от особенностей проекта, возможно будет удобнее осуществить эту операцию заранее, промаркировать все элементы и потом монтировать оборудование на объекте.

Цифровое управление освещением

В дальнейшем, когда устройства уже получили адреса, изменение конфигурации можно будет проводить уже без физического доступа к ним. Заметим, что поддержка IP-интерфейса позволяет работать с системой удаленно, однако нужно обязательно позаботиться о дополнительной защите сети (например, через технологии VPN), поскольку сам мост не имеет никаких средств контроля доступа.

Цифровое управление освещением

Встроенные средства диагностики позволяют проконтролировать работу групповых адресов, а также прямо из программы отправлять сообщения в группы.

В целом во время тестирования нам не встретились какие-либо существенные проблемы. Наиболее трудоемким моментом, на наш взгляд, является правильное составление адресных групп, но и с ним можно справиться если заранее продумать требуемые сценарии и функции системы автоматизации и подобрать наиболее эффективно подходящее под них оборудование. Также здесь будет полезно знание особенностей устройств, поскольку часто они имеют богатые возможности настройки параметров и опций работы.

Заключение

Прежде всего, напомним, что технология KNX сама по себе является только «нервной системой» для проектов автоматизации. Ее несомненными сильными сторонами являются широчайшие возможности по поддержке различных сценариев и устройств, стандартизация и сертификация оборудования, особое внимание к надежности решений и активное сообщество профессионалов.

Многие из описанных в многочисленных маркетинговых материалах ситуаций (включая удаленное управление, охрану, экономию энергии и расширенную автоматизацию) требуют выхода за пределы самой технологии — например, использования в проектах специализированных многофункциональных контроллеров, блоков сопряжения интерфейсов и другого оборудования. Однако именно KNX способна обеспечить их эффективное взаимодействие с используемыми в решении базовыми исполнительными устройствами, датчиками и органами управления.

С практической точки зрения, KNX ориентирована не на рынок «сделай сам» (DIY) — хотя, конечно, при наличии определенного опыта и финансов вы сможете ее использовать, — а для профессиональных инсталляторов, работающих на объектах среднего и крупного масштабов в частном и коммерческом секторах, когда важно обеспечить надежную и бесперебойную работу решений и минимизировать дополнительное обслуживание.

Видео:Ящик управления освещением.Скачать

Ящик управления освещением.

Если говорить про базу технологии, то на первый взгляд она может показаться морально устаревшей — медленная последовательная шина, необходимость программирования адресов устройств, отсутствие Plug-and-Play, базовый набор сообщений, отсутствие протоколов безопасности и непростая система программирования. С другой стороны, подобные характеристики не имеют смысла без применимости к конкретным задачам и функциям, а практика показывает, что правильно реализованные проекты на базе KNX вполне устраивают заказчиков.

Вопрос стоимости самих продуктов в данном случае не играет главной роли, поскольку оценки имеют смысл только для проектов в целом с учетом разработки, установки, настройки и эксплуатации. Но учитывая большое число участников процесса (включая саму ассоциацию, курсы сертификации, производителя оборудования, поставщика, проектировщика, дизайнера, инсталлятора, инженера и монтажника), ясно, что доступной назвать ее будет сложно. В любом случае разница со многими другими технологиями для сегмента DIY обычно будет в разы не в пользу KNX, но сравнивать решения только по этому параметру, конечно, некорректно.

Благодарим специалистов компании Evika за помощь при подготовке статьи

В статье использованы иллюстрации из документации компании ABB

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле

    🎦 Видео

    Управление освещениемСкачать

    Управление освещением

    Импульсное реле. Схема подключения. Управление освещением из нескольких мест.Скачать

    Импульсное реле. Схема подключения. Управление освещением из нескольких мест.

    Беспроводное управление освещением 433МГцСкачать

    Беспроводное управление освещением 433МГц

    Курс по управлению освещением, диммированию по DALIСкачать

    Курс по управлению освещением, диммированию по DALI

    Управление освещением складаСкачать

    Управление освещением склада

    Дистанционное управление светом и не только.Скачать

    Дистанционное управление светом и не только.

    Управление освещением в умном домеСкачать

    Управление освещением в умном доме

    Как работает ящик управления освещением ЯУОСкачать

    Как работает ящик управления освещением ЯУО

    Импульсные реле для управления освещением в доме.Скачать

    Импульсные реле для управления освещением в доме.

    Блок дистанционного управления 3 канала.Скачать

    Блок дистанционного управления 3 канала.

    Как подключить пульт дистанционного управления 4-канальный.Скачать

    Как подключить пульт дистанционного управления 4-канальный.

    Импульсное реле. Управление освещением в доме и квартире. Реле света бистабильное. СхемаСкачать

    Импульсное реле. Управление освещением в доме и квартире. Реле света бистабильное.  Схема

    Типовые схемы управления освещениемСкачать

    Типовые схемы управления освещением

    Casambi: всё, что нужно знать. Обзор революционной системы беспроводного управления освещениемСкачать

    Casambi: всё, что нужно знать. Обзор революционной системы беспроводного управления освещением
Поделиться или сохранить к себе:
Технарь знаток