Системная шина – совокупность линий передачи всех видов сигналов (в том числе данных, адресов и управления), идущих параллельно и имеющих одинаковое функциональное назначение, предназначенных для передачи информации между микропроцессором и остальными электронными устройствами компьютера.
Компьютерная шина в архитектуре компьютера – подсистема, служащая для передачи данных между функциональными блоками компьютера.
С помощью шины происходит как обмен информацией, так и передача адресов, служебных сигналов.
В цифровой технике многоразрядные шины используют для передачи параллельных двоичных кодов с одного устройства на другое.
Системная шина находится на системной плате.
В устройстве шины можно различить механический, электрический (физический) и логический (управляющий) уровни.
Большинство компьютеров имеет как внутренние, так и внешние шины.
Внутренняя шина подключает все внутренние компоненты компьютера к материнской плате. Такой тип шин также называют локальной шиной, поскольку она служит для подключения локальных устройств.
Внешняя шина подключает внешнюю периферию к материнской плате.
Важной характеристикой системной шины, влияющей на производительность персонального компьютера, является тактовая частота системной шины – FSB ( Frequency System Bus ).
Все блоки, входящие в микроЭВМ , соединены при помощи трех шин: шины адреса, шины данных и шины управления.
Подобную архитектуру микропроцессорной системы называют общей шиной , т. е. это совокупность линий (соединительных проводов), которая является общей для всех подключенных к ней устройств и служит для передачи информации.
Общая магистраль представлена совокупностью трех специализированных шин: шины данных, шины адреса и шины управления.
Шина данных предназначена для пересылки кодов обрабатываемых данных, а также машинных кодов команд между устройствами ЭВМ. По шине данных передается информация в микропроцессор и из него.
Шина адреса несет адрес (номер) той ячейки памяти или того порта ввода-вывода, который взаимодействует с микропроцессором.
На шину адреса микропроцессор выводит информацию о номере (адресе) той ячейки памяти или устройства, с которым он собирается производить обмен информацией.
Шина управления несет сигналы управления, обеспечивающие правильное взаимодействие блоков микро ЭВМ друг с другом и с внешней средой.
В состав шины управления входят сигналы, управляющие процессом передачи информации, например:
· чтение ( Read , RD; запись или чтение определяется от лица процессора);
· обмен с памятью ( Memory Require, MREQ);
· обмен с устройством ввода-вывода ( I/O Require , Ioreq , или их комбинации).
Шина входит в состав материнской платы компьютера и осуществляет обмен данными между процессором или оперативной памятью и контроллерами внешних устройств компьютера: клавиатуры, монитора, дисков и т. д.
Все контроллеры внешних устройств, кроме размещенных непосредственно на материнской плате, подключаются к компьютеру путем вставки этих контроллеров в свободные разъемы ( слоты) шины.
В последнее время в персональных компьютерах реализуются следующие виды шин:
1. Различные сверхскоростные процессорные шины для связи центрального процессора с системным контроллером.
Подключение других устройств к таким шинам невозможно;
2. PCI (англ. Peripheral Component Interconnect – « Взаимосвязь периферийных компонентов»).
Наиболее популярная шина в прошлом. До сих пор на многих материнских платах предусмотрены разъемы PCI для старых плат расширения, нетребовательных к скорости передачи данных.
3. PCI Express – более современная шина, пришедшая на смену шине PCI. Это последовательная шина (в отличие от параллельной шины PCI) – передача данных осуществляется по трем парам проводников ( линии) бит за битом.
Скорость передачи данных ( для версии 1.0) приблизительно в два раза больше, чем у шины PCI. С электрической точки зрения PCI Express – не шина.
К линии PCI Express можно подключить только одно устройство. Однако из чипсета выходит несколько линий (до 50 у современных чипсетов), поэтому к каждой плате расширения подводится своя линия PCI Express .
Видеоадаптеры могут использовать до 16 линий одновременно.
Через некоторое время после появления шины PCI Express 1.0 появился стандарт 2.0 с вдвое большей скоростью передачи данных.
Недавно появился стандарт 3.0, где скорость передачи данных снова удвоилась.
4. USB (англ. Universal Serial Bus – «Универсальная последовательная шина»). Весьма популярная шина для подключения к компьютеру внешних устройств. USB-устройства могут также устанавливаются внутри системного блока.
Читайте также: Подбор зимних шин r14
В настоящее время по шине USB подключаются клавиатуры, мыши, принтеры, сканеры, радиомодули Bluetooth и Wi-Fi , портативные жесткие диски, Flash -накопители, приводы для работы со сменными дисками, цифровые фотоаппараты, web -камеры, мобильные телефоны, различное специализированное оборудование.
Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать
Укажите виды системных шин
Шиной называется вся совокупность линий (проводников на материнской плате), по которым обмениваются информацией компоненты и устройства ПК.
Шина имеет места для подключения внешних устройств — слоты, которые в результате становятся частью шины и могут обмениваться информацией со всеми другими подключенными к ней устройствами.
Шина, связывающая только два устройства, называется портом.
по функциональному назначению:
- системная шина (ЦПУ и чипсеты)
- шина кэш-памяти (ЦПУ и кэш)
- шина памяти (ЦПУ и ОЗУ)
- шины ввода-вывода
- локальные — скоростная шина, для обмена информацией между быстродействующими периферийными устройствами (видеокартой, сетевой картой и т.д.) и системной шиной (PCI)
- стандартная шина — для подключения более медленных устройств (ISA, USB)
по способу передачи данных
- параллельно (все биты передаются одновременно, каждый по своему проводу)
- последовательно (биты передаются один за другим по одному проводу)
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
🔍 Видео
АПС Л19. ШиныСкачать
Шина компьютера, оперативная память, процессор и мостыСкачать
Частота процессора или частота системной шины?Скачать
Виды топологий локальных сетей | Звезда, кольцо, шинаСкачать
Слив ответов ВПР, ОГЭ, ЕГЭ в комментариях!Скачать
Системная шина персонального компьютера PCIСкачать
АПС Л14. ШиныСкачать
Кан шина, что это? Поймет школьник! принцип работыСкачать
Главная заземляющая шина, система уравнивания потенциаловСкачать
лекция 403 CAN шина- введениеСкачать
ТЕХНИКА БЕЗОПАСНОСТИ. Вид Грубейшего Нарушения ТРЕБОВАНИЙ ТБ при работе на СТАНКАХ.Скачать
Почему одни чернители смываются, а другие нет. Тест силиконовых и глицериновых чернителей резиныСкачать
Возьми на заметку ! Как восстановить протектор ! #shortsСкачать
Отличие китайской шины от российскойСкачать
ЗАЗЕМЛЕНИЕ - ТАКОЕ НЕ ПОКАЖУТ В ВУЗАХ. Рассказываю как работает и чем отличается. #TN #TT #IT #ОмСкачать
Как выбрать шины? #автошколавсекатегории #автошколаонлайн #автошколаСкачать
Характеристики шин:
1. разрядность — число параллельных проводников, входящих в нее (64)
2. пропускная способность — количество байт информации, передаваемых по шине за секунду (тактовая частота * разрядность).
Стандарты шин ПК
Несомненное преимущество ПК — открытая архитектура, позволяющая в широких пределах изменять конфигурацию компьютера, адаптируя его для решения определенных задач. Принцип совместимости подразумевает стандартизацию интерфейсов отдельных компонентов ПК.
Интерфейс (сопряжение) — совокупность характеристики устройства, определяющих организацию обмена информацией между ним и ЦПУ (электрические, временные параметры, протокол обмена данными, конструктивные особенности).
Выделяют внутренние и внешние интерфейсы.
1. Внутренние интерфейсы расположены в корпусе ПК используются для подключения плат расширения и устройств к системной плате:
Видео:Системные шины персонального компьютера для ...Скачать
Cистемная шина материнской платы, устройство и функции системной шины
Устройство и функции системной шины.
Часто люди, интересующиеся компьютерной тематикой, встречают в интернете такой термин, как системная шина. Но что же это такое? Эта статья подробно расскажет об одном из важнейших элементов компьютерной системы.
Системная шина – это устройство которое связывает между собой различные функциональные блоки компьютера, а ее задачей является передача данных между ними. Строго говоря это магистраль, состоящая из проводниковых элементов, по которым информация передается в виде электрического сигнала. Соответственно, чем больше тактовая частота, на которой шина работает, тем быстрее осуществляется обмен данными между элементами компьютерной системы.
Системная шина состоит из адресной шины, шины управления и данных. Каждая шина используется для передачи конкретной информации: по адресной передаются адреса (ячеек памяти и устройств), шина управления служит для передачи управляющих сигналов устройствам, а данные соответственно передаются посредством шины данных.
Типы системных шин.
В современных компьютерах используются шины нескольких видов. Материнские платы с процессорами Intel, оснащаются шинами QPB типа. Они способны передавать данные 4 раза за такт, а вот платы с процессорами AMD используют шины EV6, передающие данные 2 раза за один такт. Кстати, в последних моделях своих процессоров AMD вообще отказывается от стандартной системной шины, её роль будет выполнять технология HyperTransport.
Так как шина передает данные несколько раз за такт, её эффективная частота обычно в несколько раз выше реальной, то есть шина, имеющая фактическую частоту 200 мГц и передающая данные 4 раза за один такт, будет работать с эффективной частотой в 800 мГц. Это важно понимать для оценки производительности шины и расчета возможностей её разгона.
Следует учитывать и тот факт, что системная шина имеет ограничения по разгону, потому что превышение допустимого уровня тактовой частоты может привести к неисправности и нарушениям в работе. В то же время системная шина будет нормально функционировать при показателях частоты, которые ниже указанных на упаковке, не превышающих допустимый уровень.
Пропускная способность системных шин.
Одним из важных параметров, который характеризует системную шину является пропускная способность. Она определяет максимальное количество информации, которая передается по шине данных за одну секунду (Бит/с). Для определения величины пропускной способности следует частоту шины (частота считывания данных) умножить на количество Бит, переданных за один такт. Количество данных за такт соответствует показателю разрядности процессора. На современных процессорах показатель разрядности составляет 64 Бит.
Читайте также: Демисезонные шины можно ли использовать зимой
Используя формулу и известные данные получаем:
Это и будет величиной пропускной способности магистрали, соединяющей чипсет (или северный мост) с процессором. Связанные с материнской платой ОЗУ, видеоадаптер и жесткий диск между собой функционируют посредством магистралей, среди которых системная шина является самой важной.
На деле системная шина фактически соединяет процессор и чипсет. А вот чипсет напрямую соединяется с различными устройствами компьютера (ОЗУ, видеоадаптер, USB) используя вспомогательные шины (шина памяти, графического контроллера, PCI, PCI Express и LPC), частоты которых отличаются от показателей системной шины.
Итак, данная статья отвечает на вопрос: что такое системная шина, каковы ее устройство и функции, какие виды системных шин существуют, а также как вычислить значение пропускной способности.
Видео:Системная шина процессораСкачать
Шина (компьютер)
Компьютерная ши́на (от англ. computer bus , bidirectional universal switch — двунаправленный универсальный коммутатор) — в архитектуре компьютера подсистема, которая передаёт данные между функциональными блоками компьютера. Обычно шина управляется драйвером. В отличие от связи точка-точка, к шине можно подключить несколько устройств по одному набору проводников. Каждая шина определяет свой набор коннекторов (соединений) для физического подключения устройств, карт и кабелей.
Ранние компьютерные шины представляли собой параллельные электрические шины с несколькими подключениями, но сейчас данный термин используется для любых физических механизмов, предоставляющих такую же логическую функциональность, как параллельные компьютерные шины. Современные компьютерные шины используют как параллельные, так и последовательные соединения и могут иметь параллельные (multidrop) и цепные (daisy chain) топологии. В случае USB и некоторых других шин могут также использоваться хабы (концентраторы).
Видео:Системная шина персонального компьютера ISAСкачать
История
Первое поколение
Ранние компьютерные шины были группой проводников, подключающей компьютерную память и периферию к процессору. Почти всегда для памяти и периферии использовались разные шины, с разным способом доступа, задержками, протоколами.
Одним из первых усовершенствований стало использование прерываний. До их внедрения компьютеры выполняли операции ввода-вывода в цикле ожидания готовности периферийного устройства. Это было бесполезной тратой времени для программ, которые могли делать другие задачи. Также, если программа пыталась выполнить другие задачи, она могла проверить состояние устройства слишком поздно и потерять данные. Поэтому инженеры дали возможность периферии прерывать процессор. Прерывания имели приоритет, так как процессор может выполнять только код для одного прерывания в один момент времени, а также некоторые устройства требовали меньших задержек, чем другие.
Некоторое время спустя компьютеры стали распределять память между процессорами. На них доступ к шине также получил приоритеты.
Классический и простой способ обеспечить приоритеты прерываний или доступа к шине заключался в цепном подключении устройств.
DEC отмечала, что две разные шины могут быть излишними и дорогими для малых, серийных компьютеров и предложила отображать периферийные устройства на шину памяти, так, что они выглядели как области памяти. В то время это было очень смелым решением, и критики предсказывали ему провал.
Первые миникомпьютерные шины представляли пассивные объединительные платы, подключенные к контактам микропроцессора. Память и другие устройства подключались к шине с использованием тех же контактов адреса и данных, что и процессор. Все контакты были подключены параллельно. В некоторых случаях, например в IBM PC, необходимы дополнительные инструкции процессора для генерации сигналов, чтобы шина была настоящей шиной ввода-вывода.
Во многих микроконтроллерах и встраиваемых системах шины ввода-вывода до сих пор не существует. Процесс передачи контролируется ЦПУ, который в большинстве случаев читает и пишет информацию в устройства, так, как будто они являются блоками памяти. Все устройства используют общий источник тактового сигнала. Периферия может запросить обработку информации путём подачи сигналов на специальные контакты ЦПУ, используя какие-либо формы прерываний. Например, контроллер жёсткого диска уведомит процессор о готовности новой порции данных для чтения, после чего процессор должен считать их из области памяти, соответствующей контроллеру. Почти все ранние компьютеры были построены по таким принципам, начиная от Altair с шиной S-100, заканчивая IBM PC в 1980‑х.
Читайте также: Lada priora can шина
Такие простые шины имели серьёзный недостаток для универсальных компьютеров. Всё оборудование на шине должно было передавать информацию на одной скорости и использовать один источник синхросигнала. Увеличение скорости процессора было непростым, так как требовало такого же ускорения всех устройств. Это часто приводило к ситуации, когда очень быстрым процессорам приходилось замедляться для возможности передачи информации некоторым устройствам. Хотя это допустимо для встраиваемых систем, данная проблема непозволительна для коммерческих компьютеров. Другая проблема состоит в том, что процессор требуется для любых операций, и когда он занят другими операциями, реальная пропускная способность шины может значительно страдать.
Такие компьютерные шины были сложны в настройке, при наличии широкого спектра оборудования. Например, каждая добавляемая карта расширения могла требовать установки множества переключателей для задания адреса памяти, адреса ввода-вывода, приоритетов и номеров прерываний.
Второе поколение
Компьютерные шины «второго поколения», например NuBus решали некоторые из вышеперечисленных проблем. Они обычно разделяли компьютер на две «части», процессор и память в одной и различные устройства в другой. Между частями устанавливался специальный контроллер шин (bus controller). Такая архитектура позволила увеличивать скорость процессора без влияния на шину, разгрузить процессор от задач управления шиной. При помощи контроллера устройства на шине могли взаимодействовать друг с другом без вмешательства центрального процессора. Новые шины имели лучшую производительность, но также требовали более сложных карт расширения. Проблемы скорости часто решались увеличением разрядности шины данных, с 8-ми битных шин первого поколения до 16 или 32-х битных шин во втором поколении. Также появилась программная настройка устройств для упрощения подключения новых устройств, ныне стандартизованная как Plug-n-play.
Однако новые шины, так же как и предыдущее поколение, требовали одинаковых скоростей от устройств на одной шине. Процессор и память теперь были изолированы на собственной шине и их скорость росла быстрее, чем скорость периферийной шины. В результате, шины были слишком медленны для новых систем и машины страдали от нехватки данных. Один из примеров данной проблемы: видеокарты быстро совершенствовались, и им не хватало пропускной способности даже новых шин Peripheral Component Interconneсt (PCI). Компьютеры стали включать в себя Accelerated Graphics Port (AGP) только для работы с видеоадаптерами. В 2004 году AGP снова стало недостаточно быстрым для мощных видеокарт и AGP стал замещаться новой шиной PCI Express
Увеличивающееся число внешних устройств стало применять собственные шины. Когда были изобретены приводы дисков, они присоединялись к машине при помощи карты, подключаемой к шине. Из-за этого компьютеры имели много слотов расширения. Но в 1980‑х и 1990‑х были изобретены новые шины SCSI и IDE решившие эту проблему и оставив большую часть разъёмов расширения в новых системах пустыми. В наше время типичная машина поддерживает около пяти различных шин.
Шины стали разделять на внутренние (local bus) и внешние (external bus). Первые разработаны для подключения внутренних устройств, таких как видеоадаптеры и звуковые платы, а вторые предназначались для подключения внешних устройств, например, сканеров. IDE является внешней шиной по своему предназначению, но почти всегда используется внутри компьютера.
Третье поколение
Шины «третьего поколения» [какие?] обычно позволяют использовать как большие скорости, необходимые для памяти, видеокарт и межпроцессорного взаимодействия, так и небольшие при работе с медленными устройствами, например, приводами дисков. Также они стремятся к большей гибкости в терминах физических подключений, позволяя использовать себя и как внутренние и как внешние шины, например для объединения компьютеров. Это приводит к сложным проблемам при удовлетворении различных требований, так что большая часть работ по данным шинам связана с программным обеспечением, а не с самой аппаратурой. В общем, шины третьего поколения больше похожи на компьютерные сети, чем на изначальные идеи шин, с большими накладными расходами, чем у ранних систем. Также они позволяют использовать шину нескольким устройствам одновременно.
Современные интегральные схемы часто разрабатываются из заранее созданных частей. Разработаны шины (например Wishbone) для более простой интеграции различных частей интегральных схем.