Цикличная работа компрессора это

Поршневые компрессоры работают в повторно-кратковременном режиме — при достижении давления выключения pmax компрессор выключается с остановкой электродвигателя, при падении давления до давления включения pmin электродвигатель запускается, и компрессор начинает производить сжатый воздух.

Допустимая частота включений/выключений двигателя зависит от его мощности. Превышение этой частоты приводит к износу двигателя, и даже грозит выходом его из строя.

Винтовые компрессоры обычно работают или в повторно-кратковременном режиме с отсроченным выключением (переходя на холостой ход, и только через определенное запрограммированное время, при отсутствии потребления сжатого воздуха, останавливаясь), или же в непрерывном режиме, когда при отсутствии потребления компрессор переходит в режим холостого хода, и электродвигатель не выключается вообще. Кроме того, современные винтовые компрессоры обычно снабжены системами управления, одной из функций которых является подсчет количества включений/выключений двигателя — если оно за определенный промежуток времени превышает запрограммированный уровень, компрессор автоматически начинает работать в непрерывном режиме, не допуская последующих выключений двигателя.

Тем не менее, и для винтовых компрессоров желательно минимизировать даже количество переходов из холостого хода на рабочий, т.к. даже эти переключения вызывают некоторую нагрузку на подшипники и сальники винтового блока, а также и на некоторые другие части компрессора.

Для расчета цикличности переключений компрессора A, подразумевать ли под этим пуски/остановки электродвигателя, или переходы между режимами работы винтового компрессора, время работы под нагрузкой tR суммируется с временем простоя (холостого хода) tI, и на полученный результат делится время расчетного периода, в качестве которого обычно берется 1 час = 60 мин.

, где
A — количество циклов [ч -1 ]
tR — время работы под нагрузкой [мин]
tI — время простоя (холостого хода) [мин]

В случае с поршневым компрессором, если полученное количество циклов в час превышает максимально допустимое для мощности его электродвигателя значение, необходимо или увеличить объем воздушного ресивера, или увеличить разницу между давлением выключения pmax и давлением включения pmin. То же относится и к винтовым компрессорам, работающим в повторно-кратковременном режиме без задержки выключения (следует отметить, что в наши дни такие можно найти разве что в музее).

В случае с винтовым компрессором, работающим в повторно-кратковременном режиме с отсрочкой выключения, или в непрерывном режиме, полученный результат, даже в случае превышения им максимально допустимого значения, не является критичным, т.к. остановок двигателя происходить не будет. Но, как уже было сказано выше, каждое переключение между режимами работы — это небольшой стресс, а часто и систематически повторяющиеся переключения могут, в перспективе, привести к преждевременному износу компрессора. Поэтому, применительно к винтовым компрессорам, мы рекомендуем рассматривать результаты этого расчета пусть не как прямое руководство к немедленным действиям, но как повод задуматься о возможностях улучшения ситуации (т.е. уменьшения цикличности переключений).

Видео:Схема работы компрессора Atlas CopcoСкачать

Схема работы компрессора Atlas Copco

Цикличная работа компрессора это

неисправен рабочий конденсатор;

срабатывают защиты от неисправности: вентилятора конденсатора; насоса дренажной системы;

неисправно защитное реле. Проверяют значения рабочего тока электродвигателя компрессора токовыми клещами. Если значения рабочего тока соответствуют номинальным, заменяют защитное реле; если значения рабочего тока электродвигателя компрессора выше номинального, имеет место межвитковое замыкание обмоток электродвигателя компрессора. Компрессор заменяют;

срабатывание реле высокого давления из-за избыточного давления конденсации, вызванное: закрытым вентилем на нагнетательной линии; неработающим вентилятором конденсатора; избытком хладагента во внешнем блоке; неконденсирующиеся примеси в конденсаторе; недостаточное давление всасывания при пуске холодильной машины, которое может быть вызвано: недостаточным количеством хладагента; отсутствием теплопритоков на испаритель холодильной машины.

Читайте также: Перелил масло в компрессоре что делать

Отсутствие теплопритоков может быть вызвано:

механическими препятствиями на пути воздушного потока, неисправностью вентилятора воздухоохладителя; отказом соленоидного вентиля перед ТРВ;

засорением ТРВ или его неправильной регулировкой (ТРВ закрыто); отказом инвертора:

если напряжение сбалансировано, то проверяют обмотки компрессора;

диагностируют работу компрессора с инвертором, для чего включают инвертор и измеряют время до остановки инвертора из-за повышения тока. Если продолжительность работы находится в пределах 10 с, неисправностью является короткое замыкание обмоток компрессора. Если инвертор отключается через 10. 60 с, компрессор заклинило. При продолжительности работы инвертора 1. 5 мин неисправность следует искать в гидравлической схеме холодильной машины;

отказом всех соленоидных вентилей. Признаки: холодильная машина работает непрерывно, заданной температуры в помещении не достигается ни в режиме охлаждения, ни в режиме обогрева:

избытком хладагента в системе. Признаки избытка хладагента в системе могут появиться:

при недостаточном тепловом потоке к воздухоохладителю (механические препятствия потоку воздуха, отказ вентилятора внутреннего блока, обмерзание испарителя, засорение воздушных фильтров, нарастание бактериальной слизи, недостаточный тепловой поток к внутреннему блоку). В этом случае величина перегрева уменьшается, так как процесс кипения затруднен. Кипение происходит во всасывающем трубопроводе и (или) в корпусе компрессора. Температура корпуса компрессора понижается. На корпусе компрессора может появиться роса из-за конденсации влаги из окружающего воздуха или иней. Понижается уровень звука от работающего компрессора, снижается температура нагнетательного трубопровода; при излишнем охлаждении конденсатора. В основном это происходит при включении холодильной машины при пониженных температурах воздуха окружающей среды. В этих условиях увеличивается количество хладагента в конденсаторе, увеличивается величина переохлаждения на выходе из конденсатора. Значительная часть хладагента остается в конденсаторе. Снижается давление конденсации. Уменьшается количество хладагента, поступающего в воздухоохладитель. Снижается давление всасывания. Увеличивается перегрев на всасывании, повышается температура корпуса компрессора. Увеличивается шум от работающего электродвигателя компрессора;

при появлении неконденсирующихся газов в холодильной машине. При наличии небольшого количества неконденсирующихся газов в системе часть конденсатора оказывается занятой этими газами. Давление в конденсаторе повышается и увеличивается поток через дросселирующий элемент. Давление кипения в испарителе повышается. Температура нагнетания повышается. Температура корпуса компрессора повышается. Шум от работающего электродвигателя увеличивается. Значение рабочего тока увеличивается.

Переохлаждение жидкого холодильного агента при этом снижается. В связи с тем что количество сконденсировавшегося хладагента уменьшается, увеличивается перегрев на всасывании;

при неправильной регулировке ТРВ, когда он слишком открыт, температура кипения хладагента в воздухоохладителе повышается, давление всасывания увеличивается, перегрев на всасывании уменьшается. Из-за того что в конденсатор поступает больше хладагента, величина переохлаждения увеличивается. Для того чтобы избежать переполнения испарителя жидким хладагентом, действуют следующим образом. Вращая регулировочный винт, повышают перегрев до прекращения колебаний давления. Затем вращают винт влево до точки начала колебаний. После этого поворачивают винт вправо на 1 оборот (V4) оборота.

После каждой операции с ТРВ останавливают работу по регулированию на 20 мин и затем проверяют последствия;

недостатком хладагента. Недостаток хладагента может быть вызван нарушением технологии заправки холодильной машины; утечкой хладагента из системы. Внешние признаки недостатка хладагента в системе могут появиться в случае:

наличия в системе неконденсирующихся примесей. Если в системе достаточно много неконденсирующихся газов, практически весь конденсатор заполняется неконденсирующимися газами. В начальный период работы компрессора резко повышается температура на линии нагнетания и давление конденсации, но так как хладагенту конденсироваться негде, в испаритель жидкий хладагент поступает в незначительном количестве. Температура испарителя остается высокой;

Читайте также: Компрессор для промывке систем отопления

наличия в системе влаги. Если при монтаже осушение системы не производилось, влага остается в системе. Влага может попасть в систему вместе с воздухом, а также из-за нарушения технологии сушки обмоток электродвигателя на заводе — изготовителе компрессора. Нарушение технологии хранения холодильных масел приводит к их увлажнению и соответственно к появлению влаги в холодильной системе. Вода практически нерастворима в хладагентах и маслах, применяемых в кондиционерах. Во время циркуляции влаги в холодильной машине, при понижении температуры в дросселирующем устройстве влага может кристаллизоваться и закупорить отверстие этого устройства (капиллярной трубки, ТРВ). Причем кристаллизация влаги в холодильной машине обусловлена механизмом образования газовых кристаллогидратов. При давлении 0,5 МПа (5 атм.) образование газового кристаллогидрата воды с хладоном R22 начинается при температуре 12 °С.Соответственно свойства газовых кристаллогидратов обусловливают возникновение ледяных пробок в холодильной машине не при 0 °С, как следовало бы ожидать, а уже при 12 °С;

образования масляных пробок в воздухоохладителе;

наличия механических загрязнений холодильной системы. Механические загрязнения являются следствием нарушения правил монтажа: резка труб пилой, неправильное пользование риммером дают возможность циркулировать по системе медным опилкам; ржавчина, окалина (в свободном или связанном виде). Использование несовместимых хладагентов и масел, смешивание минеральных и полиэфирных масел приводит к коагуляции масел. Образовавшиеся сгустки также могут циркулировать по системе. Механические загрязнения наиболее быстро забивают фильтры фильтров-осушителей, фильтры перед ТРВ, сами ТРВ и капиллярные трубки, фильтры на входе всасывающей трубы в компрессор; недостатка хладагента, который может быть вызван неправильной регулировкой ТРВ;

отказа четырехходового клапана. Признак — вентиль переключения с охлаждающего режима на нагревательный в случае отказа начинает работать как байпас, т.е. перепускает хладагент с нагнетательной стороны на всасывающую сторону. Для проверки четырехходового клапана отсоединяют компрессор от платы инвертора. Подают питание на внутренний и наружный блоки кондиционера и включают аварийный запуск на обогрев. Через 3 мин после подачи питания проверяют наличие напряжения между контактами четырехходового клапана и платой управления. Если напряжения 220 В нет, плата управления или плата фильтра шума неисправны. Если напряжение есть, необходимо проверить исправность проводов катушки четырехходового клапана и самой катушки;

при эксплуатации систем с несколькими внутренними блоками (мультисистемы) возможны ситуации, когда какие-то внутренние блоки не включаются. Если два блока включают на охлаждение и отопление, работать будет только один, тот, который был включен первым.

Видео:Устройство и принцип работы винтового компрессораСкачать

Устройство и принцип работы винтового компрессора

Работа компрессора

Здравствуйте! Для получения сжатого воздуха и других газов применяют специальные машины, называемые компрессорами. Рассмотрим работу поршневого компрессора, цикл которого изображен на рис. 1.

В процессе 0—1 всасывающий клапан компрессора открыт и вследствие движения поршня в цилиндр засасывается воздух, причем в идеальном компрессоре поршень перемещается без трения о стенки цилиндра. Воздух поступает в цилиндр под давлением окружающей среды, поэтому работа в изобарном процессе 0—1 совершается окружающей средой. В этом процессе масса газа в цилиндре изменяется, однако при термодинамическом анализе цикла это не учитывается, так как работа в процессе 0—1 равна работе в эквивалентном изобарном процессе 0—1 с постоянной массой газа.

Процесс 1—2 соответствует адиабатному сжатию газа в цилиндре за счет механической энергии, затрачиваемой на привод компрессора. В точке 2 открывается выпускной клапан, и сжатый воздух при постоянном давлении р2 удаляется из цилиндра. В процессе 2—3 масса воздуха изменяется, однако, как и процесс 0—1, его можно считать изобарным процессом при постоянном количестве воздуха. В точке 3 закрывается выпускной клапан и открывается всасывающий, в результате чего давление воздуха на поршень падает до атмосферного давления р1 и затем описанный процесс снова повторяется.

В процессах 1—2 и 2—3 механическая энергия подводится от двигателя, а при изобарном расширении 0—1 работу совершает окружающая среда. Работа, совершаемая двигателем, на pυ — диаграмме эквивалентна разности площадей, ограниченных кривыми этих процессов, и соответствует площади цикла 0—1— 2—3—0.

Анализ цикла компрессора показывает, что работа на привод компрессора будет тем меньше, чем более полого расположена кривая процесса сжатия 1—2. Наиболее пологой (практически осуществимой) кривой сжатия является изотерма, так как нагревающийся при сжатии газ можно охлаждать лишь за счет теплообмена с окружающей средой, поэтому наиболее экономичным циклом является цикл компрессора с изотермическим сжатием 1—2′. Поскольку сжатие по изотерме необходимо производить достаточно медленно, чтобы при этом успеть отвести от газа теплоту, то такое сжатие на практике не применяют. Обычно в компрессорах применяется одно- или многоступенчатое адиабатное сжатие.

Цикличная работа компрессора это

Работу для привода компрессора при одноступенчатом сжатии можно определить как алгебраическую сумму работ в изобарных процессах 0—1 и 2—3; l0-1=p1υ1 и l2-3= -р2υ2, где υ1 и υ2 — удельные объемы соответственно в точках 1 и 2, а также работы l в адиабатном процессе 1—2.

После преобразований получим:

Цикличная работа компрессора это

При одноступенчатом адиабатном сжатии, кроме увеличения расхода энергии, с ростом конечного давления р2 значительно возрастает температура в конце сжатия, что недопустимо вследствие взрывоопасности сжимаемого газа, который содержит пары масла, поэтому при адиабатном сжатии конечное давление обычно не превышает 0,8—1 МПа. Чтобы избежать недостатков, присущих адиабатному сжатию в одноступенчатых компрессорах, применяют многоступенчатое сжатие с промежуточным охлаждением газа после каждой ступени.

Теоретический цикл многоступенчатого компрессора представлен на рис. 2. Процесс 1—8 соответствует адиабатному сжатию, а процесс 1—7—изотермическому сжатию. В первой ступени компрессора происходит сжатие по адиабате 1—2, затем воздух поступает в охладитель, где происходит изобарный отвод теплоты в процессе 2—3. В двух последующих ступенях также происходит адиабатное сжатие (процессы 3—4 и 5—6). Изобара 4—5 соответствует охлаждению воздуха после второй ступени.

Конечное состояние воздуха определяется точкой 6. Как следует из pυ — диаграммы, многоступенчатый компрессор по экономичности занимает промежуточное положение между компрессорами с адиабатным и изотермическим сжатием. Экономичность его возрастает с увеличением числа ступеней. В пределе, когда число ступеней очень велико, многоступенчатый процесс сжатия приближается к изотермическому процессу 1—7.

В настоящее время применяются компрессоры, в которых газу сообщается кинетическая энергия с помощью вращающихся лопаток, например центробежные компрессоры. Давление газа при этом повышается за счет уменьшения его кинетической энергии. Сказанное выше о преимуществах изотермического и многоступенчатого сжатия в равной мере относится и к установкам этого типа. Исп. литература: 1) Теплотехника, под редакцией А.П.Баскакова, Москва, Энергоиздат, 1982. 2) Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,»Вышейшая школа», 1976.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    📺 Видео

    Работа винтового компрессора, его принцип действия и устройство.Скачать

    Работа винтового компрессора, его принцип действия и устройство.

    Принцип работы винтового компрессораСкачать

    Принцип работы винтового компрессора

    Центробежный компрессорСкачать

    Центробежный компрессор

    Звук работы безмасляного компрессораСкачать

    Звук работы безмасляного компрессора

    9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.Скачать

    9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.

    Холодильный компрессор | Как это устроено? | DiscoveryСкачать

    Холодильный компрессор | Как это устроено? | Discovery

    Все о компрессорахСкачать

    Все о компрессорах

    Неустойчивая работа компрессора, пампаж (Павлов)Скачать

    Неустойчивая работа компрессора, пампаж (Павлов)

    Как работает ротационный компрессор Принцип работы ротационного компрессораСкачать

    Как работает ротационный компрессор  Принцип работы ротационного компрессора

    Поршневой компрессорСкачать

    Поршневой компрессор

    Устройство и принцип работы компрессора кондиционераСкачать

    Устройство и принцип работы компрессора кондиционера

    Винтовая пара (винтовой блок) компрессора: что это и принцип работы. Компрессор ABAC SPINN 15-10.Скачать

    Винтовая пара (винтовой блок) компрессора: что это и принцип работы. Компрессор ABAC SPINN 15-10.

    Проверяем работу компрессора JAS1203Скачать

    Проверяем работу компрессора JAS1203

    Работа компрессора Comaro XB 11-8Скачать

    Работа компрессора Comaro XB 11-8

    работа компрессораСкачать

    работа компрессора

    Электромагнитная муфта компрессора кондиционера - принцип работы и проверка катушкиСкачать

    Электромагнитная муфта компрессора кондиционера - принцип работы и проверка катушки

    Воздушный ресивер для компрессоров. Кратко о том, что такое воздухосборник и для чего он нужен.Скачать

    Воздушный ресивер для компрессоров. Кратко о том, что такое воздухосборник и для чего он нужен.

    Суперчарджер. Приводной компрессор | Science Garage На РусскомСкачать

    Суперчарджер. Приводной компрессор | Science Garage На Русском
Поделиться или сохранить к себе:
Технарь знаток