2. Угловую скорость каждого вала определяем по формуле
, с -1 (1.5)
где n –число оборотов на соответственном валу, об/мин.
Угловая скорость на I валу равна
с -1
Угловая скорость на II валу равна
с -1
Угловая скорость на III валу равна
с -1
Угловая скорость на IV валу равна
с -1
3. Крутящий момент на валах определяем по формуле
, Н·м (1.6)
где Р – мощность соответствующего вала, кВт
ω- угловая скорость соответствующего вала, с -1 .
, Н·м
Н·м
Крутящий момент на I валу равен
Н·м
Крутящий момент на II валу равен
, Н·м
Н·м
Видео:9.1 Расчет валов приводаСкачать
Крутящий момент на III валу равен
, Н·м
Н·м
Крутящий момент на IV валу равен
, Н·м
Н·м
Все расчеты для удобства записываем в сводную таблицу
Таблица 1.1. – силовые и скоростные параметры привода
Р в приводе уменьшилось не значительно из-за потерь в подшипниках. Число оборотов и угловая скорость в приводе сильно уменьшились из-за больших передаточных отношений.
2 Расчет конической передачи 2.1 Задача
Провести проектный расчет, подобрать материал, определить основные геометрические параметры и проверить на контакт.
2.2 Расчетная схема
Рисунок 2.1 – Расчетная схема зацепления колес конической передачи
Данные для расчета передачи берем из кинематического расчета.
Таблица 2.1 — силовые и скоростные параметры для расчета промежуточной передачи
2.4 Условие расчета
Проектный расчет ведем на контакт, так как основной вид разрушения закрытых зубчатых передач — поверхностное выкрашивание зубьев в зоне контакта. Проверяем на контакт и изгиб.
2.5 Выбор материала и расчет допускаемых напряжений
Материалы для изготовления конических зубчатых колес подбирают по таблице 3.3 [1]).Для повышения механических характеристик материалы колес подвергают термической обработке. В зависимости от условий эксплуатации и требований к габаритным размерам передачи принимаем следующие материалы и варианты термической обработки (Т.О.).
Примем для колеса и шестерни сталь 40ХН и вариант термообработки ( таблица 3.3 [1]);
Читайте также: Мотор с редуктором для цепного подъемника
колесо—улучшение и закалка ТВЧ по контуру, НRC 48…53;
шестерня—улучшение и закалка ТВЧ по контуру, НRC 48…53.
Определяем допускаемые контактные напряжения и напряжения изгиба отдельно для колеса [σ]н2 и [σ]F2 и шестерни [σ]н1 и [σ]F1 по формулам (с.10 [2])
[σ]н=·[σ]н0 ; [σ]F=·[σ]F0
где — коэффициент долговечности при расчете по контактным напряжениям, так как редуктор рассчитан на долгий срок службы, то =1 (с.11 [2])
— коэффициент долговечности при расчете по изгибу , так как редуктор рассчитан на долгий срок службы, то =1 (с.11 [2]).
Определяем среднюю твердость зубьев колес НRCср=0,5(48+53)=50,5 Мпа
По таблице 2.2 [2] находим формулу для определения допускаемого контактного напряжения
2.6 Проектный расчет передачи 1. Определяем внешний делительный диаметр окружности колеса по формуле (с. 19 [2]) :
где — коэффициент вида конических колес, (с. 20 [2]) ;
— передаточное число быстроходной передачи;
Видео:Принцип работы редуктора. Виды редукторов. Курсовая.Скачать
Т2 — вращающий момент на 1 промежуточном валу, Н·м;
— коэффициент неравномерности нагрузки по длине зуба. Для прирабатывающихся зубьев = 1,45 (таблица 2.3 [2]);
— допускаемое контактное напряжение колеса с менее прочным зубом или среднее допускаемое контактное напряжение, н/мм 2 .
Полученное значение внешнего делительного диаметра колеса округляем до ближайшего стандартного значения .
Определяем угловую скорость валов привода
2.2.2 Определяем угловую скорость валов привода
wном = p*nном / 30 = 3,14*920 / 30 = 96,29(рад/с)
nном-номинальная частота вращения двигателя
Uоп — передаточное число открытой передачи
w1 — угловая скорость быстроходного вала
Uзп — передаточное число закрытой передачи в соответствии СТ СЭВ 221-75, принимаем 5,0
w2 — угловая скорость тихоходного вала.
2.2.3 Определяем вращающий момент валов привода:
Pдв — мощность на валу двигателя
wном — номинальная угловая скорость
Тдв — вращающий момент двигателя
пк — КПД подшипников качения
hоп — КПД открытой передачи
Т1 — вращающий момент быстроходного вала
Uзп — передаточное число закрытой передачи
hзп — КПД закрытой передачи
hпк — КПД подшипников качения
Т2 — вращающий момент тихоходного вала
hпс — КПД подшипников скольжения
2.2.4 Определяем частоту вращения валов привода:
nном — номинальная частота вращения двигателя
n1 — частота вращения быстроходного вала
Читайте также: Чем смазывается редуктор мотокультиватора
nном — номинальная частота вращения двигателя
Uоп — передаточное число открытой передачи
n1 — частоту вращения быстроходного вала
Uзп — передаточное число закрытой передачи
n2 — частота вращения тихоходного вала.
2.2.5 Составляем табличный ответ решения задачи:
Таблица. Силовые и кинематические параметры привода
3. Выбор материала зубчатой передачи. Определение допускаемых напряжений
Видео:Как устроен редуктор лодочного мотора , переключение передач вперед / назадСкачать
3.1 Назначаем твердость, термообработку и материал
а)для шестерни: 40Х, твердость 269…302 НВ, термообработка — улучшение.
б)колесо марка стали 40Х, твердость 235…262 НВ, термообработка
3.2 Определяем среднюю твердость шестерни и колеса:
(HB)
(HB)
3.3 Определяем число циклов переменных напряжений за весь срок службы для шестерни и колеса:
w1 и w2 — угловые скорости быстроходного и тихоходного валов, с -1
Ln — рабочий ресурс двигателя, час
3.2.2 Принимаем число циклов переменных напряжений для шестерни и колеса:
Nно2 = 16,29*10 6 (млн. циклов)
Nно-число циклов перемены напряжений соответсвующих выносливости циклов
3.2.3 Определяем коэффициент долговечности для шестерни и колеса:
Nно — число циклов переменных напряжений соответствующих пределу выносливости
N — число циклов переменных напряжений за весь срок службы привода.
3.2.4 Определяем допускаемое контактное напряжение для шестерни и колеса, соответствующих числу циклов переменных напряжений:
(Н/мм 2 )
(Н/мм 2 )
3.2.5 Определяем допускаемое контактное напряжение для зубьев шестерни и колеса:
(Н/мм 2 )
(Н/мм 2 )
Принимаем [s]H = 514,3 Н/мм 2 , т.к. рассчитываем по менее прочным зубьям.
3.2.6 Определяем коэффициент долговечности зубьев шестерни и колеса для определения допускаемых напряжений изгиба:
Где NFO1, NFO2 — число циклов переменных напряжений для зубьев шестерни и колеса соответствующему пределу выносливости, для всех сталей принимаем равным 4*10 6 циклов
N1, N2 — число циклов переменных напряжений за весь срок службы привода
3.2.7 Определяем напряжение изгиба соответствующему пределу изгибной выносливости для зубьев шестерни и колеса:
(Н/мм 2 )
(Н/мм 2 )
3.2.8 Определяем допускаемое напряжение изгиба зубьев шестерни и колеса:
Видео:Ременная передача. Урок №3Скачать
(Н/мм 2 )
(Н/мм 2 )
3.1.9 Примем значения[у]F1 и [у]F2 на 25% меньше расчётного:
(Н/мм 2 )
(Н/мм 2 )
Принимаем F = 191,966 (Н/мм 2 ), т.к. выбираем по менее прочным зубьям.
3.12 Составляем табличный ответ расчета:
4. Расчет зубчатой передачи
4.1.1 Определяем межосевое расстояние передачи:
(мм)
Ka — вспомогательный коэффициент, для косозубой передачи, принимаем равный 43
UЗП — передаточное число закрытой передачи, равное 5,0
Т2 — вращающий момент на тихоходном валу редуктора, Н*м
yа — коэффициент ширины венца колеса, равное 0,315
[s]н — допускаемое контактное напряжение, H/мм 2
Kнb — коэффициент неравномерности нагрузки по длине зуба, для прирабатывающихся колес, равный 1
Принимаем: (мм)
4.1.2 Определяем делительный диаметр колеса:
(мм)
aw = 102(мм) — межосевое расстояние передачи
UЗП = 5,0 — передаточное число передачи
4.1.3 Определяем ширину венца колеса: b2 = шa* aw = 0,315*102 = 32,13(мм) где
шa= 0,315 — коэффициент ширины венца колеса
aw = 102(мм) — межосевое расстояние передачи
4.1.4 Определяем модуль зацепления:
(мм)
Km— вспомогательный коэффициент для косозубых передач, равный 5,8
Т2 — вращающий момент на тихоходном валу редуктора, Н*м
4.1.5 Определяем угол наклона зубьев для косозубых передач:
Видео:Как вычислить передаточное число редуктораСкачать
4.1.6 Определяем суммарное число зубьев шестерни и колеса:
(зубьев)
aw — межосевое расстояние передачи, мм
mn — нормальный модуль зацепления, мм
bmin — угол наклона зубьев
4.1.7 Уточняем фактический угол наклона зубьев:
4.1.8 Определяем число зубьев шестерни:
(зубьев)
4.1.9 Определяем число зубьев колеса:
(зубьев)
4.1.10 Определяем фактическое передаточное число передачи и проверяем его отклонение от заданного:
4.1.11 Определяем фактическое межосевое расстояние передачи:
(мм)
4.1.12 Определяем основные геометрические параметры передачи:
а) Определяем делительный диаметр шестерни и колеса:
mn — нормальный модуль зацепления, мм
Z1 — число зубьев шестерни
б) Определяем диаметр вершин зубьев шестерни и колеса:
d1 — делительный диаметр шестерни, мм
d2 — делительный диаметр колеса, мм
mn — нормальный модуль зацепления, мм
в) Определяем диаметр впадин зубьев шестерни и колеса:
d1 — делительный диаметр шестерни, мм
d2 — делительный диаметр колеса, мм
mn — нормальный модуль зацепления, мм
г) Определяем ширину венца шестерни и колеса:
aw — межосевое расстояние передачи, мм
yа — коэффициент ширины венца колеса, равен 0,315
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
Видео:Редуктор увеличивает крутящий моментСкачать
- Правообладателям
- Политика конфиденциальности
Механика © 2023
Информация, опубликованная на сайте, носит исключительно ознакомительный характер📽️ Видео
Заказать КУРСОВУЮ РАБОТУ по ДМ детали машинСкачать
Редуктор. Устройство. Конструкция. Виды и типы редукторовСкачать
Лабораторная работа «Изучение конструкции зубчатого цилиндрического редактора типа Ц2»Скачать
3. Узлы зубчатых редукторов, опоры валов, расчетные схемы валов, корпуса, конструкции редукторовСкачать
Ремонт углового редуктора.Скачать
Редуктор угловой - замена карданной передачейСкачать
Быстроходный вал редуктора ц2 300 ( входной первичный вал-шестерня)Скачать
Кинематика планетарного механизмаСкачать
Червячный редуктор - Анимация сборки и работыСкачать
Механический редукторСкачать
6.2 Кинематический расчет приводаСкачать
Ремонт редуктора культиватора Викинг hb585. Самодельный вал на привод редуктора.Скачать
Прочность и жесткость валов. (Зубчатый редуктор). Часть 3: Расчетные схемы валов.Скачать
Червячные редукторы. Применения червячных редукторов и как правильно их подобратьСкачать