Основные понятия и сокращения
Дроссельная заслонка (ДС) – металлическая пластина, жестко соединенная с педалью «газа». При нажатии педали она открывается и в карбюратор или во входной коллектор системы впрыска засасывается больше воздуха, вызывая увеличение оборотов коленчатого вала двигателя.
Топливно-воздушная смесь (ТВС) или горючая смесь – смесь бензина с воздухом приготовляемая карбюратором или системами впрыска, и подаваемая в предклапанную зону Двигателя внутреннего сгорания (ДВС).
Рабочая смесь – смесь ТВС с остаточными газами, которая поджигается свечами зажигания и сгорает в камере сгорания двигателя, приводя в движение поршни и коленчатый вал.
Угол поворота коленчатого вала (УПКВ) – поскольку скорость вращения коленчатого вала изменяется в зависимости от скорости автомобиля, то и длительность процессов, происходящих в работающем двигателе тоже непостоянна и зависит от скорости вращения коленчатого вала. В связи с этим величиной однозначно характеризующей длительность отдельных этапов работы ДВС является УПКВ. Например, полный цикл работы четырехтактного ДВС составляет два оборота коленчатого вала, или 720º УПКВ.
Угол опережения зажигания (УОЗ) – один из основных параметров работы двигателя. Дело в том, что время горения рабочей смеси величина вообще говоря постоянная. Конечно она изменяется в зависимости от качества топлива, характеристик ТВС, температуры, формы и размеров КС и др., но для конкретного двигателя с исправной системой питания она является почти константой. Но так как скорость вращения коленвала постоянно меняется, то и угол опережения зажигания необходимо постоянно подстраивать так, чтобы воспламенение смеси происходило в тот момент, когда поршень находится близко к верху цилиндра (верхней мертвой точке ВМТ). Если же угол опережения зажигания выставлен неправильно, то возможны два случая:
— если УОЗ мал, то максимальная энергия горения выделяется в тот момент, когда поршень еще не дошел до ВМТ и энергия тратится не на разгон двигателя, а на его торможение. При этом металл камеры сгорания (КС) и клапанов сильно разогреваются, и возникает явление детонации в цилиндрах;
— если УОЗ слишком велик, то максимальная энергия горения выделяется в тот момент, когда поршень уже прошел ВМТ и под действием инерции маховика идет назад. При этом энергия горения рабочей смеси воздействует на поршень не все время рабочего хода, а только его часть, что значительно снижает мощность двигателя и приводит к перерасходу топлива.
Для обеспечения максимальной мощности ДВС необходимо, чтобы УОЗ был бы как можно меньше, но при этом его значение не переходило ту грань, за которой начинается детонация. Поэтому значение УОЗ выражается формулой , где – установочный угол опережения зажигания, – поправка УОЗ.
Установочный УОЗ определяется по характеристикам двигателя и выставляется или корректируется вручную при установке зажигания. Поправка УОЗ многофункциональна. Она зависит от частоты вращения коленчатого вала, температуры охлаждающей жидкости, качества топлива и т.д.
Подробнее про УОЗ здесь.
Детонация – взрывное воспламенение рабочей смеси и ее сгорание со скоростью значительно превышающей обычную скорость сгорания. Сопровождается характерным металлическим стуком и перегревом двигателя. Может привести к повреждению поршней, зеркала цилиндра, клапанов и свечей зажигания.
Электронный блок управления двигателем ЭБУ – предназначен для управления работой ДВС путем анализа информации получаемой от различных датчиков, расположенных в разных местах двигателя, и управления его работой с помощью исполнительных устройств. Главные параметры, с помощью которых ЭБУ воздействует на ДВС, это изменение угла опережения зажигания и количество впрыснутого топлива (качество горючей смеси).
Рабочий цикл двигателя
Рабочим циклом двигателя называется совокупность процессов, периодически повторяющихся в определенной последовательности – «впуск», «сжатие», «рабочий ход», «выпуск».
Объем, освобождаемый поршнем при движении от верхней мертвой точки ВМТ к нижней мертвой точке НМТ, называется рабочим объемом цилиндра. Суммарный рабочий объем всех цилиндров называется литражом двигателя. Объем над поршнем в ВМТ называется объемом камеры сгорания КС. Отношение полного рабочего объема к объему КС называется степенью сжатия. Характеристики работы блока цилиндров представлены в таблице 1.
Моменты открытия и закрытия клапанов, выражаемые в углах поворота коленчатого вала УПКВ, называется фазами газораспределения. Момент, когда открыты оба клапана, называется углом перекрытия клапанов в районе ВМТ. Сжатие необходимо для создания оптимальных условий горения, для увеличения температуры перепада цикла, для увеличения КПД ДВС.
Читайте также: Люфт подвесного подшипника карданного вала
Таблица 1. Характеристики работы блока цилиндров
Название такта | Угол поворота коленчатого вала | Впускной клапан | Выпускной клапан | Температура КС, ºC | Давление в КС, атм. |
---|---|---|---|---|---|
Впуск | 0…180 | Открыт | Закрыт | 80-120 | 0. 8 |
Процесс сгорания топлива
І. Момент подачи искры – угол задержки зажигания. Период задержки воспламенения 4…6º УПКВ зависит от химического состава топлива и состава ТВС. При увеличении этого времени ухудшается стабильность воспламенения. На этот период влияет состав ТВС, степень сжатия, количество остаточных газов, обороты, нагрузка, энергия искры.
II. Период эффективного горения – 20…30º УПКВ – зависит от состава ТВС, угла опережения зажигания, нагрузки, степени сжатия, формы КС, скорости завихрения потока, степенью нарастания давления. Если Р25º УПКВ, то горение идет медленно.
III. Период догорания – на процесс горения влияют скорость распространения фронта пламени. Она зависит от состава смеси, степени сжатия, угла опережения зажигания, формы камеры сгорания, место расположения свечи, степени завихрения потока. При обогащении смеси скорость фронта пламени падает из-за неполного сгорания, при обеднении скорость падает из-за дополнительных затрат теплоты на нагревание избыточного воздуха.
Начальная температура воспламенения топливно-воздушной смеси (ТВС)
При увеличении температуры ТВС увеличивается скорость распространения фронта пламени за счет увеличения скорости химических реакций.
За счет увеличения степени сжатия увеличивается одновременно температура и давление ТВС и снижается количество остаточных газов, что увеличивает скорость распространения пламени.
Форма КС влияет на длину фронта пламени и на теплообмен. Чем меньше отношение площади КС к ее объему, тем меньше потери тепла, следовательно, скорость распространения фронта пламени выше.
Угол опережения зажигания должен обеспечить окончание сгорания вблизи ВМТ (10…15º УПКВ), поэтому момент воспламенения смеси должен меняться в зависимости от состава ТВС и нагрузки. При увеличении оборотов двигателя угол опережения зажигания увеличивается.
Основная характеристика ТВС
Расчет состава смеси базируется на соблюдении стехиометрического соотношения количества топлива и воздуха: на один килограмм бензина требуется 14,7 кг воздуха. Коэффициент избытка воздуха равен:
где – количество воздуха, поступившее во впускной коллектор
λ>1 – обедненная смесь
λ Вернуться Комментариев: 0
Видео:Курс автодиагностики, Что такое угол опережения зажигания, Как он разрушает мотор?Скачать
Автомобильный справочник
Видео:Датчики коленвала и распредвала: принцип работы, неисправности и способы диагностики. Часть 11Скачать
для настоящих любителей техники
Видео:Признаки неисправности и расположение датчика коленвалаСкачать
Коленчатый вал
Коленчатый вал является одной из важных деталей двигателя. Он преобразует поступательное движение поршня во вращательное движение, которое в дальнейшем, через трансмиссию, передается к колесам.
Видео:Неисправный датчик положения коленчатого вала, как он себя проявляет.Скачать
Кинематика привода коленчатого вала
Кинематика привода коленчатого вала (для одного цилиндра) может быть определена из геометрического расположения осей поршня и поршневого пальца, шатуна и коленчатого вала (радиус коленчатого вала равен половине рабочего хода поршня) (см. рис. «Кривошипно-шатунный механизм поршневого двигателя» ).
Если ход поршня х в верхней мертвой точке принять равным нулю, при радиусе кривошипа r и длине шатуна l получаем (см. рис. «Разложение на составляющие силы воздействующей на поршень» ):
х = r ( 1 — cosa) + l (1 — cosβ),
x = r (1 — cosa + 1/λ (1- √‾1-λ 2 ·sin 2 a))
Некоторые производители применяют компоновку со смещенным поршневым пальцем. За счет изменения положения поршня и в зависимости от положения шатуна можно ожидать снижения трения и уровня шума. Смещение может осуществляться путем сдвига поршневого пальца относительно центрального положения или смещения коленчатого вала.
Если принять смещение для положительных углов поворота коленчатого вала положительным и ввести величину
δ = смещение / длина шатуна
это дает следующее соотношение для хода поршня:
x=r (1 — cosa + 1/λ (1- √‾1-(λ·sin a-δ) 2 ).
На рис. «График зависимости положения поршня от угла поворота коленчатого вала» показано влияние отношения хода поршня к длине шатуна и смещения. Однако различия по сравнению с нормальными значениями смещения в миллиметровом диапазоне (δ х = r(1+1/4·λ+3/64·λ 3 +…- cosa-(1/4λ+3/64·λ 3 +…)cos2a+(3/64·λ 3 +…)cos4a+…)
Это выражение демонстрирует присутствие высших гармоник, обусловленных кинематикой привода коленчатого вала, которые также называются колебаниями двигателя высшего порядка (кратные частоты вращения коленчатого вала).
Поскольку нормальные значения λ составляют около 0,3, членами λ высшего порядка можно пренебречь и в дальнейших расчетах использовать следующее упрощенное выражение:
Читайте также: Муфта эластичная рулевого вала 2114
Однако это упрощение не может быть использовано, если необходимо выполнить детальный анализ вибрации и резонанса.
Из упрощенного уравнения получаются следующие соотношения для скорости поршня v и ускорения поршня а, где была введена угловая скорость da/dt=ω= 2πn (п частота вращения):
Здесь также имеют место высшие гармоники, которые не следует игнорировать при исследовании явлений резонанса.
Видео:Замена датчика положения коленвала. Сложности и нюансы. Ремонт с ЕвроАвтоСкачать
Динамика коленчатого вала
Силы, воздействующие на узел коленчатого вала, и результирующие моменты первоначально можно определить следующим образом без учета сил инерции (рис.»Разложение на составляющие силы воздействующей на поршень» ).
Сила на поршневом пальце возникает под действием давления газов в камере сгорания, передающегося на поршень. Имеет место следующее:
FG = (P -PKGH) Apiston
Сила на шатуне определяется посредством векторного анализа силы на поршневом пальце в направлении шатуна. Имеет место следующее:
Нормальная сила поршня FN — это векторная составляющая силы на поршневом пальце, перпендикулярная к стенке цилиндра и уравновешивающая силу на шатуне:
FN=FG·tanβ=FG·λ sina/√¯1-λ 2 ·sin 2 a
Эта сила вносит значительный вклад в создание трения между поршнем и стенкой цилиндра. Сторона, с которой соприкасается поршень после верхней мертвой точки под действием давления газов, называется большой упорной поверхностью, а противоположная сторона — малой упорной поверхностью. Следовательно, наибольшее трение имеет место вскоре после прохождения ВМТ на большой упорной поверхности.
Тангенциальная сила на шатунной шейке коленчатого вала вызывает ускорение коленчатого вала и, следовательно, увеличение крутящего момента коленчатого вала. Она определяется путем векторного анализа силы на шатуне:
Подкоренное выражение может быть упрощено следующим образом:
Радиальная сила FR на шатунной шейке коленчатого вала:
Силы инерции можно разделить на колебательные и вращательные составляющие. Массы поршня, поршневых колец и поршневого пальца mк относятся к колебательной составляющей и могут быть виртуально сосредоточены в поршневом пальце.
Щека коленчатого вала с шатунной шейкой относятся к вращательной составляющей. Здесь масса обычно сосредотачивается на радиусе кривошипа, на центральной оси шатунной шейки. Применимо следующее:
где ml — масса соответствующего компонента (щека, палец и т.д.), а rsl — соответствующий радиус центра массы.
В связи с колебательным движением шатуна целесообразно разделить массу шатуна на колебательную и вращательную составляющие. Это может быть сделано, если известно точное положение центра тяжести и момента инерции шатуна, предполагая наличие двух динамически идентичных отдельных масс малой и большой головок шатуна, и определяя Условие равновесия сил, моментов и инерционных масс. Обычно предполагается, что одна треть массы шатуна тpl является колебательной, а две трети — вращательной. Затем при т0 = mK + 1/3 тРl, как колебательной массы и соответствующем ускорении поршня (см. ниже) колебательная сила инерции выражается как:
Таким образом, колебательная сила инерции возрастает пропорционально квадрату частоты вращения двигателя (ω = 2π·п) и имеет составляющую первого порядка и меньшую составляющую второго порядка.
Вращательная сила инерции выводится, как центробежная сила из уменьшенной массы mr = mw + 2/3 тРl и скорости вращения как:
Точно так же вращательная сила инерции возрастает пропорционально квадрату частоты вращения двигателя, но не имеет составляющих высших порядков. Вращательная сила инерции, следовательно, может быть легко уравновешена противовесами, вращающимися со скоростью, равной частоте вращения двигателя. Неравномерности вращения коленчатого вала столь малы по сравнению с этими силами, что в балансе масс ими можно пренебречь.
Как было показано выше в кинематике узла коленчатого вала, высшие гармоники (колебания высшего порядка) возникают за счет геометрии кривошипно-шатунного механизма. Амплитуда колебаний 4-го и выше порядков быстро снижается, и в балансе масс этими колебаниями, как правило, пренебрегают.
Видео:ДПКВ. Признаки неисправности датчикаСкачать
Уравновешивание масс в одноцилиндровом двигателе
Компонент вращающейся массы в одноцилиндровом двигателе может быть полностью уравновешен при помощи соответствующего противовеса. Противовесы обычно предусматриваются на обеих сторонах, и массы должны быть сбалансированы относительно радиуса вращения центра масс. Колебания сил можно представить в виде векторов силы (рис. «Полностью уравновешенные массы 1-го и 2-го порядков» ), когда они моделируются как вращающиеся в противоположных направлениях, и имеющие в каждом случае половинную величину.
Следовательно, для уравновешивания колебательных сил инерции могут быть использованы два вращающихся в противоположном направлении вала. Горизонтальная составляющая исчезает и, как минимум составляющая колебательной силы инерции первого порядка может быть скомпенсирована.
Читайте также: Динамическая балансировка валов что это
Для практически полного уравновешивания масс требуются дополнительные уравновешивающие валы, которые должны вращаться со скоростью в два раза выше частоты вращения двигателя, чтобы полностью уравновесить составляющую колебаний второго порядка.
Часто конструкторам приходится идти на компромисс вследствие того, что системы с противоположно вращающимися валами являются дорогостоящими, и уже для уравновешивания сил инерции первого порядка требуются значительные массы. Например, масса противовеса может быть равна половине колеблющейся массы. При этом неуравновешенные силы инерции, действующие наружу в направлении продольной оси цилиндра, уменьшаются наполовину, однако за счет больших масс, вращающихся компонентов возникают поперечные силы (см. табл. «Уравновешивание масс в одноцилиндровом двигателе, в зависимости от степени уравновешивания» ). Такая частичная компенсация называется 50% — ной балансировкой. Обычными цифрами являются 100% уравновешивание вращающихся масс и 50% уравновешивание колеблющихся масс.
Видео:Регулировка Датчика Положения коленчатого валаСкачать
Уравновешивание масс в многоцилиндровых двигателях
В многоцилиндровом двигателе силы инерции состоят из сил инерции каждого отдельного цилиндра, которые накладываются друг на друга. Кроме того, за счет промежутков между цилиндрами создаются неуравновешенные моменты инерции. Все возможные поперечные и продольные отклоняющие моменты, и неуравновешенные силы инерции показаны в табл. «Поперечные и продольные отклоняющие моменты и неуравновешенные силы инерции в многоцилиндровых двигателях» .
Взаимное уравновешивание сил инерции является одним из главных факторов, определяющих выбор конфигурации коленчатого вала, а, следовательно, и конструкции самого двигателя. В многоцилиндровых двигателях силы инерции могут быть уравновешены, если общий центр тяжести всех деталей кривошипно-шатунного механизма располагается в средней точке коленчатого вала, т.е., если коленчатый
вал является симметричным (глядя спереди). Это представлено полярными диаграммами сил 1-го и 2-го порядка (см. табл. «Полярная диаграмма сил для рядных двигателей» ).
Диаграмма 2-го порядка для четырехцилиндрового рядного двигателя является асимметричной, указывая на то, что этот порядок характеризуется наличием больших неуравновешенных сил инерции. Эти силы могут быть уравновешены двумя балансирными валами, вращающимися в противоположных направлениях, но с удвоенной частотой (система Ланчестера).
В табл. «Неуравновешенные силы и моменты 1-го и 2-го порядка и интервалы между моментами зажигания для наиболее распространенных моделей двигателей» приведена сводка неуравновешенных сил и моментов для различного числа цилиндров и конфигураций кривошипно-шатунных механизмов.
Видео:Как самому проверить датчик коленвала? Способы проверки датчика коленвала (ДПКВ)Скачать
Крутящая сила
Массы в двигателе движутся с постоянно изменяющимся ускорением, что приводит к возникновению сил инерции. Циклически изменяющиеся давления в цилиндрах называются силами газообразных продуктов сгорания смеси. Те и другие силы по отношению к двигателю имеют как внутренние, так и внешние составляющие. Внутренние силы и моменты должны поглощаться компонентами двигателя, в особенности коленчатым валом и картером двигателя, в то время как внешние силы через опоры двигателя передаются на шасси автомобиля.
На поршень действуют циклические усилия, создаваемые при сгорании топливовоздушной смеси, а циклические инерционные усилия действуют на поршень, шатун и коленчатый вал. Все эти силы в сумме создают тангенциальную составляющую силы, действующую на шейку коленчатого вала. Эта сила, умноженная на радиус кривошипа, дает крутящий момент, также изменяющийся по периодическому закону.
В многоцилиндровых двигателях кривые тангенциального давления для отдельных цилиндров суммируют в соответствии с числом цилиндров двигателя, их расположением, конструкцией коленчатого вала и порядком работы цилиндров. Полученная результирующая кривая является характеристикой двигателя (с точки зрения его конструкции) и включает весь рабочий цикл (т.е., для четырехтактных двигателей два оборота коленчатого вала) (см. рис. «Полностью уравновешенные массы 1-го и 2-го порядков» ). Этот процесс можно проиллюстрировать диаграммой крутящих сил. Эта переменная крутящая сила и результирующий крутящий момент, в зависимости от момента инерции J, создают переменную скорость вращения ω:
с учетом всех наложенных и вновь созданных порядков колебаний (в том числе половинных порядков). Это отклонение от постоянной скорости вращения называется коэффициентом циклического изменения скорости вращения и определяется следующим образом:
Этот коэффициент циклического изменения может быть уменьшен до приемлемого уровня при помощи механизмов, запасающих энергию, таких как, например, маховики. Крутильные колебания, которые можно отследить назад к описанным выше крутящим силам, также называются крутильными колебаниями 1-го порядка. Эти колебания нельзя смешивать с высокочастотными колебаниями, возникающими вследствие упругих деформаций и собственного резонанса коленчатого вала, называемыми колебаниями 2-го порядка.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
🔍 Видео
7 ПРИЧИН ПО КОТОРЫМ ВОЗНИКАЮТ ОШИБКИ ПО ДАТЧИКУ ПОЛОЖЕНИЯ РАСПРЕДВАЛА (ДПРВ)Скачать
Датчик коленвала, его функции и имитация при помощи ПК. Пропуски воспламенения, алгоритм определенияСкачать
Строение и функция коленчатого вала (3D анимация) - Motorservice GroupСкачать
ДАТЧИК КОЛЕНВАЛА. Проверяем без приборов!Скачать
Основные признаки неисправности датчика положения коленчатого вала(ДПКВ),проверка работоспособностиСкачать
Hyundai Solaris - P0335 - неисправность цепи датчика положения коленчатого вала.Скачать
Как проверить датчик коленвала, не выходя из машины, без приборовСкачать
Фазы на распредвалах, какое перекрытие выставить? Что такое "фаза распредвала"?Скачать
Как проверить дпкв (датчик положения коленчатого вала) ВазСкачать
ЯК ШВИДКО та ПРОСТО перевірити будь-який ДАТЧИК АВТОМОБІЛЯ чи РОБОЧИЙ СВОЇМИ РУКАМИСкачать
Проверка датчика коленвала мультиметромСкачать
как проверить датчик положения коленчатого вала (дпкв)Скачать