Зубчатые колеса при изготовлении контролируют по элементам, определяющим правильность зацепления (толщина зуба, шаг, радиальное биение зубчатого венца, правильность эвольвенты и т. д.) или комплексно путем проверки колеса в двух- или однопрофильном зацеплении с эталонной шестерней. В последнем случае определяют кинематическую точность передачи, плавность хода, боковой зазор в зацеплении и контакт зубьев. Проверяемое колесо приводят во вращение эталонной шестерней сначала в одну, потом в другую сторону при легком торможении колеса. Самопишущий прибор регистрирует на профилограмме отклонения хода колеса по сравнению с точным контрольным колесом, в свою очередь, сцепленным с эталонной шестерней.
Показателем кинематической точности является величина ΔF∑ максимального колебания угловой скорости колеса за один оборот (рис. 649). Эта ветчина отражает главным образом биение делительного цилиндра относительно базовых поверхностей колеса (цапф, посадочных отверстий).
Показателем плавности работы является среднеарифметическое значение циклических погрешностей за один оборот колеса
суммарно отражающее погрешности толщины зубьев, шага и эвольвент.
Изменение бокового зазора по углу поворота изображается расстоянием с между крайними точками профилограмм правого и левого вращения, отстоящих друг от друга на расстоянии с0, равном среднему зазору.
Контакт между зубьями проверяют нанесением тонкого слоя краски (например, берлинская лазурь) на зубья эталонной шестерни и измерением отпечатков (пятен контакта) на зубьях проверяемого колеса. Разновидность способа — нанесение на зубья проверяемого колеса слоя копоти и измерение светлых пятен, получающихся на зубьях после проворачивания.
Контакт характеризуют относительные размеры пятен (рис. 650, а):
где а — средняя длина пятен (за вычетом разрывов); В — ширина зуба; h — средняя высота пятен; H — высота зуба.
Смещение пятен к головке зуба (вид б) свидетельствует об уменьшенном диаметре начального цилиндра; смещение к ножке (вид А) — об увеличенном диаметре. Сосредоточение контакта у кромок (вид г) указывает на клиновидность или перекос зубьев.
ГОСТ 1643—81 предусматривает 12 степеней точности изготовления колес (1-я степень — высшая, 12-я — низшая точность). Для каждой степени установлены нормы кинематической точности, плавности работы и контакта зубьев колес и передач. Выбор степени точности зависит от назначения и условий работы колеса. Для высокооборотных передач наибольшее значение имеют кинематическая точность и плавность работы; для тежелонагруженных колес — размеры и расположение пятен контакта. Колеса передач общего назначения обычно изготовляют по 7-й или 8-й степени точности.
Индивидуальная проверка любого вида (поэлементная или комплексная) не вполне определяет работоспособность колес в узле. На работу передачи, помимо неточностей, регистрируемых приборами, влияют погрешности межосевых расстояний в корпусе, неточности выполнения опор корпуса (несоосность и перекосы) и погрешности парного колеса. Кроме того, при работе под нагрузкой существенно изменяются характеристики хода и контакта в результате упругой деформации зубьев и ободьев колес. Нагрев при работе заметно изменяет боковой зазор в зацеплении.
Как правило, колеса нагреваются при работе больше, чем корпус. Если корпус выполнен из чугуна (коэффициент линейного расширения которого примерно такой же, как у стали), то при нагреве зазор уменьшается. Если корпус сделан из легких сплавов, коэффициент линейного расширения которых значительно больше, чем у стали, то боковой зазор в зацеплении может увеличиться.
Пример . Рассчитать боковой зазор для чугунного корпуса (α = 11·10 –6 ) и для корпуса из алюминиевого сплава (α = 25·10 –6 ). Дано: рабочая температура колеса 100°С, корпуса 50°С. Межосевое расстояние 200 мм.
При нагреве боковой зазор в зацеплении изменяется на величину
где Δаw — разность увеличения межосевого расстояния и радиусов колес; α — угол зацепления (для стандартного зацепления α = 20°; tg α = 0,365).
т. е. зазор заметно уменьшается.
т. е. зазор незначительно увеличивается.
Возможные колебания зазора в результате неточности выполнения межосевого расстояния определяются из соотношения
где Δ’аw — допуск на межосевое расстояние.
При обычной точности (Δ’аw = ±0,05 мм)
Таким образом, в неблагоприятном случае (чугунный корпус, межосевое расстояние, выполненное по минусовому допуску) зазор в зацеплении может стать меньше номинального на 0,04 + 0,018 ≈ 0,06 мм.
Большинство факторов, влияющих на работу колес, за исключением тепловых, учитывают поверочным определением зазора в контакте между зубьями в парной установке колес в корпусе.
Зазор чаще всего проверяют щупом, заводимым в промежутки между зубьями, при нескольких положениях колес (в пределах одного оборота большого колеса). При этом способе необходим свободный подход к участку зацепления. Если подход затруднен, то зазор определяют при покачивании одного из колес (другое неподвижно закреплено) и измеряют индикатором, ножку которого приставляют к одному из доступных зубьев в направлении, касательном к окружности начального цилиндра. Измерения проводят при нескольких угловых положениях колеса.
Читайте также: Компрессор воздушный huberth 250 573 л мин 3ф х380в
В труднодоступных конструкциях зазор измеряют индикатором по стрелке, закрепленной на свободном конце вала колеса. Зазор в зацеплении находит умножением измеренных величин на отношение радиуса делительного цилиндра к плечу замера.
Для грубой проверки между зубьями пропускают свинцовую пластинку, толщину которой затем измеряют на участках, соответствующих зонам зацеплении.
Минимальный зазор, определенный одним из описанных способов, должен превышать в среднем не менее чем на 0,05 мм возможное уменьшение зазора при нагреве.
ГОСТ 1643—81 устанавливает для каждой степени точности свои нормы зазоров. Для передач средней точности общего назначения зазор можно определять из выражения
Контакт зубьев проверяют с помощью краски. Проверка является полноценной только в том случае, если ее проводят под нагрузкой, равной рабочей нагрузке.
Возможности регулирования параметров зацеплении для цилиндрических зубчатых колес весьма ограниченны. Если проверка обнаруживает недостаточность зазора или неудовлетворительность контакта, то единственным способом получения нужных параметров практически является индивидуальный подбор колес, что усложняет сборку, поэтому при проектировании зубчатых колес важно выбрать степень точности изготовления колес, допуски на размеры и форму опор с таким расчетом, чтобы без излишнего усложнения производства обеспечить взаимозаменяемость колес.
В целях увеличения долговечности и улучшения прирабатываемости зубьям парных колес обычно придают разную твердость: зубья шестерен калят, цементируют (HRC 58—62) или азотируют (HV 1000—1200), а колеса подвергают улучшению (HRC 30—35) или закалке со средним отпуском (HRC 40—45). В таких передачах шестерни следует делать большей ширины, чем колеса (рис. 651, в), с таким расчетом, чтобы зубья шестерни перекрывали зубья колес при всех возможных колебаниях осевого положения. Если ширина шестерен и колес одинакова (вид а), то при смещении колес (в результате производственных и монтажных неточностей) происходит ступенчатая выработка более мягких зубьев (вид б) и, как следствие, нарушается правильное зацепление при последующих изменениях осевого положения колес.
Видео:Лекция «Цилиндрические зубчатые передачи. Классификация передач»Скачать
Назначение и виды зубчатых передач
Назначение и виды зубчатых передач
Зубчатая передача — это механизм, который с помощью зубчатого зацепления передаёт или преобразует движение с изменением угловых скоростей и моментов.
Зубчатая пара состоит из шестерни и колеса. В большинстве случаев шестерня является ведущим элементом зубчатой пары, а колесо — ведомым, хотя встречается и обратное соотношение. Обычно шестерня имеет меньший диаметр. Как правило, при рассмотрении одинаковых параметров шестерни и колеса, шестерне присваивают индекс 1, колесу — 2. Например, Z 1 — количество зубьев шестерни, Z 2 — количество зубьев колеса.
Зубчатые колёса различаются по форме зубчатого венца, по взаимному расположению валов, по форме зуба относительно оси колеса, по форме профиля зуба, по различным отклонениям от стандартного профиля (корригирование) и т.д. Каждое сочетание перечисленных геометрических особенностей имеет свои особенности выбора конструкции, материала и изготовления колеса.
Форма венца зубчатого колеса
цилиндрические зубчатые колёса
конические зубчатые колёса
Форма зубьев относительно оси колеса
прямые, круговые и тангенциальные
Взаимное расположение осей валов
оси валов пересекаются (межосевой угол может быть как равен 90º; так и отличен от 90º)
Достоинством является малая чувствительно к отклонению межосевого расстояния и возможность изготовления простым инструментом
Модификация профилей зубьев (корригирование)
Смещение исходного контура: прямозубые — высотное, угловое; косозубые — высотное.
Смещение исходного контура: высотное, тангенциальное. Сочетание высотной и тангенциальной модификации.
Ф ланкирование применяют для быстроходных зубчатых передач в целях уменьшения сил удара при входе и выходе зубьев их из зацепления
Зубчатые передачи для преобразования вращательного движения в поступательное и наоборот осуществляются цилиндрическим колесом (шестерней) и рейкой.
Назначение и виды зубчатых передач
Зубчатая передача — это механизм, который с помощью зубчатого зацепления передаёт или преобразует движение с изменением угловых скоростей и моментов.
Зубчатая пара состоит из шестерни и колеса. В большинстве случаев шестерня является ведущим элементом зубчатой пары, а колесо — ведомым, хотя встречается и обратное соотношение. Обычно шестерня имеет меньший диаметр. Как правило, при рассмотрении одинаковых параметров шестерни и колеса, шестерне присваивают индекс 1, колесу — 2. Например, Z 1 — количество зубьев шестерни, Z 2 — количество зубьев колеса.
Зубчатые колёса различаются по форме зубчатого венца, по взаимному расположению валов, по форме зуба относительно оси колеса, по форме профиля зуба, по различным отклонениям от стандартного профиля (корригирование) и т.д. Каждое сочетание перечисленных геометрических особенностей имеет свои особенности выбора конструкции, материала и изготовления колеса.
Читайте также: Ремонт авто компрессоров для кондиционера в челябинске
Форма венца зубчатого колеса
цилиндрические зубчатые колёса
конические зубчатые колёса
Форма зубьев относительно оси колеса
прямые, круговые и тангенциальные
Взаимное расположение осей валов
оси валов пересекаются (межосевой угол может быть как равен 90º; так и отличен от 90º)
Достоинством является малая чувствительно к отклонению межосевого расстояния и возможность изготовления простым инструментом
Модификация профилей зубьев (корригирование)
Смещение исходного контура: прямозубые — высотное, угловое; косозубые — высотное.
Смещение исходного контура: высотное, тангенциальное. Сочетание высотной и тангенциальной модификации.
Ф ланкирование применяют для быстроходных зубчатых передач в целях уменьшения сил удара при входе и выходе зубьев их из зацепления
Зубчатые передачи для преобразования вращательного движения в поступательное и наоборот осуществляются цилиндрическим колесом (шестерней) и рейкой.
Зубчатые передачи могут отличаться по условиям работы зубчатого зацепления. Они могут быть как открытыми, так и закрытыми. Открытые передачи не защищены от попадания загрязняющих веществ и работают в условиях со скудной смазкой густой консистенции, либо вообще без смазки.
Зубчатое зацепление используется также в планетарных передачах, в которых ось хотя бы одного зубчатого колеса подвижна.
Видео:Детали машин. Лекция 2.2. Зубчатые цилиндрические передачиСкачать
Цилиндрические зубчатые колёса
Как видно из таблицы прямозубыми могут быть как цилиндрические, так и конические колёса.
Прямозубые колёса применяют в следующих случаях:
1) при невысоких и средних окружных скоростях,
2) при большой твёрдости зубьев (когда динамические нагрузки от неточностей изготовления невелики по сравнению с полезными),
3) также применяются в открытых и планетарных передачах.
Хотя максимальные окружные скорости прямозубых колёс могут доходить до 15 м/с, наиболее часто применяются скорости до 5 м/с. Одним из достоинств прямозубой передачи является отсутствие осевых усилий.
Косозубая передача используется обычно в следующих случаях:
1) если нельзя подобрать цилиндрическую прямозубую пару со стандартным модулем при заданных межосевом расстоянии и передаточном отношении;
2) в случае необходимости иметь малое колесо с небольшим числом зубьев при одновременно высоких требованиях к плавности и равномерности передачи;
3) при повышенных окружных скоростях колёс (при средних и высоких скоростях) и требованиях в отношении бесшумности передачи;
4) при больших передаточных отношениях
Косозубые и шевронные зубчатые колёса в зависимости от качества изготовления могут применяться при окружных скоростях до 30 м/с. Косозубые передачи иногда используются при малых окружных скоростях. Это объясняется некоторыми их преимуществами перед прямозубыми: одновременно в зацеплении находится несколько зубьев, передача вращения происходит более плавно, уменьшаются динамические нагрузки, возникающие вследствие неточности изготовления колёс. Кроме того, изготовление косозубых колёс не требует специального оборудования и оснастки. Одним из недостатков косозубых колёс является наличие осевого усилия, что вызывает необходимость усиления подшипниковых узлов и вала. Поэтому при больших осевых усилиях при передачи больших мощностей рационально применение более сложных шевронных передач, в которых осевые усилия скомпенсированы.
Цилиндрические передачи с косозубыми (винтовыми) колёсами могут быть как с параллельными осями колёс, так и с пересекающимися.
Вариант с пересекающимися осями колёс возможен в следующих случаях.
1. Оси колёс скрещиваются под углом 90º. В этом случае угол наклона зубьев ведущего колеса больше, чем у ведомого.
2. Оси скрещиваются под углом не равным 90º. В этом случае угол наклона зубьев ведущего колеса больше, чем угол наклона зубьев ведомого колеса. Возможны три сочетания колёс:
а) ведущее колесо винтовое, ведомое — прямозубое;
б) зубья обоих колес винтовые одного направления;
в) зубья обоих колес винтовые разного направления.
Цилиндрические передачи с внутренним зацеплением
По сравнению с передачами наружного зацепления цилиндрические передачи с внутренним зацеплением имеют во много раз меньшее относительное скольжение рабочих поверхностей зубьев, меньшее удельное давление между рабочими поверхностями зубьев и меньшие размеры при сравнительно большом передаточном отношении и малом межцентровом расстоянии. Однако они не получили большого распространения, поскольку они более сложны в изготовлении и при их применении не обеспечивается достаточная жесткость валов вследствие консольного расположения колеса и шестерни.
Корригирование цилиндрических зубчатых колёс
Цилиндрические зубчатые колёса могут быть как со смещением исходного контура, так и без смещения исходного контура. Эвольвентное зубчатое зацепление обладает ценным свойством: допускает успешную работу передачи и при изменении расстояния между центрами. Возможно три положения шестерни по отношению к колесу: нормальное, сближенное и раздвинутое. Таким образом, эвольвентное зацепление допускает использование для образования профиля зубьев различных участков эвольвенты, что даёт возможность осуществлять сдвиги профиля как при неизменном расстоянии между центрами (высотная коррекция), так и при раздвинутых или сближенных центрах (угловая коррекция).
Читайте также: Эскиз червячного вала редуктора в сборе
Смещение исходного контура является одним из видов модификации профилей зубьев (корригирования). Преимущества эвольвентного зацепления при использовании корригирования:
— уменьшается минимально допустимое число зубьев (увеличивается модуль при том же диаметре шестерни);
— повышается прочность (особенно изгибная, так как зуб утолщается у основания);
— повышается плавность эвольвентных передач.
К недостаткам коррегирования можно отнести уменьшение коэффициента перекрытия.
Видео:6.3 Зубчатые цилиндрические передачиСкачать
Конические зубчатые колёса
Прямозубые конические колёса применяют при невысоких окружных скоростях (до 2. 3 м/с, допустимо до 8 м/с). При более высоких скоростях целесообразно применять колёса с круговыми зубьями, как обеспечивающие более плавное зацепление, меньший шум, большую несущую способность и более технологичные. Прямозубые конические передачи обеспечивают передаточное отношение до 3.
При окружных скоростях, больших 3 м/с, в конических редукторах применяют зубчатые передачи с косыми или криволинейными зубьями, которые благодаря постепенному входу в зацепление и меньшим изменением величины деформации зубьев в процессе зацепления работают с меньшим шумом и меньшими динамическими нагрузками. Кроме того, зубчатые колёса с косыми или криволинейными зубьями лучше работают на изгиб, чем прямозубые. Однако для полного контакта зубьев этих передач требуется прилегание зубьев не только по их ширине, но и по высоте, что повышает требования к изготовлению косозубых передач и колёс с криволинейными зубьями. Благодаря своим преимуществам такие передачи могут применяться при передаточных отношениях до 5 и даже выше.
а) с прямыми зубьями, б) с косыми зубьями,
в) с криволинейными зубьями, г) коническая гипоидная передача
Рисунок 6 — Основные элементы зубьев конических колёс
Корригирование конических зубчатых колёс
Применяют в основном высотную коррекцию (корригирование) конических колёс. Также для конических колёс применяется тангенциальная коррекция, заключающаяся в утолщении зуба шестерни и утонении зуба колеса. Тангенциальная коррекция конических колёс не требует специального инструмента. Для цилиндрических колёс тангенциальную коррекцию не применяют, так как для она требует специального инструмента. На практике для конических колёс часто применяют высотную коррекцию в сочетании с тангенциальной.
Зубья конических колёс по признаку изменения размеров сечений по длине выполняют трех форм:
Видео:Лекция «Цилиндрические зубчатые передачи. Основные параметры»Скачать
Передачи с неэвольвентным профилем
Существуют и альтернативные эвольвентной системе зацепления передачи. К ним можно отнести зацепление Новикова и арочные передачи. В зацеплении Новикова уменьшены следующие недостатки эвольвентного зацепления:
— малые приведенные радиусы кривизны рабочих поверхностей;
— повышенная в связи с линейным контактом зубьев чувствительность к перекосам;
— потери на трение в зацеплении в связи с существенным скольжением.
Арочные передачи обладают следующими преимуществами по сравнению с эвольвентными:
— малая чувствительность к перекосу осей;
— повышение прочности зубьев на изгиб.
Существуют также треугольные зубчатые зацепления.
Рисунок 10 Исходный контур передачи Новикова
Звездочки, валы, шестеренки, металлообработка Ремонт шестерен в Екатеринбурге, шестерни, Любая шестерня от изготовителя, звездочки, звездочка, шестерня, стоимость шестерни, Шестерни с круговым зубом, ремонт шестерни, коническая пара, зубчатая передача, нарезка зуба шестерни, производство шестерен, Зубчатое колесо круговой зуб, нарезка кругового зуба
круговые зубъя, производство шестерен, крановое колесо, Коническое колесо, Вал шестерни, Шестерни, производство шестерен,
червяк, зубчатая пара, зубчатые колеса, венец червячный, звездочки, шестеренки, червячная пара, колесо червячное, вал червяк, маленькая шестерня,
колесико, пластиковая шестерня, шестеренка, шестеренки
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
- Правообладателям
- Политика конфиденциальности
источники:🎥 Видео
Зубчатые передачиСкачать
Зубчатые передачиСкачать
Зубчатые передачиСкачать
Что такое МОДУЛЬ шестерни? Ты ТОЧНО поймешь!Скачать
Лекция 3.2 Расчет цилиндрических зубчатых передачСкачать
2.3 Виды зубчатых колес и типы зубчатых передачСкачать
Зубчатые передачи. Боковой зазор и межосевое расстояние шестеренСкачать
Лекция «Конические зубчатые передачи»Скачать
Зубчатые передачи. Достоинства и недостатки зубчатых передач. Детали машинСкачать
Уроки Компас 3D. Взаимное вращение деталей в Сборке.Сборка зубчатых колёс.Скачать
Детали машин. Лекция 2.3. Основы расчета зубчатых передачСкачать
Детали машин. Лекция 2.4. Конические зубчатые передачиСкачать
Лекция 4. Конические зубчатые передачиСкачать
Вальная цилиндрическая прямозубая передачаСкачать
Комбинации зубчатых колесСкачать