На этой странице приведен еще один пример решения задачи по Сопромату, в которой необходимо произвести расчет вала переменного сечения (ступенчатого), нагруженного крутящими моментами. По результатам расчетов необходимо подобрать размеры вала, а также определить максимальную деформацию вала на скручивание (угол закручивания).
Результаты расчетов оформлены эпюрами крутящих моментов, касательных напряжений и углов закручивания бруса.
Студентам технических специальностей ВУЗов в качестве методической помощи предлагаются к скачиванию готовые варианты контрольных работ по сопромату (прикладной механике). Представленные задания и примеры их решения предназначены, в частности, для учащихся Алтайского Государственного технического университета.
Варианты контрольных работ можно скачать в формате Word для ознакомления с порядком решения заданий, или для распечатывания и защиты (при совпадении вариантов).
Видео:КРУЧЕНИЕ. ЭПЮРЫ ЗАКРУЧИВАНИЯ. Углы поворота. СопроматСкачать
Расчет вала
Условие задачи:
К стальному валу, состоящему из 4-х участков длиной l1…l4 приложено четыре сосредоточенных момента М1…М4 (см. рис. 1 ).
Требуется:
Построить эпюру крутящих моментов Мкр , подобрать диаметр вала из расчета на прочность, построить эпюру максимальных касательных напряжений τmax , построить эпюру углов закручивания φ вала и определить наибольший относительный угол закручивания вала.
Исходные данные:
Указания:
Вычертить схему вала в соответствии с исходными данными.
Знаки моментов в исходных данных означают: плюс – момент действует против часовой стрелки относительно оси Z , минус – по часовой стрелке (см. навстречу оси Z ). В дальнейшем значения моментов принимать по абсолютной величине.
Участки нумеровать от опоры.
Допускаемое касательное напряжение [ τ ] для стали принимать равным 100 МПа.
Решение:
1. Определим методом сечений значения крутящих моментов на каждом силовом участке от свободного конца вала.
Крутящий момент равен алгебраической сумме внешних моментов, действующих на вал по одну сторону сечения.
2. Подберем сечение вала из расчета на прочность при кручении по полярному моменту сопротивления для участка, где величина крутящего момента максимальная (без учета знака):
Так как для круглого сечения полярный момент равен: Wр = πD 3 /16 , то можно записать:
D ≥ 3 √ (16Мкр/π[τ]) ≥ 3√(16×12,2×10 3 /3,14×[100×10 6 ]) = 0,0855 м или D ≥ 85,5 мм.
( Здесь и далее знак «√» означает квадратный корень из выражения )
В соответствии со стандартным рядом, предусмотренным ГОСТ 12080-66, принимаем диаметр вала D = 90 мм.
3. Определим угол закручивания для каждого участка вала по формуле:
где
G – модуль упругости 2-го рода; для стали G = 8×10 10 Па;
Ip – полярный момент инерции (для круглого сечения Iр = πD 4 /32 ≈ 0,1D 4 , м 4 ).
Произведение G×Iр = 8×10 10 ×0,1×0,094 ≈ 524880 Н×м 2 – жесткость сечения данного вала при кручении.
Читайте также: Компрессор dsv smart красн led фонарь 35л мин
Расчитываем углы закручивания на каждом участке:
4. Определяем углы закручивания сечений вала, начиная от жесткой заделки (опоры):
5. Определяем максимальное касательное напряжение на каждом силовом участке по формуле:
6. Наибольший относительный угол закручивания Θmax определим по формуле:
7. По результатам расчетов строим эпюры крутящих моментов Мкр , касательных напряжений τmax и углов закручивания φ (см. рис. 2).
Видео:КРУЧЕНИЕ ВАЛА. Касательные напряжения. Сопромат.Скачать
ПроСопромат.ру
Видео:Расчет вала на прочность и жесткость. Эпюра крутящих моментовСкачать
Технический портал, посвященный Сопромату и истории его создания
Видео:Сопромат. Построение эпюр вала при кручении. Я в вк https://vk.com/id4682924Скачать
Кручение
Внутренний крутящий момент в сечении вала Мк (может быть обозначен буквой Т, Мz) вычисляется с помощью метода сечений, при этом моменты учитываются по одну сторону от сечения.
где Мi – внешний активный или реактивный крутящий момент; правило знаков для внутренних крутящих моментов устанавливается произвольно.
Для вала с круглым (в т.ч. в виде кольца) поперечным сечением касательные напряжения определяются по формуле:
где — это полярные моменты инерции для сплошного и кольцевого сечений соответственно, ρ – координата произвольной точки сечения, D, d – наружний и внутренний диаметры сечения.
Максимальные касательные напряжения действуют в точках поверхностного слоя при ρ=ρmax
Условие прочности по допускаемым напряжениям
где — это допускаемое касательное напряжение.
Угол закручивания (рад) на силовом участке вала при постоянных значениях крутящего момента и поперечного момента инерции для данного участка вычисляется следующим образом
где G – модуль сдвига
Относительный угол закручивания (рад/м) для силового участка
Условие жесткости при кручении вала с круглым поперечным сечением записывается в виде
Для вала с прямоугольным поперечным сечением эпюры касательных напряжений имеют вид.
В характерных точках сечения
угол закручивания на силовом участке вала
где α, η, β – коэффициенты, зависящие от отношения a/b (или h/b — отношение большей стороны прямоугольника к меньшей)
Если вал с эллиптической формой поперечного сечения и полуосями a и b, то его характерные эпюры касательных напряжений будут выглядеть следующим образом.
Касательные напряжения в характерных точках сечения
Угол закручивания на силовом участке вала
Кручение бруса тонкостенного замкнутого круглого сечения
Тонкостенное круглое сечение характеризуется средним радиусом Rср и толщиной стенки трубы δ:
Считается, что касательные напряжения по толщине стенки распределяются равномерно и равны:
Угол закручивания
Кручение пустотелых валов круглого сечения
Читайте также: Технологическая карта восстановления валов
Трубчатое сечение бруса в условиях кручения оказывается наиболее рациональным, так как материал из центральной зоны сечения, слабо напряженной, удален в область наибольших касательных напряжений. Вследствие этого прочностные свойства материала используются значительно полнее, чем в брусьях сплошного круглого сечения, и при всех прочих равных условиях применение трубчатого сечения вместо сплошного позволяет экономить материал.
Теория расчета бруса сплошного круглого сечения полностью применима и к пустотелым валам. Изменяются лишь геометрические характеристики сечения:
Кручение бруса прямоугольного сечения
Опыт показывает, что при кручении брусьев некруглого поперечного сечения сами сечения не остаются плоскими, то есть происходит депланация поперечных сечений. Исследовать напряженное и деформированное состояние таких брусьев при кручении методами сопротивления материалов не представляется возможным, так как в основе их лежит гипотеза плоских сечений (гипотеза Бернулли).
Задача о кручении бруса некруглого, в частности, прямоугольного сечения решена с помощью метода теории упругости, и на основе этого решения предложены простые расчетные формулы, имеющие ту же структуру, что и формулы для бруса круглого сечения, а именно:
Здесь: Wк=α∙h∙b2– момент сопротивления при кручении,
Iк=β∙h∙b3 – момент инерции при кручении.
В этих формулах: b – меньшая из сторон прямоугольника,
h – большая сторона,
α, β – коэффициенты, значения которых приводятся в таблице в зависимости от отношения сторон h/b (эта таблица содержится в рубрике «Кручение» или в любом учебнике сопротивления материалов).
Распределение касательных напряжений по прямоугольному сечению тоже отличается от распределения в круглом сечении:
Значения коэффициента γ Запись опубликована 04.09.2014 автором admin в рубрике Кручение, Сопромат.
Видео:Кручение. Часть 6 Жесткость валаСкачать
iSopromat.ru
Кручением называется такой вид деформации бруса, при котором в его поперечных сечениях возникает только один внутренний силовой фактор – крутящий момент T.
Брусья, испытывающие кручение, принято называть валами.
Видео:Кручение валаСкачать
Внутренний крутящий момент
Внутренние скручивающие моменты появляются под действием внешних крутящих моментов mi, расположенных в плоскостях, перпендикулярных к продольной оси бруса.
Скручивающие моменты передаются на вал в местах посадки зубчатых колес, шкивов ременных передач и т.п.
Величина крутящего момента в любом сечении вала определяется методом сечений:
т.е. крутящий момент численно равен алгебраической сумме скручивающих моментов mi, расположенных по одну сторону от рассматриваемого сечения.
Правило знаков внутренних скручивающих моментов:
Положительными принимаются внутренние моменты, стремящиеся повернуть рассматриваемую часть вала против хода часовой стрелки, при рассмотрении со стороны отброшенной части вала.
В технике наиболее широко используются валы круглого поперечного сечения.
Читайте также: Замена подшипника вторичного вала ява
Теория кручения круглых валов основана на следующих гипотезах:
- поперечное сечение, плоское до деформации вала, остается плоским и после деформации;
- радиусы, проведенные мысленно в любом поперечном сечении, в процессе деформации вала не искривляются.
Видео:Сопротивление материалов. Лекция: кручение круглого стержняСкачать
Напряжения при кручении
В поперечных сечениях вала при кручении имеют место только касательные напряжения.
Касательные напряжения, направленные перпендикулярно к радиусам, для произвольной точки, отстоящей на расстоянии ρ от центра, вычисляются по формуле:
где Iρ — полярный момент инерции.
Эпюра касательных напряжений при кручении имеет следующий вид:
Касательные напряжения меняются по линейному закону и достигают максимального значения на контуре сечения при ρ= ρmax:
Здесь:
— полярный момент сопротивления.
Геометрические характеристики сечений:
а) для полого вала:
б) для вала сплошного сечения (c=0)
в) для тонкостенной трубы (t 0,9)
где
— радиус срединной поверхности трубы.
Видео:Кручение. Расчет составного вала кольцевого сечения.Скачать
Деформации
Деформации валов при кручении заключаются в повороте одного сечения относительно другого.
Угол закручивания вала на длине Z определяется по формуле:
Если крутящий момент и величина GIρ, называемая жесткостью поперечного сечения при кручении, постоянны, для участка вала длиной l имеем:
Угол закручивания, приходящийся на единицу длины, называют относительным углом закручивания:
Расчет валов сводится к одновременному выполнению двух условий:
- условию прочности:
- условию жесткости:
Для стальных валов принимается:
- допускаемое касательное напряжение
- допускаемый относительный угол закручивания
Используя условия прочности и жесткости, как и при растяжении – сжатии можно решать три типа задач:
- проверочный расчет, заключающийся в проверке выполнения условий прочности и жесткости при известных значениях крутящего момента, размеров и материала вала.
- Проектировочный расчет, при котором вычисляются диаметры:
при этом берется большее из найденных значений, а затем принимается стандартное значение по ГОСТ. - Определение грузоподъемности вала:
- из условия прочности
- из условия жесткости
- из условия прочности
При кручении, наряду с касательными напряжениями в поперечных сечениях, в соответствии с законом парности, касательные напряжения возникают и в продольных сечениях. Таким образом, во всех точках вала имеет место чистый сдвиг.
Главные напряжения σ1 = τ, σ3 = -τ наклонены под углом α=±45 о к образующей.
Потенциальная энергия упругой деформации определяется по формуле
или для участка вала при постоянном T и GIρ
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
📺 Видео
Основы сопромата. Задача 5. Расчет стержня на кручениеСкачать
Кручение зажатого валаСкачать
11. Кручение ( практический курс по сопромату )Скачать
Статически неопределимый вал. Расчет на прочность при крученииСкачать
Кручение. Построение эпюр крутящих моментов и углов закручивания.Скачать
Лекция Кручение.Скачать
Кручение для ОНЛСкачать
Сопротивление материалов. Лекция: кручение тонкостенного профиляСкачать
Основы работы в среде Solidworks Simulation. Кручение цилиндрического валаСкачать
Основы простого сопротивления. Часть 2. Кручение круглого валаСкачать
Сопромат №4: Расчет вала на прочность и жесткостьСкачать
Сопротивление материалов. D-07 (стержень круглого поперечного сечения скручен двумя моментами).Скачать