Освоение космоса — самое удивительное из мероприятий, когда-либо проводимых человечеством. И большую часть удивления составляет сложность. Освоение космоса осложняется массой проблем, которые нужно решить и преодолеть. Например, безвоздушное пространство, проблема с температурой, проблема повторного входа в атмосферу, орбитальная механика, микрометеориты и космический мусор, космическая и солнечная радиация, логистика в условиях невесомости и другое. Но самая сложная проблема — это просто оторвать космический корабль от земли. Здесь не обойтись без ракетного двигателя, поэтому в этой статье мы рассмотрим именно это изобретение человечества.
С одной стороны, ракетные двигатели настолько просто устроены, что за небольшую копейку вы сможете построить ракету самостоятельно. С другой стороны, ракетные двигатели (и их топливные системы) настолько сложны, что доставкой людей на орбиту, по сути, занимаются только три страны мира.
Когда люди задумываются о двигателе или моторе, они думают о вращении. К примеру, бензиновый двигатель автомобиля производит энергию вращения, чтобы двигать колеса. Электродвигатель производит энергию вращения для движения вентилятора или диска. Паровой двигатель делает то же самое, чтобы вращать паровую турбину.
Ракетные двигатели принципиально отличаются. Ракетные двигатели — это реактивные двигатели. Основной принцип движения ракетного двигателя — это знаменитый принцип Ньютона, «на каждое действие есть равное противодействие». Ракетный двигатель выбрасывает массу в одном направлении, а благодаря принципу Ньютона движется в противоположном направлении.
Понятие «выбрасывания массы и движения по принципу Ньютона» может быть сложно понять с первого раза, потому что ничего не разобрать. Ракетные двигатели, кажется, работают с огнем, шумом и давлением, а не «толкают вещи». Давайте рассмотрим несколько примеров, чтобы получить более полную картину реальности.
Если вы когда-нибудь стреляли из оружия, желательно из дробовика 12-го калибра, то вы знаете, что такое отдача. Когда вы стреляете из оружия, оно отдает вам в плечо, достаточно ощутимо. Этот толчок и есть реакция. Дробовик выпуливает около 30 грамм металла в одном направлении со скоростью больше 1000 км/ч, и ваше плечо чувствует отдачу. Если бы вы стояли на скейтборде или были в роликах, то выстрел из дробовика сработал бы как реактивный двигатель, и вы покатились бы в противоположном направлении.
Если вы когда-либо наблюдали за работой пожарного шлага, вы наверняка заметили, что его достаточно сложно удержать (иногда пожарные вдвоем и втроем его держат). Шланг работает как ракетный двигатель. Он выбрасывает воду в одном направлении, а пожарные используют свою силу, чтобы противостоять реакции. Если они упустят рукав, он будет метаться повсюду. Если бы пожарные стоял на скейтбордах, пожарный рукав разогнал бы их до приличной скорости.
Когда вы надуваете воздушный шарик и выпускаете его, он летает по всей комнате, испуская воздух, — так работает ракетный двигатель. В данном случае вы выпускаете молекулы воздуха из шара. Многие считают, что молекулы воздуха ничего не весят, но это не так. Когда вы выпускаете их из шарика, шарик летит в противоположном направлении.
Еще один сценарий, который поможет объяснить действие и противодействие, — это космический бейсбол. Представьте, что вы вышли в скафандре в космос недалеко от своего космического судна, и у вас в руке бейсбольный мяч. Если вы его бросите, ваше тело среагирует в противоположном направлении от мяча. Допустим, он весит 450 гр, а ваше тело вместе со скафандром весит 45 кг. Вы бросаете бейсбольный мяч весом почти в полкило со скоростью 34 км/ч. Таким образом, вы ускоряете полукилограммовый мяч своей рукой так, что он набирает скорость 34 км/ч. Ваше тело реагирует в противоположном направлении, но весит в 100 раз больше мяча. Таким образом, оно принимает одну сотую ускорения мяча, или 0,34 км/ч.
Если вы хотите создать большую тягу от своего бейсбольного мяча, у вас есть два варианта: увеличить его массу или увеличить ускорение. Вы можете бросить мячик потяжелее или бросать мячи один за другим, либо бросить мяч быстрее. Но на этом все.
Ракетный двигатель, как правило, выбрасывает массу в форме газа под высоким давлением. Двигатель выбрасывает массу газа в одном направлении, чтобы получить реактивное движение в противоположном направлении. Масса идет от веса топлива, которое сгорает в двигателе ракеты. Процесс горения ускоряет массы топлива так, что они выходят из сопла ракеты на высокой скорости. Тот факт, что топливо превращается из твердого тела или жидкости в процессе сгорания, никак не меняет его массу. Если вы сожжете килограмм ракетного топлива, вы получите килограмм выхлопа в виде горячих газов на высокой скорости. Процесс сжигания ускоряет массу.
«Сила» ракетного двигателя называется тягой. Тяга измеряется в ньютонах в метрической системе и «фунтах тяги» в США (4,45 ньютона тяги эквивалентны одному фунту тяги). Фунт тяги — это количество тяги, необходимое для удержания 1-фунтового объекта (0,454 кг) неподвижным относительно силы тяжести Земли. Ускорение земной гравитации составляет 9,8 м/с².
Одной из забавных проблем ракет является то, что топливный вес, как правило, в 36 раз больше полезной нагрузки. Потому что помимо того, что двигателю нужно поднимать вес, этот же вес и способствует собственному подъему. Чтобы вывести крошечного человека в космос, нужна огромная ракета и много-много топлива.
Обычная скорость для химических ракет составляет от 8000 до 16 000 км/ч. Топливо горит около двух минут и вырабатывает 3,3 миллиона фунтов тяги на старте. Три основных двигателя космического шаттла, например, сжигают топливо в течение восьми минут и вырабатывают около 375 000 фунтов тяги каждый в процессе горения.
Далее мы рассмотрим топливные смеси твердотопливных ракет.
- Твердотопливные ракеты: топливная смесь
- Твердотопливные ракеты: конфигурации
- Жидкотопливные ракеты
- Будущее ракетных двигателей
- Ракетные двигатели: от китайских фейерверков до космических кораблей
- Немного физики или как это работает
- Из истории данного вопроса
- Какими они бывают?
- Химический РД: преимущества и недостатки
- На атомном корабле к звездам!
- Электрические ракетные двигатели, их особенности, преимущества и недостатки
- 📹 Видео
Видео:Двигатель для ракеты своими рукамиСкачать
Твердотопливные ракеты: топливная смесь
Ракетные двигатели на твердом топливе — это первые двигатели, созданные человеком. Они были изобретены сотни лет назад в Китае и используются до сих пор. О красных бликах ракет поется в национальном гимне (написанном в начале 1800-х) — имеются в виду небольшие боевые ракеты на твердом топливе, используемые для доставки бомб или зажигательных устройств. Как видите, такие ракеты существуют уже давненько.
Идея, которая лежит в основе ракеты на твердом топливе, довольно проста. Вам нужно создать нечто, что будет быстро гореть, но не взрываться. Как вы знаете, порох не подходит. Оружейный порох на 75 % состоит из нитрата (селитры), 15 % угля и 10 % серы. В ракетном двигателе взрывы не нужны — нужно, чтобы топливо горело. Можно изменить смесь до 72 % нитрата, 24 % угля и 4 % серы. Вместо пороха вы получите ракетное топливо. Эта смесь будет быстро гореть, но не взорвется, если правильно ее загрузить. Вот типичная схема:
Читайте также: Не работает мотор печки ниссан ноут е11
Видео:Всё о Ракетных двигателях. Часть 1Скачать
Твердотопливные ракеты: конфигурации
Читая описание для современных твердотопливных ракет, часто можно найти вот такое:
«Ракетное топливо состоит из перхлората аммония (окислитель, 69,6 % по весу), алюминия (топливо, 16 %), оксида железа (катализатор, 0,4 %), полимера (связующей смеси, удерживающей топливо вместе, 12,04 %) и эпоксидный отверждающий агент (1,96 %). Перфорация выполнена в форме 11-конечной звезды в переднем сегменте двигателя и в форме дважды усеченного конуса в каждом из остальных сегментов, включая конечный. Такая конфигурация обеспечивает высокую тягу при розжиге, а затем уменьшает тягу примерно на треть спустя 50 секунд после старта, предотвращая перенапряжение аппарата во время максимального динамического давления». — NASA
Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:
Твердотопливные двигатели обладают тремя важными преимуществами:
Но есть и два недостатка:
- тягу невозможно контролировать
- после зажигания двигатель нельзя отключить или запустить повторно
Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.
Видео:УДИВИТЕЛЬНЫЕ ЭФФЕКТЫ РАКЕТНЫХ ДВИГАТЕЛЕЙСкачать
Жидкотопливные ракеты
В 1926 году Роберт Годдард испытал первый двигатель на основе жидкого топлива. Его двигатель использовал бензин и жидкий кислород. Также он пытался решить и решил ряд фундаментальных проблем в конструкции ракетного двигателя, включая механизмы накачки, стратегии охлаждения и рулевые механизмы. Именно эти проблемы делают ракеты с жидким топливом такими сложными.
Основная идея проста. В большинстве жидкотопливных ракетных двигателях топливо и окислитель (например, бензин и жидкий кислород) закачиваются в камеру сгорания. Там они сгорают, чтобы создать поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет (от 8000 до 16 000 км/ч, как правило), а после выходят. Ниже вы найдете простую схему.
- Жидкий водород и жидкий кислород (основные двигатели космических шаттлов).
- Бензин и жидкий кислород (первые ракеты Годдарда).
- Керосин и жидкий кислород (использовались на первой ступени «Сатурна-5» в программе «Аполлон»).
- Спирт и жидкий кислород (использовались в немецких ракетах V2).
- Четырехокись азота/монометилгидразин (использовались в двигателях «Кассини»).
Видео:Как Сделать Ракетный двигатель из Обычной СОЛИ?Скачать
Будущее ракетных двигателей
Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе — это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.
Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо — газообразный азот под давлением выбрасывается из резервуара через сопло.
Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать электромагнитные двигатели и ждать, что там еще выкинет Элон Маск со своим SpaceX.
Видео:Как работает баллистическая ракета? От Cтарта до Bзрывa!Скачать
Ракетные двигатели: от китайских фейерверков до космических кораблей
Полеты в космос – без сомнения, одно из самых потрясающих достижений нашей цивилизации. Знаменитое гагаринское «поехали!» и первый шаг Армстронга по лунной поверхности – исторические вехи на пути к далеким планетам и другим звёздным системам. Ничего бы этого не было без ракетного двигателя, который позволил нам преодолеть силу гравитации планеты и дал возможность выйти на околоземную орбиту.
Устройство ракетного двигателя, с одной стороны, настолько незамысловато, что вы можете построить его дома самостоятельно, потратив на это буквально три копейки. Но, с другой стороны, конструкция космических и военных ракет до такой степени сложна, что только несколько государств в мире имеют технологии их изготовления.
Ракетный двигатель (РД) – это разновидность реактивного двигателя, рабочее тело и источник энергии которого находится непосредственно на борту летательного аппарата. Это его главное отличие от воздушно-реактивных двигателей. Таким образом, РД не зависит от кислорода атмосферы и поэтому может использоваться для полетов в космическом (безвоздушном) пространстве.
Россия является одним из мировых лидеров в области ракетного двигателестроения. Задел, доставшийся нам от Советского Союза, впечатляет. Отечественная промышленность способна производить лучшие ракетные двигатели самого разного назначения. Доказательством этому является ракетный двигатель РД-180, который используется на американских «Атласах». Поставки в США начались еще в 2000 году и продолжаются до сих пор. Существуют и другие интересные наработки, причем речь идет не только о мощных двигателях для космических или баллистических ракет, но и РД для различных оружейных систем.
В настоящее время наиболее распространены так называемые химические ракетные двигатели, в которых удельный импульс образуется за счет сгорания топлива. Кроме них, существуют также ядерные и электрические двигатели. В этой статье мы расскажем о том, как работает ракетный двигатель, поведаем о его преимуществах и недостатках, а также представим современную классификацию РД.
Видео:Самодельный ракетный двигатель РДТТ (ракета) - испытания (читать описание)Скачать
Немного физики или как это работает
Разные типы ракетных двигателей имеют существенные отличия в своей конструкции, но работа любого из них базируется на знаменитом третьем законе Ньютона, который гласит, что «каждому действию есть равное противодействие». РД выбрасывает струю рабочего тела в одном направлении, а сам, в соответствии с ньютоновским постулатом, движется в противоположную. Продукты сгорания топлива выходят через сопло, образуя тягу – это основы теории ракетных двигателей.
Если вы, стоя в лодке, отбросите от кормы камень, то ваше судно немного уплывет вперед. Это и есть наглядная модель функционирования всех ракетных двигателей. Еще одним примером может быть работа пожарного шланга, из которого под большим давлением выбрасывается вода. Для его удержания необходимо приложить определенные усилия. Если поставить пожарного на скейборд и дать ему в руки шланг, то он будет двигаться с довольно высокой скоростью.
Главной характеристикой, определяющей эффективность подобных систем, является тяга (сила тяги). Она образуется в результате превращения исходной энергии в кинетическую реактивной струи рабочего тела. В метрической системе тяга ракетного двигателя измеряется в ньютонах, а американцы считают ее в фунтах.
Читайте также: Лодочные моторы шмель запчасти
Схема работы простейшего жидкостного ракетного двигателя
Еще одним важнейшим параметром ракетных двигателей является удельный импульс. Это отношение силы тяги (или количества движения) к расходу топлива в единицу времени. Данный параметр рассматривается в качестве степени совершенства того или иного РД, и является мерой его экономичности.
Химические двигатели работают за счет экзотермической реакции сгорания горючего и окислителя. Этот тип РД имеет две составные части:
- Сопло, в котором тепловая энергия преобразуется в кинетическую;
- Камеру сгорания, где происходит процесс горения, то есть превращения химической энергии топлива в тепловую.
Видео:Полная родословная советских ракетных двигателей / русская озвучкаСкачать
Из истории данного вопроса
Ракетный двигатель – один из старейших видов двигателя, известных человечеству. Мы не можем точно ответить на вопрос, когда именно была изготовлена первая ракета. Есть предположение, что это сделали еще древние греки (деревянный голубь Архита Тарентского), но большинство историков считает родиной данного изобретения Китай. Это произошло примерно в III столетии нашей эры, вскоре после открытия пороха. Первоначально ракеты использовали для фейерверков и других развлечений. Пороховой ракетный двигатель был достаточно эффективен и прост в изготовлении.
Считается, что эти технологии попали в Европу где-то в XIII веке, их изучением занимался английский естествоиспытатель Роджер Бэкон.
Первая боевая ракета была разработана в 1556 году Конрадом Хаасом, который придумывал различные виды вооружений для императора Фердинанда I. Этого изобретателя можно назвать первым создателем теории ракетных двигателей, также он является автором идеи многоступенчатой ракеты – в трудах Хааса подробно описан механизм работы летательного аппарата, состоящего из двух ракет. Изыскания продолжил поляк Казимир Семенович, живший в середине XVII века. Однако все эти проекты так и остались на бумаге.
Практическое использование ракет началось только в XIX столетии. В 1805 году британский офицер Уильям Конгрив продемонстрировал пороховые ракеты, которые имели небывалую по тем временам мощность. Презентация произвела должное впечатление, и ракеты Конгрива были приняты на вооружение английской армии. Их главным преимуществом, по сравнению со ствольной артиллерией, была высокая мобильность и относительно небольшая стоимость, а основным недостатком – кучность огня, которая оставляла желать лучшего. К концу XIX века широкое распространение получили нарезные орудия, стрелявшие очень точно, поэтому ракеты были сняты с вооружения.
Примерно так использовались ракеты Конгрива. Современная реконструкция
В России данным вопросом занимался генерал Засядко. Он не только усовершенствовал ракеты Конгрива, но и первым предложил использовать их для полета в космос. В 1881 году российский изобретатель Кибальчич создал собственную теорию ракетных двигателей.
Огромный вклад в развитие этого направления техники внес еще один наш соотечественник – Константин Циолковский. Среди его идей жидкостный ракетный двигатель (ЖРД), работающий на смеси кислорода и водорода.
В начале прошлого столетия энтузиасты во многих странах мира занимались созданием жидкостного РД, первым добился успеха американский изобретатель Роберт Годдард. Его ракета, работающая на смеси бензина и жидкого кислорода, успешно стартовала в 1926 году.
Вторая мировая война стала периодом возвращения ракетного оружия. В 1941 году на вооружение Красной армии была принята установка залпового огня БМ-13 – знаменитая «Катюша», а в 1943 – немцы начали использование баллистической Фау-2 с жидкостным ракетным двигателем. Она была разработана под руководством Вернера фон Брауна, который позже возглавил американскую космическую программу. Германией также было освоено производство КР Фау-1 с прямоточными реактивным мотором.
Ракета Фау-2. Немцы называли ее “оружие возмездия”. Правда, оно не слишком помогло Гитлеру
После окончания войны между СССР и США началась настоящая «ракетная» гонка. Советскую программу возглавил Сергей Королев – выдающийся конструктор ракетных двигателей, именно под его руководством была создана отечественная МБР Р-7, а позже запущен первый искусственный спутник и осуществлен полет человека в космос.
В разные годы предпринимались попытки создания ракетных двигателей, работающих за счет энергии ядерного распада (синтеза), но до практического применения подобных силовых установок дело так и не дошло. В 70-е годы в СССР и США началось использование электрических ракетных двигателей. Сегодня они применяются для коррекции орбит и курса космических аппаратов. В 70-е и 80-е годы были эксперименты с плазменными РД, считается, что они имеют хороший потенциал. Большие надежды связывают с ионными ракетными двигателями, использование которых теоретически может значительно ускорить космические аппараты.
Однако пока почти все эти технологии находятся в зачаточном состоянии, и основным транспортным средством покорителей космоса остается старая добрая «химическая» ракета. В настоящее время за титул «самый мощный ракетный двигатель в мире» соревнуется американский F-1, участвовавший в лунном проекте, и советский РД-170/171, который использовался в программе «Энергия-Буран».
Видео:Карамельные двигатели. Плавить или прессовать? Сравнение в полетеСкачать
Какими они бывают?
Классификация ракетных двигателей построена на способе получения энергии для отбрасывания рабочего тела. Исходя из этого параметра, РД бывают:
- химические;
- ядерные (термоядерные);
- электрические (электроракетные);
- газовые.
Каждый из вышеперечисленных типов может подразделяться на более мелкие категории. Химические двигатели (ХРД), например, в зависимости от агрегатного состояния топлива бывают твердотопливными и жидкотопливными. Существует и химический гибридный ракетный двигатель (ГРД). К ХРД также относится клиновоздушный ракетный двигатель, который имеет другую форму и конструкцию сопла. Различают газофазные и твердофазные ядерные РД. Есть несколько типов электрических силовых установок.
Химический РД: преимущества и недостатки
Этот тип ракетных двигателей является наиболее распространенным и хорошо освоенным. Можно сказать, что именно ХРД подарил человечеству космос. Он работает за счет экзотермической химической реакции, причем и горючее и окислитель находится на борту летательного аппарата и вместе образуют топливо. Оно одновременно служит и источниками энергии, и основой для рабочего тела.
ХРД обладают сравнительно небольшим удельным импульсом (если сравнивать их с электрическими), но позволяют развивать большую тягу. Это особенно важно для стартовых ракетных двигателей и при выведении полезной нагрузки на орбиту.
В жидкостных двигателях окислитель и горючее находится в жидкой фазе. С помощью топливной системы они подаются в камеру, где сгорают и, истекая через сопло.
Читайте также: Мотор подъемного крана мощностью 1500 вт поднимает груз
Старт американского космического корабля “Спейс шаттл”. В нем использованы два вида химических ракетных двигателей: боковые ускорители используют твердое топливо, а маршевые двигатели – жидкое
В твердотопливном РД смесь горючего и окислителя размещено непосредственно в камере сгорания. Как правило, топливо имеет форму стержня с центральным каналом. Процесс горения идет от центра к периферии, газы, выходя через сопло, образуют тягу. Подобные двигатели имеют ряд преимуществ: они сравнительно просты, дешевы, безопасны в плане экологии и надежны.
К недостаткам твердотопливного химического двигателя можно отнести ограниченность времени его работы, небольшой показатель удельного импульса (по сравнению с жидкостными РД) и невозможность перезапуска – после старта его уже нельзя остановить. Вышеперечисленные особенности определяют сферу использования твердотопливных РД – это баллистические и метеорологические ракеты, ЗУР, НАР, реактивные снаряды для систем залпового огня. Твердое топливо также используют в стартовых ракетных двигателях.
Жидкостные РД имеют более высокий показатель удельного импульса, их можно останавливать и перезапускать вновь, а тягу – регулировать. Кроме того, по сравнению с твердотопливными, они имеют меньший вес и более компактны. Но есть и ложка дегтя: жидкостные двигатели отличаются сложной конструкцией и высокой стоимостью, поэтому основная область их применения – это космонавтика.
В качестве компонентов топлива для жидкостных РД используют различные комбинации. Например, кислород + водород или азотный тетраоксид + несимметричный диметилгидразин. В последние годы весьма популярны ракеты, использующие кислород и керосин. Топливо может состоять из пяти и более частей. Весьма многообещающими считаются метановые ракетные двигатели, их созданием сегодня занимаются сразу в нескольких странах мира. Из других интересных разработок в этой области можно отметить так называемый детонационный ракетный двигатель, топливо которого не горит, а взрывается.
Российский ракетный двигатель РД-180. Он использует пару кислород+керосин
Работы над улучшением ХРД не прекращаются, но, вероятно, предел его возможностей уже достигнут – конструкторы «выжали» из химического горючего все, что могли. Серьезной проблемой ХРД является огромная масса топлива, которую должен поднимать летательный аппарат. И это дико неэффективно. Схема с отделяемыми ступенями несколько улучшила ситуацию, но явно не стала панацеей.
Следует отметить, что химические ракетные двигатели используются не только для покорения космоса. Они нашли свое применение и на Земле, правда, в основном только в военном деле. Все боевые ракеты, начиная с маленьких авиационных или противотанковых, и заканчивая огромными МБР, оснащаются ХРД. В подавляющем большинстве они имеют более простые и надежные твердотопливные двигатели. Примером мирного использования ХРД являются геофизические и метеорологические ракеты.
На атомном корабле к звездам!
Жидкостной ракетный двигатель подарил человеку космос и помог добраться до ближайших планет. Скорость истечения реактивной струи ракеты на жидком топливе не превышает 4,5-5 м/с, что делает ее малопригодной для далеких миссий – для этого необходимы десятки метров в секунду. Космические аппараты с ХРД еще способны доставить человека к ближайшим планетам – типа Марса или Венеры – но для путешествий к далеким объектам Солнечной системы нам придется придумать что-то новое. Одним из выходов из этого тупика видится использование энергии, скрытой в атомном ядре.
Ядерный ракетный двигатель (ЯРД) – это тип силовой установки, в которой рабочее тело нагревается за счет энергии ядерного деления или синтеза. В зависимости от состояния топлива он может быть твердо-, жидко- или газофазным. В качестве рабочего тела обычно используется водород или аммиак. Тяга ЯРД вполне сравнима с химическими двигателями, при этом они имеют высокий удельный импульс. Но есть одна проблема – загрязнение атмосферы радиоактивным выхлопом.
Схема твердофазного ЯРД. Пока они есть только на чертежах или в макетах
История ядерных двигателей началась еще в середине 50-х годов, их практическим созданием занимались две страны в мире – США и Советский Союз. Уже в 1958 году американцы поставили задачу создания ЯРД для полетов на Луну и Марс (программа NERVA). Примерно в это же время схожими вопросами занимались и советские конструкторы. К концу 70-х годов был создан ядерный ракетный двигатель РД-0410, но он так и не прошел полноценных испытаний.
В настоящее время наиболее перспективно выглядят газофазные ядерные двигатели, в которых топливо находится в газообразном состоянии в специальной герметичной колбе. Это исключает его контакт с рабочим телом и значительно уменьшает вероятность радиоактивного заражения. Несмотря на то что основные технические проблемы создания ЯРД уже давно решены, до сих пор ни один из них не нашел своего применения на практике. Хотя, именно этот ЯРД выглядит наиболее перспективным с точки зрения реального применения.
Электрические ракетные двигатели, их особенности, преимущества и недостатки
Еще одним возможным конкурентом, у которого есть шансы заменить ХРД, является электрический ракетный двигатель (ЭРД), использующий для разгона рабочего тела электрическую энергию.
Ионный двигатель. Возможно, что именно он доставит человека к звездам
Идея создания подобной силовой установки родилась еще в начале XX века, в 30-е годы ее на практике реализовал советский ученый Глушко. Активные работы над ЭРД начались в США и СССР в 60-е годы, а в 70-е – первые ракетные двигатели подобного типа уже были установлены на космических аппаратах.
Существует несколько типов ЭРД:
- электротермический;
- электростатический;
- электромагнитный;
- плазменный.
Электрические ракетные двигатели имеют высокий показатель удельного импульса, что позволяет им весьма экономно расходовать рабочее тело, но при этом они нуждаются в большом количестве энергии, что является серьезной проблемой. Пока единственным реальным ее источником для ЭРД являются солнечные батареи. Они имеют малую тягу, что не позволяет использовать их в пределах земной атмосферы – стартовый ракетный двигатель из ЭРД точно не получится. В настоящее время они используются в качестве маневровых – для коррекции орбит космических аппаратов.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
📹 Видео
Фотонные двигатели! Лучший способ полететь к звездам?Скачать
Ракетный двигатель от А до Я: Строение, топливо, инженерия, типыСкачать
Новый двигатель НАСА сможет двигаться почти со скоростью светаСкачать
Плазменный ракетный двигатель и другие плазменные технологииСкачать
ЯДЕРНЫЕ ракетные двигатели - реальность? Насколько они безопасны?Скачать
Тестируем ракетный двигатель Готовимся к полету Нужен ли испытательный стенд?Скачать
Российская ракета полетит с самым мощными двигателем в миреСкачать
Испытание ракетного двигателя с натуральным звуком.Скачать
Самая Крутая Ракета В Мире | ЦИРКОН 3М22 | Гиперзвуковое оружие РоссииСкачать
КАК РАБОТАЮТ РАКЕТНЫЕ ДВИГАТЕЛИ (Всё о ракетных двигателях, часть 2)Скачать
Студенты российского вуза разработали вечный двигатель #вечныйдвигатель #изобретенияСкачать
Ракетные двигатели будущего // Путеводитель по ВселеннойСкачать