Уплотнитель для редуктора это

Уплотнение — это устройства для разделения внешней и внутренней сред, предотвращающее (или уменьшающее) утечку через подвижные или разъемные неподвижные соединения. Внешней средой, как правило, является запыленный воздух при атмосферном давлении, внутренней — смазочные материалы или масляный туман при избыточном давлении ≤ 0,1 МПа.

Уплотнитель для редуктора это

Плоские прокладки для герметизации неподвижных соединений

В результате механической обработки на контактирующих поверхностях неподвижных соединений образуются микронеровности, волнистость, отклонения от правильной геометрической формы. При контактировании таких поверхностей плоскость стыка покрывается сетью сквозных каналов, создающих негерметичность соединения. При затяжке стыка плоская прокладка деформируется, частично или полностью перекрывая сквозные каналы.

Уплотнитель для редуктора это

Резиновые армированные манжеты для валов

Эти манжеты являются контактными уплотнениями и обеспечивают достаточно высокую герметичность соединения (класс негерметичности в среднем 1-2, рисунок 22.7.3). Они имеют низкую стоимость (выпуск массовый) и выдерживают высокие скорости скольжения (до 37 м/с). Наличие металлического каркаса обеспечивает в эксплуатации надежную осевую фиксацию (рисунок 22.9.1). Для эксплуатации в загрязненной окружающей среде применяют манжеты с пыльником. Приведены требования к установке манжет и предельные отклонения посадочных мест (см. табл. 22.9.1), условия эксплуатации (см. табл. 22.9.2) и основные размеры манжет (см, табл. 22.9.3) по ГОСТ 8752-79. Прижатие кромки манжеты к валу обеспечивают силы упругости и браслетная пружина.Неметаллические прокладки требуют пониженных сил затяжки, однако они могут выдавливаться из открытых стыков, а при демонтаже соединения повреждаться. Деформация прокладки приводит к сближению поверхностей стыка, что в некоторых случаях недопустимо (например, в плоскости разъема корпуса и крышки редуктора). Металлические прокладки прочнее, температурный диапазон их шире, но стоимость выше, чем неметаллических (см. табл. 22.8.1). На рисунок 22.8.2 и рисунок 22.8.3 приведены характерные примеры плоских прокладок.

Уплотнитель для редуктора это

Примеры уплотнений подшипников качения

Манжеты по ГОСТ 8752-79 устанавливают браслетной пружиной во внутреннюю полость изделия непосредственно в корпус (рисунок 22.10.1), крышку (рисунок 22.10.4, а) или регулирующий винт (рисунок 22.10.2). При высоком уровне масла применяют сдвоенные манжеты с заполнением пространства между ними ПСМ 1-13 (рисунок 22.10.3). При значительном загрязнении окружающей среды применяют манжеты с пыльником (рисунок 22.10.4, а) или комбинированные (рисунок 22.10.4, б). Изображенный на рисунок 22.10.4, б маслоотражатель защищает подшипник от струй масла, выбрасываемых зубчатым зацеплением. При повышенном давлении (до 0,3 МПа) внутренней полости применяют манжеты с опорным конусом, препятствующим выворачиванию наружу кромки манжеты.

Уплотнитель для редуктора это

Контактные уплотнительные шайбы

Контактные уплотнительные шайбы изготавливают из стальной ленты так, чтобы рабочая торцовая кромка выступала за прижимную часть на 0,6 мм (рисунок 22.11.1). При установке торцовая кромка прижимается к кольцу подшипника (рисунок 22.11.2), препятствуя утечке из него ПСМ и защищая от загрязнений. Основные достоинства такиех шайб — простота конструкции и компактность.

Уплотнитель для редуктора это

Уплотнения торцовые

В торцовых уплотнениях происходит трение скольжения по торцовым поверхностям деталей вала и корпуса. Такие уплотнения весьма эффективны: имеют низкий момент трения; могут работать в широком диапазоне перепада давлений уплотняемых сред, скоростей скольжения, температур; способны уплотнять различные среды, в том числе агрессивные. Однако конструктивно они сложны, имеют большие размеры и стоимость. Торцовые уплотнения отличаются большим разнообразием конструкций, приведены на табл. 22.12.1. В качестве примера на рисунок 22.12.1 рассмотрено торцовое уплотнение для редуктора, работающего в среде загрязненного воздуха, а на рисунок 22.12.2 — для насоса.

Уплотнитель для редуктора это

Лабиринтные уплотнения

Бесконтактные уплотнения соединений вал-корпус имеют небольшие зазоры в виде радиальных или осевых каналов цилиндрической формы. При скорости вала до 25 м/с каналы заполняют ПСМ 1-13. Это определяет минимальные энергетические потери, практически неограниченную долговечность узла, но низкий класс негерметичности (5-6). На рисунок 22.13.1 изображено лабиринтное радиальное уплотнение подшипника, работающего на ПСМ, Кольцевые канавки (рисунок 22.13.5) повышают герметичность узла. Лабиринтное осевое уплотнение (рисунок 22.13.3) имеет составную втулку из внутренних гребней (дисков); внешние гребни установлены в сплошном корпусе; число ступеней (пар гребней) для узлов трения общего назначения составляет не более 3. Если позволяет масштаб производства, применяют штампованные диски (рисунок 22.13.4). В лабиринтном комбинированном уплотнении (рисунок 22.13.2) чередуются радиальные и осевые каналы, заполненные ПСМ. Острая кромка на периферии втулки служит пылеотбойником.

Уплотнитель для редуктора это

Герметики представляют собой маловязкие пасты, обладающие хорошей проникающей способностью и адгезией. В процессе сборки они заполняют впадины микронеровностей, включая небольшие отклонения формы (до 0,5 мм). Герметики применяют для уплотнения неподвижных стыков, работающих без существенного избыточного давления (до 0,15 МПа) рабочей среды.
По составу герметики отличаются большим разнообразием. На рисунок 22.15.1 приведен пример применения герметиков в коническо-цилиндрическом редукторе для герметизации плоских (разрезы Б-Б и В-В) и цилиндрических (разрез А-А) стыков, а таже стопорения резьбовых соединений (разрез Б-Б, фрагмент Д) при возможности их демонтажа с помощью обычных гаечных ключей. Повторный монтаж изделий, собранных на герметике, требует удаления его остатков, что составляет определенные неудобства.

Содержание
  1. Уплотнение вала. Контактные и бесконтактные уплотнения
  2. Контактные уплотнения
  3. Манжетное (радиальное) уплотнение
  4. Сальниковое уплотнение
  5. Торцевое (механическое) уплотнение
  6. Бесконтактные (динамические) уплотнения
  7. Щелевое уплотнение
  8. Лабиринтное уплотнение
  9. Винтовое уплотнение
  10. Магнитожидкостное уплотнение
  11. Уплотнения валов
  12. Рис. 1 Элементы манжеты
  13. Рис. 2 Манжеты без и с защитной кромкой по ГОСТ 8752-79
  14. Рис. 3 Исполнения внешней оболочки
  15. Рис. 4 Манжеты без и с защитной кромкой по DIN 3761
  16. Рис. 5 Требования к шейке вала и отверстию корпуса
  17. Рис. 6 Манжеты без браслетной пружины
  18. Рис. 7 Комбинированные манжеты
  19. Рис. 8 Кассетные уплотнения
  20. Рис. 9 Торцевые кольца
  21. Рис. 10 V-образное кольцо
  22. Рис. 11 Торцевые уплотнения с манжетами
  23. Рис. 12 Уплотняющие крышки
  24. Рис. 13 Условия применения различных материалов
  25. Таблица 1 Материалы манжет
  26. Таблица 2 Размеры манжет
  27. Рис. 14 Ремонтная втулка
  28. 📽️ Видео

Видео:Не покупай газовый редуктор пока не посмотришь это видеоСкачать

Не покупай газовый редуктор пока не посмотришь это видео

Уплотнение вала. Контактные и бесконтактные уплотнения

В современных машинах и оборудовании, совершающих механическую работу, связанную с вращением механизмов, необходимо обеспечение герметичности рабочей полости и проходящего через неё вращающегося вала. Для этого применяются различные по конструкции и характеристикам уплотнительные устройства. Эти уплотнения также могут служить для сохранения смазки и предотвращения возможного попадания инородных частиц извне, которые способны повредить оборудование и привести к преждевременному его отказу.

Условия применения уплотнений могут значительно отличаться друг от друга, поэтому конструкции этих герметизирующих узлов совершенствовались с целью соответствия определенным параметрам эксплуатации.

Если в некоторых случаях применения уплотнений допускается небольшая утечка, то для других вариантов это может быть не позволительно. По мере всё большего ужесточения параметров рабочей среды и требований, предъявляемых к надежности, сроку службы и герметичности оборудования с вращающимся валом, происходило усложнение конструкций уплотнений и их неизбежное удорожание. Уплотнения валов могут быть разделены на две группы: контактные и бесконтактные.

Видео:Как сделать надёжное уплотнительное кольцо для углекислотного редуктора.Скачать

Как сделать надёжное уплотнительное кольцо для углекислотного редуктора.

Контактные уплотнения

Манжетное (радиальное) уплотнение

Уплотнитель для редуктора это

Манжетное уплотнение (манжета или радиальное уплотнение) в основном применяется для сохранения смазки и исключения загрязнения полости и элементов машин и оборудования извне. Такое уплотнительное устройство способно работать в температурном диапазоне от -40 до 200 градусов по Цельсию при невысоких перепадах давления. Неоспоримым преимуществом манжет является их низкая цена, малые габариты и простота установки. Из-за особенностей конструкции манжетные радиальные уплотнения имеют ограничения применимости по давлению и скорости скольжения, вследствие трения они постепенно изнашиваются сами и шаржируют поверхность вала в зоне контакта, образуя на нём местный круговой износ. Манжетные уплотнения вала применяются для насосов с небольшими скоростями вращения вала при избыточном давлении до 0,5 атмосфер.

Читайте также: Шпильки редуктора для чего

Сальниковое уплотнение

Уплотнитель для редуктора это

Сальниковое уплотнение (сальник или сальниковая набивка) из-за специфичности конструкции, способа установки и принципа работы, не предназначено для обеспечения высокой степени герметичности. Сальниковая набивка устанавливается таким образом, чтобы минимальная утечка жидкости обеспечивала необходимую смазку и отвод тепла из зоны контакта. Уплотнение этого типа применялось в устаревших насосах, требует периодического обслуживания. В последние десятилетия сальник неизбежно уступает свои позиции торцевому уплотнению.

Торцевое (механическое) уплотнение

Торцевое (механическое) уплотнение является прецизионным узлом, предотвращает утечку и применяется для условий, в которых недопустимо использование манжетных и сальниковых уплотнительных устройств. Эти уплотнения, как правило, имеют продолжительный срок службы практически без износа поверхности вала и не нуждаются в периодическом обслуживании.

Уплотнитель для редуктора это

Высокие требования к шероховатости поверхности вала, отклонению его размеров и допусков формы и расположения сопряженных поверхностей, имеют существенное значение в обеспечении высокой герметичности и надежной работы оборудования. Многочисленные технические решения торцевых уплотнений валов предназначены для применения в разных жидкостях, с давлениями, доходящими до 200 атмосфер, с частотой вращения до 50000 оборотов в минуту, и в диапазоне температур от -250 до 500 градусов Цельсия. Этот тип контактного уплотнения часто применяется в современных насосах, мешалках, гомогенизаторах, ротационных соединениях и другом оборудовании, когда утечка рабочей среды не допускается, либо допустима её крайне малая величина.

Видео:ИЗГОТОВЛЕНИЕ ПРОКЛАДКИ ДЛЯ КИСЛОРОДНОГО РЕДУКТОРАСкачать

ИЗГОТОВЛЕНИЕ ПРОКЛАДКИ ДЛЯ КИСЛОРОДНОГО РЕДУКТОРА

Бесконтактные (динамические) уплотнения

Щелевое уплотнение

Простое щелевое уплотнение представляет собой втулку, закрепленную в корпусе, через которую проходит вращающийся вал, между валом и втулкой имеется малый радиальный зазор. В зависимости от формы уплотнительной поверхности различают торцевые и радиальные (осевые) щели. Величина утечки зависит от физических параметров рабочей среды, пропорциональна перепаду давления, длине канала и уплотняемому периметру, и имеет кубическую зависимость от высоты радиального зазора.

Уплотнитель для редуктора это

Щелевое уплотнение с плавающей втулкой может отслеживать вращение вала и имеет меньший радиальный зазор, чем уплотнение с фиксированной втулкой. Гидравлически разгруженное щелевое уплотнение исключает или уменьшает усилие упругого элемента (пружины) и сохраняет преимущества уплотнения с плавающей втулкой. Щелевые уплотнения с гладкими поверхностями могут работать при перепадах давлений до 100 МПа и предельно высоких скоростях скольжения. Для повышения гидравлического сопротивления щелевого уплотнения на его уплотнительных поверхностях выполняют кольцевые канавки разнообразных форм. В современных насосах с картриджными торцевыми уплотнениями в качестве вспомогательного герметизирующего узла достаточно часто применяются простые щелевые уплотнения вала.

Лабиринтное уплотнение

Лабиринтное уплотнение представляет собой щелевое уплотнение, содержащее специальные канавки, которые резко изменяют проходное сечение канала. Этот тип уплотнения эффективен при высоких числах Рейнольдса (Re >> 500), когда потери давления превышают потери на трение в щелях, не требует смазки или периодического обслуживания. В случае возникновения износа или повреждения уплотнительного устройства величина утечки возрастает. Лабиринтные уплотнения широко применяются в осевых и центробежных компрессорах, турбодетандорах, паровых турбинах и других турбомашинах.

Винтовое уплотнение

Уплотнитель для редуктора это

Бесконтактное винтовое уплотнение имеет специальные пазы или винтовую резьбу, выполненные на поверхности вала и(или) в корпусе. Вязкость жидкости в зазоре между валом и корпусом обеспечивает уплотняющий эффект при одностороннем вращении вала. Конструкция уплотнения с винтовой многозаходной резьбой как на валу, так и противоположная по направлению вращения на втулке корпуса, демонстрирует большую эффективность при высоких скоростях вращения вала. Уплотнительное устройство такого типа способно эффективно работать не ниже определенной минимальной окружной скорости, при её понижении должны применяться дополнительные вторичные контактные уплотнения. Уплотнения такой конструкции находят применение в специальных насосах и другом оборудовании, работающих в особых условиях эксплуатации.

Магнитожидкостное уплотнение

Магнитножидкостное уплотнение использует коллоидную суспензию магнитных частиц (например, окиси железа), расположенную между вращающимся валом и корпусом, удерживаемую магнитным полем постоянных магнитов, для создания уплотнительного эффекта по принципу гидравлического затвора. Конструкция такого узла обладает незначительным износом (трением), малочувствительна к осевому перемещению вала. Магнитожидкостные уплотнения можно использовать на скоростях до 120000 оборотов в минуту, при температурах до +200 градусов Цельсия, и давлениях до 0,4 бар на ступень, в основном для газов и защиты от попадания твердых частиц пыли и влаги.

Видео:Ремкомплект редуктора AT09 (Tomasetto Alaska (Super), Nordic, Artic, Nordiс XPСкачать

Ремкомплект редуктора AT09 (Tomasetto Alaska (Super), Nordic, Artic, Nordiс XP

Уплотнения валов

Уплотнитель для редуктора это

Наиболее обширная область применения уплотнений в общем машиностроении — герметизация входных и выходных валов машин. Уплотнения с одной стороны предупреждают утечку масла из корпуса машины, с другой — защищают внутренние полости от внешних воздействий (проникновения пыли, грязи и влаги извне). Особенно ответственную роль играют уплотнения в машинах и агрегатах с полостями, содержащими химически активные вещества или пищевые продукты.

Другая область применения уплотнений — герметизация полостей в машинах, содержащих газы и жидкости под высоким давлением или вакуумом. В роторных машинах необходимо уплотнение вращающихся валов и роторов; в поршневых машинах — уплотнение возвратно — поступательно движущихся частей.

Разработано большое число разнообразных систем уплотнений. По принципу действия уплотняющие устройства делятся на контактные и бесконтактные. Контактные уплотнения применяются при средних и низких скоростях. Они обеспечивают защиту благодаря плотному контакту деталей в уплотнениях. К ним относят следующие виды уплотнений: манжетные, сальниковые, торцевые по кольцевой поверхности, разрезные пружинные кольца и др.

Бесконтактные уплотнения не имеют контакта между частями уплотнений. Уплотнительный эффект достигается с помощью центробежных сил, гидродинамических явлений и т.д. К ним относятся: щелевые и лабиринтные, осуществляющие защиту благодаря сопротивлению протеканию жидкости или газа через узкие щели; центробежные, основанные на отбрасывании центробежными силами смазки, а также загрязняющих веществ, которые попадают на вращающиеся защитные диски; комбинированные, основанные на двух и более из указанных принципов.

Предметом нашего сегодняшнего рассмотрения будут уплотнительные устройства для герметизации валов машин. На рынке стран СНГ можно приобрести уплотнения фирм Busak&Shamban (Германия) и Simrit (Германия). Отечественные производители также участвуют в конкурентной борьбе на рынке уплотнений. Перечислим их в алфавитном порядке: ООО «Барнаульский завод РТИ» (Россия), ЧП «Кременчугрезинотехника» (Украина), ООО «Резинотехмаш» (Россия) и др. Каталоги и материалы этих производителей использованы при написании настоящей статьи.

Армированные манжеты для валов (рис. 1) стандартизованы. В странах СНГ действует ГОСТ 8752-79. Зарубежные машиностроители используют манжетные уплотнения по стандартам DIN 3760, 3761, а также собственных конструкций фирм-производителей, которые не стандартизованы.

Уплотнитель для редуктора это

Рис. 1 Элементы манжеты

Стандарты предусматривают различные конструктивные отклонения от описанной конструкции. На рис. 2, а представлены манжеты без защитной кромки (пыльника), а на рис. 2, б — с защитной кромкой (пыльником). При умеренном и среднем загрязнении внешней среды необходимо применять манжеты с защитной кромкой (пыльником). При высокой степени загрязнения применяют кассетные и комбинированные уплотнения. На этом конструктивные разновидности манжет, предусмотренные ГОСТом, заканчиваются, а, следовательно, отечественные производители ограничивают свой ассортимент именно ими.

Читайте также: Редуктор как изменить давление

Рис. 2 Манжеты без и с защитной кромкой по ГОСТ 8752-79

Статическая часть манжет имеет пять разновидностей, представленных на рис. 3. Манжета с внешней оболочкой из эластомера (рис. 3, а) предназначена для статического уплотнения при разъемных корпусах; при корпусах из легкого материала с высоким коэффициентом теплового расширения; при действии давления; при жидких и газообразных средах. Это наиболее часто встречающийся тип манжеты. Обозначение — тип A по DIN 3760.

Рис. 3 Исполнения внешней оболочки

На рис. 3, б представлена манжета с внешней оболочкой из эластомера, на внешней стороне которой нанесены специальные уплотнительные канавки. Данная конструкция облегчает монтаж манжеты; предотвращает выталкивание или перекос уплотнения в посадочном месте корпуса; увеличивает натяг при запрессовке манжеты, что повышает надежность статического уплотнения, прежде всего в корпусах с повышенным тепловым расширением. Обозначение такое же — тип A по DIN 3760. При заказе такой манжеты необходимо дополнительно указать тип оболочки.

На рис. 3, в изображена манжета с металлической внешней оболочкой. Применяются при необходимости особо точной и устойчивой посадки в корпусе, особенно при больших диаметрах. При низковязкой уплотняемой среде, грубой обработке посадочного отверстия, работе под давлением возможна утечка по внешней оболочке. Для предотвращения подобного эффекта применяют специальные уплотнительные пасты. Также ограничено применение в корпусах с высоким коэффициентом теплового расширения или разъемных корпусах. В корпусах из легкого металла существует опасность образования задиров в отверстии. Для защиты от коррозии внешняя металлическая оболочка покрыта антикоррозийной смазкой или тонким слоем канифоли. Обозначение — тип B по DIN 3761.

Манжета типа C по DIN 3761 показана на рис. 3, г. В ее основе лежит предыдущая конструкция. Дополнительно манжета оснащена внутренней металлической крышкой, предающей конструкции большую радиальную жесткость. Применяют такие манжеты при больших диаметрах и грубо обработанных посадочных отверстиях.
На рис. 3, д изображена манжета, обеспечивающая надежное статическое уплотнение благодаря эластомерной части и устойчивую посадку, которая обеспечивается внешней металлической частью поверхности. Такая манжета не стандартизована.

Все перечисленные конструкции манжет имеют исполнения, включающие в себя наличие защитной кромки (пыльника). В обозначении таких манжет в конце добавляется буква S. Например, BS по DIN 3761 (рис. 4, а) или CS по DIN 3761 (рис. 4, б).

Рис. 4 Манжеты без и с защитной кромкой по DIN 3761

Описанные манжеты предназначены для уплотнения узлов как с минеральными и синтетическими маслами, так и с консистентной смазкой. Как правило, они работоспособны в следующих условиях: максимальное давление уплотняемой среды — до 0,05 МПа (0,5 кг/см2); рабочий диапазон температур составляет от -40?C до +200 ?C (в зависимости от материала); максимальная линейная скорость вала до 10 м/с (в зависимости от материала).

Для установки манжет необходимо выдержать определенные требования к посадочной поверхности вала (рис. 5, а). К ним относятся: посадка — h11, круглость — IT8, шероховатость поверхности шейки — Ra 0,2…0,8 (Rz 1,0…4,0) мкм; твердость поверхности — 45…60 HRC; глубина упрочненного слоя — min 0,3 мм. Для установки манжеты на шейке необходимо предусмотреть заходную фаску или радиус (в зависимости от направления монтажа). Поверхность вала не должна иметь спиральной микроструктуры. Это достигается грамотным выбором технологии обработки. Рекомендуется врезное шлифование с определенными параметрами и упрочняющая обкатка. За дополнительной информацией необходимо обратиться к производителю уплотнений.

Уплотнитель для редуктора это

Требования к посадочному месту манжеты в корпусе менее жесткие (рис. 5, б). Посадка по H8, шероховатость поверхности Ra 1,6…6,3 (Rz 10…20) мкм.

Уплотнитель для редуктора это

б) отверстие корпуса

Рис. 5 Требования к шейке вала и отверстию корпуса

Помимо стандартизированных уплотнений, зарубежные производители предлагают ряд уплотнений, удовлетворяющих специальные требования конструктора. На рис. 6 представлены манжеты без браслетной пружины. Они применяются только в узлах, заполненных консистентной смазкой, не подвергающихся воздействию давления и при умеренном или среднем загрязнении внешней среды. Предельная линейная скорость — до 10 м/с.

Преимущества уплотнения: отсутствие пружины снижает трение, а, следовательно, и выделение тепла в узле; снижается износ вала; уменьшаются габариты. Внешняя оболочка имеет те же конструктивные разновидности, что и у стандартизованных манжет. Манжеты на рис. 6, а имеют металлическое армирование и внешнюю оболочку из эластомера; на рис. 6, б внешняя оболочка имеет канавки; на рис. 6, в и г — манжеты с металлической внешней оболочкой.

Рис. 6 Манжеты без браслетной пружины

Недостатком описанных конструкций являются неработоспособность в условиях сильного загрязнения внешней среды, а для манжет с браслетной пружиной еще и высокие требования к поверхности вала (твердость и шероховатость). Кроме того, после определенной наработки происходит износ места соприкосновения вала и манжеты, что приводит к неработоспособности узла. В этом случае требуется восстановление или замена вала, стоимость которого может быть весьма существенной. Поэтому были разработаны комбинированные уплотнения, представленные на рис. 7. Уплотнение фирмы Busak&Shamban (рис. 7, а) состоит из двух частей: радиального уплотнения, аналогичного стандартной манжете по DIN 3760(3761) и обрезиненной втулки с дополнительным торцевым уплотнением. Радиальное уплотнение контактирует с шлифованной поверхностью обрезиненной втулки, а кромка пыльника втулки — с металлическим армированием уплотнения. Такая конструкция не требует шлифовки и закалки шейки вала и имеет улучшенную защиту от негативного влияния внешней среды.

На рис. 7, б представлено комбинированное уплотнения фирмы Simrit. Уплотнение состоит из двух элементов — манжеты с двумя уплотняющими кромками и дополнительного пыльника. Эта конструкция предназначена для работы в условиях сильного загрязнения. Оба типа уплотнений работают при указанных выше условиях: давление масла, температура, линейная скорость и т.д.

Уплотнитель для редуктора это

а) с дополнительной втулкой и пыльником

Уплотнитель для редуктора это

б) с дополнительной кромкой и пыльником

Рис. 7 Комбинированные манжеты

Дальнейшим развитием концепции комбинированных манжет являются кассетные уплотнения. Эти уплотнения имеют различные конструктивные исполнения. На рис. 8, а — в представлены манжеты фирмы Busak&Shamban, а на рис. 8, г — фирмы Simrit. Эти изделия выполнены в виде единого узла, включающего в себя уплотнительную манжету для масел, контактирующую с ней изнашиваемую втулку и многоступенчатую лабиринтную защиту от внешнего воздействия. Наверное, правильно назвать такую конструкцию «системой уплотнения». Они работают в условиях сильного загрязнения внешней среды, имеют высокую функциональную надежность, длительный срок службы и простотой монтаж.

Конструкцию кассетных уплотнений разберем на примере узла, изображенного на рис. 8, а. Данная кассета предназначена для работы в узле с вращающейся ступицей при стационарной оси. В состав уплотнения входят: армированная манжета специальной конструкции с браслетной пружиной (не вращается); металлический корпус, который запрессовывается в ступицу; внутреннее кольцо.

Металлическое армирование манжеты имеет обрезиненный слой 9 с ребрами, которые соприкасаются с осью. Это обеспечивает легкую посадку на шейку оси и хорошее уплотнение, даже если одно из ребер расположено на дефектном участке поверхности оси. Выступающая кромка 5 контактирует с корпусом и защищает от брызг воды и мелких частиц грязи. Браслетная пружина 10 создает радиальную силу, прижимающую уплотняющую кромку к поверхности внутреннего кольца. Дистанционный прилив 7 гарантирует расположение уплотняющих элементов в правильной позиции.

Корпус кассетного уплотнения устанавливается в ступицу по прессовой посадке и вращается вместе с ней. Посадочную поверхность 2 уплотняет место контакта со ступицей и отводит тепло. Выступающая коническая часть кольца 6 благодаря центробежным силам отбрасывает частицы грязи.
Внутреннее кольцо имеет отражающую поверхность 8, которая защищает уплотняющую кромку манжеты от брызг масла при применении конических роликовых подшипников. Конструкция и обработка контактной поверхности 3 обеспечивает качественное уплотнение и смазку.

Кассета на рис. 8, б предназначена для работы в особо влажных и загрязненных условиях, например, в машинах для обработки рисовых полей. Она имеет дополнительные уплотняющие поверхности, защищающие внутренние полости от воды и грязи. На рис. 8, в изображено кассетное уплотнение для вращающегося вала, аналогичное уплотнению для вращающейся ступицы на рис. 8, а. Инженеры фирмы Simrit разработали кассетное уплотнение для вращающегося вала, представленное на рис. 8, г. Оно имеет несколько отличную от описанной конструкцию, что никоим образом не влияет на ее работоспособность.

Рис. 8 Кассетные уплотнения

Для защиты, прежде всего, от внешнего воздействия применяют также торцевые кольца, изображенные на рис. 9. Базовая конструкция (рис. 9, а) состоит из двух частей: металлического корпуса и уплотняющего элемента из эластомера. Кольцо устанавливается на валу с определенным расстоянием от уплотняемой поверхности, которая перпендикулярна оси вала. Например, это может быть торцевая поверхность корпуса подшипникового узла. Уплотняющая кромка при вращении вала трется об эту поверхность с расчетным усилием. Металлический корпус играет роль отбойного кольца, отражая частицы грязи благодаря действию центробежной силы. Она же при увеличении скорости отклоняет от поверхности трения кромку эластомера, уменьшает потери на трение. Конструкция, изображенная на рис. 9, б имеет цилиндрический поясок, входящий в ответную канавку на уплотняемой поверхности (рис. 9, в). Благодаря этому появляется дополнительное лабиринтное уплотнение.

Рис. 9 Торцевые кольца

Уплотнитель для редуктора это

Подобный же принцип для создания защитного эффекта используют V-образные кольца, изображенные на рис. 10. Они используются для предотвращения попадания грязи, пыли, воды или их комбинации и удерживания пластичной смазки. Используются совместно с различными типами подшипников. V-образные кольца имеют несколько видов сечений, различающихся относительной шириной и конусностью.

Рис. 10 V-образное кольцо

Уплотнения торцевого типа могут использоваться в комбинации с армированными манжетами. На рис. 11, а изображено торцевое кольцо, для уплотняющей кромки которого поверхностью трения является армирование манжеты. На рис. 11, б подобным образом работает V-образное кольцо. Такая пара предназначена для работы в сильно загрязненной внешней среде.

Рис. 11 Торцевые уплотнения с манжетами

Для уплотнения опорного узла вала, не выходящего за пределы корпуса, применяют концевые крышки (рис. 12). Крышка представляет собой цилиндрическую пробку с покрытием из эластомера. На рис. 12, а представлены два типа подобных устройств: с внешней оболочкой из эластомера и с комбинированной (эластомер и металл) внешней оболочкой (рис. 12, б).

Рис. 12 Уплотняющие крышки

Важнейшим параметром при выборе уплотнения является материал, из которого изготовлена его эластомерная часть. Применяют следующие типы резины: бутадиен-нитрильный каучук (NBR); фторкаучук (FKM); силиконовый каучук (VMQ); гидрированный бутадиен-нитрильный каучук (HNBR); полиакриловый каучук (ACM).

Уплотнитель для редуктора это

Выбор материала зависит от условий, в которых работает уплотнение. Решающую роль играют ускоренное старение под воздействием высоких температур; потеря эластичности при низкой температуре; механическое стеклование при больших частотах вращения и стойкость к воздействию уплотняемой среды. На рис. 13, а показан приблизительный рабочий температурный диапазон для различных материалов. Диапазон температур, выделенный цветом, требует применения специальных составов указанных материалов. Диаграмма на рис. 13, б позволяет выбрать приблизительную допустимую линейную скорость на кромке манжеты для различных типов материалов.

Уплотнитель для редуктора это

а) рабочий диапазон температур

б) допустимая линейная скорость для различных материалов

Рис. 13 Условия применения различных материалов

Таблица 1 Материалы манжет

Вид уплотняемой средыМатериал уплотнения
NBRFKMACMVMQHNBR
Максимально допустимая постоянная температура, °С
Минеральные
жидкости
Двигательные масла100170125150130
Трансмиссионные масла80150125130110
Гипоидные трансмиссионные масла80150125110
ATF (автоматическая трансмиссия) масла100170125130
Гидравлическое масло (DIN 5124)90150120130
Консистентные смазки90100
Трудновоспламеняемые
гидравлические
жидкости
Масляно — водяная эмульсия706070
Водно — масляная эмульсия706070
Водный раствор7070
Обезвоженная жидкость150
Другие средыЖидкое топливо90100
Вода90100100
Щелочь90100100
Воздух100200150200130

Таблица 2 Размеры манжет

Типы манжетУплотнитель для редуктора этоУплотнитель для редуктора этоУплотнитель для редуктора этоУплотнитель для редуктора этоУплотнитель для редуктора этоУплотнитель для редуктора этоУплотнитель для редуктора этоУплотнитель для редуктора этоУплотнитель для редуктора это
Busak&Shamban (Германия)4 — 8008 — 4404 — 8008 — 4408 — 46012 — 40020 — 76035 — 60015 — 100
Simrit (Германия)4 — 6008 — 3006 — 2208 — 2205 — 50012 — 29010 — 71025 — 18515 — 100

Рис. 14 Ремонтная втулка

Михаил Гранкин, инженер — конструктор
grankin@mail.ru

Все объекты авторского права являются собственностью их владельцев. При подготовке сайта использованы материалы, находящиеся в свободном доступе. Названия фирм-производителей расположены в алфавитном порядке.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала
    • Правообладателям
    • Политика конфиденциальности

    Механика © 2023
    Информация, опубликованная на сайте, носит исключительно ознакомительный характер


    📽️ Видео

    Прокладки по 3 РУБЛЯ в редуктор лодочного мотора , выгодная замена оригиналуСкачать

    Прокладки  по 3 РУБЛЯ в редуктор лодочного мотора , выгодная замена оригиналу

    Доработки и улучшения в Аркане: барабаны, защита редуктора, уплотнитель, ddt4allСкачать

    Доработки и улучшения в Аркане: барабаны, защита редуктора, уплотнитель, ddt4all

    Газовые прокладки какую прокладку выбратьСкачать

    Газовые прокладки какую прокладку выбрать

    Червячные редукторы. Применения червячных редукторов и как правильно их подобратьСкачать

    Червячные редукторы. Применения червячных редукторов и как правильно их подобрать

    Прокладка масляной пробки редуктораСкачать

    Прокладка масляной пробки редуктора

    Некоторые этого до сих пор не знают! Как правильно использовать герметик.Скачать

    Некоторые этого до сих пор не знают! Как правильно использовать герметик.

    Вечные прокладки за 0р .Тохатсу 9.8 и аналоги ( делаю прокладки заливных болтов редуктора)Скачать

    Вечные прокладки за 0р .Тохатсу 9.8 и аналоги ( делаю прокладки заливных болтов редуктора)

    Редуктор для газового баллонаСкачать

    Редуктор для газового баллона

    КАК своими руками доработать КИСЛОРОДНЫЙ редуктор на УГЛЕКИСЛОТНЫЙ баллонСкачать

    КАК своими руками доработать КИСЛОРОДНЫЙ редуктор на УГЛЕКИСЛОТНЫЙ баллон

    Как взрывается кислородный баллон. (Транспортные баллоны. Техника безопасности. ТБ)Скачать

    Как взрывается кислородный баллон. (Транспортные баллоны. Техника безопасности. ТБ)

    Наборы прокладок двигателя и редуктораСкачать

    Наборы прокладок двигателя и редуктора

    Редуктор. Устройство. Конструкция. Виды и типы редукторовСкачать

    Редуктор. Устройство. Конструкция. Виды и типы редукторов

    Самодельные прокладки сливной пробки редуктора лодочного мотораСкачать

    Самодельные прокладки сливной пробки редуктора лодочного мотора

    как поменять прокладку на редукторе, для газового балона, к горну,техника безопасности.Скачать

    как поменять прокладку на редукторе, для газового балона, к горну,техника безопасности.

    Чем отличается редуктор производства ГАЗ от аналога стороннего производителяСкачать

    Чем отличается редуктор производства ГАЗ от аналога стороннего производителя

    Принцип работы редуктора. Виды редукторов. Курсовая.Скачать

    Принцип работы редуктора. Виды редукторов. Курсовая.
Поделиться или сохранить к себе:
Технарь знаток