Управление бесщеточным мотором постоянного тока

Работа бесщеточного электродвигателя основывается на электрических приводах, создающих магнитное вращающееся поле.

В настоящее время существует несколько типов устройств, имеющих различные характеристики.

С развитием технологий и использованием новых материалов, отличающихся высокой коэрцитивной силой и достаточным уровнем магнитного насыщения, стало возможным получение сильного магнитного поля и, как следствие, вентильных конструкций нового вида, в которых отсутствует обмотка на роторных элементах или стартере.

Обширное распространение переключателей полупроводникового типа с высокой мощностью и приемлемой стоимостью ускорило создание подобных конструкций, облегчило исполнение и избавило от множества сложностей с коммутацией.

Видео:Как работают бесколлекторные ЭЛЕКТРОДВИГАТЕЛИ? Вентильный двигатель. Понятное объяснение!Скачать

Как работают бесколлекторные ЭЛЕКТРОДВИГАТЕЛИ? Вентильный двигатель. Понятное объяснение!

Использование

Бесщеточный двигатель постоянного тока с постоянными магнитами встречается в основном в устройствах с мощностью в пределах 5 кВт.

В более мощной аппаратуре их применение нерационально.

Магниты в двигателях данного типа отличаются особой чувствительностью к высоким температурам и сильным полям.

Двигатели активно используются в электрических мотоциклах, автомобильных приводах благодаря отсутствию трения в коллекторе.

Видео:Уроки Arduino - управление бесколлекторным моторомСкачать

Уроки Arduino - управление бесколлекторным мотором

Описание и принцип работы

Бесщеточный (бесколлекторный) двигатель постоянного тока очень похож на двигатель постоянного тока с постоянными магнитами, но не имеет щеток для замены или износа из-за искрения коммутатора.

Поэтому в роторе выделяется мало тепла, что увеличивает срок службы двигателей.

Конструкция бесщеточного двигателя устраняет необходимость в щетках благодаря более сложной схеме привода, в которой магнитное поле ротора является постоянным магнитом, который всегда синхронизирован с полем статора, что позволяет более точно контролировать скорость и крутящий момент.

Управление бесщеточными двигателями постоянного тока очень отличается от обычного щеточного двигателя постоянного тока тем, что этот тип двигателя включает в себя некоторые средства для определения углового положения роторов (или магнитных полюсов), необходимые для получения сигналов обратной связи, необходимых для управления переключением полупроводников. Появление процессорной техники и силовых транзисторов позволило конструкторам отказаться от узла механической коммутации и изменить роль ротора и статора в электромоторе постоянного тока.

Видео:БЕСКОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ. Как работает? Чем отличаться от щёточного? #бесколлекторный #МОТОРСкачать

БЕСКОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ. Как работает? Чем отличаться от щёточного? #бесколлекторный #МОТОР

Принцип работы БДКП

В бесколлекторном электродвигателе роль механического коммутатора выполняет электронный преобразователь. Это позволяет осуществить «вывернутая наизнанку» схема БДКП — его обмотки расположены на статоре, что исключает необходимость в коллекторе.

Иными словами, основное принципиальное различие между классическим двигателем и БДКП в том, что вместо стационарных магнитов и вращающихся катушек последний состоит из неподвижных обмоток и вращающихся магнитов. Несмотря на то что сама коммутация в нём происходит похожим образом, её физическая реализация в бесщёточных приводах гораздо более сложна.

Видео:Управление двигателем постоянного тока. Схема управления мотором Ардуино проекты.Скачать

Управление двигателем постоянного тока. Схема управления мотором Ардуино проекты.

Как работает коллекторная машина

Чтобы произвести запуск коллекторного двигателя, потребуется подать напряжение на обмотку возбуждения, которая расположена непосредственно на якоре. При этом образуется постоянное магнитное поле, которое взаимодействует с магнитами на статоре, в результате чего проворачиваются якорь и коллектор, закрепленный на нём. При этом подается питание на следующую обмотку, происходит повтор цикла.

Видео:ФАНТАСТИКА! 3-фазный бесколлекторный двигатель с Али.. размером с яйцо "выжимает" 500Вт! Тест.Скачать

ФАНТАСТИКА! 3-фазный бесколлекторный двигатель с Али.. размером с яйцо "выжимает" 500Вт! Тест.

Как осуществляется управление

Электронный блок управления позволяет провести коммутацию обмоток привода. Для определения момента переключения при помощи драйвера отслеживается положение ротора по датчику Холла, установленном на приводе.

В том случае, если нет таких устройств, необходимо считывать обратное напряжение.

Оно генерируется в катушках статора, не подключенных на данный момент времени.

Контроллер — это аппаратно-программный комплекс, он позволяет отслеживать все изменения и максимально точно задавать порядок коммутации.

Видео:Регулятор скорости для бесколлекторного двигателяСкачать

Регулятор скорости для бесколлекторного двигателя

Трехфазные бесколлекторные электродвигатели

Очень много бесколлекторных электродвигателей для авиамоделей выполняется под питание постоянным током.

Но существуют и трехфазные экземпляры, в которых устанавливаются преобразователи.

Они позволяют из постоянного напряжения сделать трехфазные импульсы.

Работа происходит следующим образом:

  1. На катушку «А» поступают импульсы с положительным значением. На катушку «В» — с отрицательным значением. В результате этого якорь начнет двигаться. Датчики фиксируют смещение и подаётся сигнал на контроллер для осуществления следующей коммутации.
  2. Происходит отключение катушки «А», при этом импульс положительного значения поступает на обмотку «С». Коммутация обмотки «В» не претерпевает изменений.
  3. На катушку «С» попадается положительный импульс, а отрицательный поступает на «А».
  4. Затем вступает в работу пара «А» и «В». На них и подаются положительные отрицательные значения импульсов соответственно.
  5. Затем положительный импульс опять поступает на катушку «В», а отрицательный на «С».
  6. На последнем этапе происходит включение катушки «А», на которую поступает положительный импульс, и отрицательный идет к С.

И после этого происходит повтор всего цикла.

Видео:как сделать контроллер бесколлекторного двигателя простымСкачать

как сделать контроллер бесколлекторного двигателя простым

Преимущества использования

Изготовить своими руками бесколлекторный электродвигатель сложно, а реализовать микроконтроллерное управление практически невозможно. Поэтому лучше всего использовать готовые промышленные образцы.

Читайте также: Лодочный мотор golfstream t25bm jet

Но обязательно учитывайте достоинства, которые получает привод при использовании бесколлекторных электродвигателей:

  1. Существенно больший ресурс, нежели у коллекторных машин.
  2. Высокий уровень КПД.
  3. Мощность выше, нежели у коллекторных моторов.
  4. Скорость вращения набирается намного быстрее.
  5. Во время работы не образуются искры, поэтому их можно использовать в условиях с высокой пожарной опасностью.
  6. Очень простая эксплуатация привода.
  7. При работе не нужно использовать дополнительные компоненты для охлаждения.

Видео:Управление бесколлекторным двигателем постоянного токаСкачать

Управление бесколлекторным двигателем постоянного тока

Подключение бесколлекторного электродвигателя постоянного тока (BLDC) к Arduino

В настоящее время наблюдается небывалый интерес к конструированию различных летающих механизмов – дронов, планеров, глайдеров, вертолетов и т.д. Сейчас их можно легко сконструировать самостоятельно благодаря большому количеству материалов по ним в сети интернет. Все эти летающие механизмы используют для своего движения так называемые бесщёточные (бесколлекторные) электродвигатели постоянного тока (BLDC — Brushless DC Motor). Что представляют собой подобные двигатели? Почему именно они сейчас используются в различных летающих дронах? Как правильно купить подобный двигатель и подключить его к микроконтроллеру? Что такое ESC и почему мы будем его использовать? Ответы на все эти вопросы вы найдете в данной статье.

Управление бесщеточным мотором постоянного тока

В этой статье мы рассмотрим управление скоростью вращения бессенсорного бесколлекторного электродвигателя постоянного тока A2212/13T (Sensorless BLDC outrunner motor), часто используемого для конструирования дронов, с помощью ESC (Electronic Speed Controller – электронный контроллер скорости) и платы Arduino.

Видео:Мощный контроллер для бесщеточного двигателя #BLDC controller #无刷直流控制器Скачать

Мощный контроллер для бесщеточного двигателя #BLDC controller #无刷直流控制器

Необходимые компоненты

  1. Плата Arduino Uno (купить на AliExpress).
  2. A2212/13T BLDC Motor (бесколлекторный электродвигатель постоянного тока).
  3. ESC (20A) (электронный контроллер скорости) (купить на AliExpress).
  4. Источник питания (12V 20A).
  5. Потенциометр 10 кОм (купить на AliExpress).

Видео:Управление бесколлекторным двигателем постоянного тока без датчиков на ATmega48Скачать

Управление бесколлекторным двигателем постоянного тока без датчиков на ATmega48

Принцип действия BLDC двигателей

Бесколлекторные электродвигатели постоянного тока (BLDC двигатели) в настоящее время часто используются в потолочных вентиляторах и электрических движущихся транспортных средствах благодаря их плавному вращению. В отличие от других электродвигателей постоянного тока BLDC двигатели подключаются с помощью трех проводов, выходящих из них, при этом каждый провод образует свою собственную фазу, то есть получаем трехфазный мотор.

Хотя BLDC относятся к двигателям постоянного тока они управляются с помощью последовательности импульсов. Для преобразования напряжения постоянного тока в последовательность импульсов и распределения их по трем проводникам используется контроллер ESC (Electronic speed controller). В любой момент времени питание подается только на две фазы, то есть электрический ток заходит в двигатель через одну фазу, и покидает его через другую. Во время этого процесса запитывается катушка внутри двигателя, что приводит к тому, что магниты выравниваются по отношению к запитанной катушке. Затем контроллер ESC подает питание на другие два провода (фазы) и этот процесс смены проводов, на которые подается питание, продолжается непрерывно, что заставляет двигатель вращаться. Скорость вращения двигателя зависит от того как быстро подается энергия на катушку двигателя, а направление вращения – от порядка смены фаз, на которые поочередно подается питание.

Существуют различные типы BLDC двигателей – давайте рассмотрим основные из них. Различают Inrunner и OutRunner BLDC двигатели. В Inrunner двигателях магниты ротора находятся внутри статора с обмотками, а в OutRunner двигателях магниты расположены снаружи и вращаются вокруг неподвижного статора с обмотками. То есть в Inrunner (по этому принципу конструируется большинство двигателей постоянного тока) ось внутри двигателя вращается, а оболочка остается неподвижной. А в OutRunner сам двигатель вращается вокруг оси с катушкой, которая остается неподвижной. OutRunner двигатели особенно удобны для применения в электрических велосипедах, поскольку внешняя оболочка двигателя непосредственно приводит в движение колесо велосипеда, что позволяет обойтись без механизма сцепления. К тому же OutRunner двигатели обеспечивают больший крутящий момент, что делает их также идеальным выбором для применения в электрических движущихся средствах и дронах. Поэтому и в этой статье мы будем рассматривать подключение к платы Arduino двигателя OutRunner типа.

Управление бесщеточным мотором постоянного тока

Примечание : существует еще такой тип BLDC двигателей как бесстержневой (coreless), который находит применение в «карманных» дронах. Эти двигатели работают по несколько иным принципам, но рассмотрение принципов их работы выходит за рамки данной статьи.

BLDC двигатели с датчиками (Sensor) и без датчиков (Sensorless). Для BLDC двигателей, которые вращаются плавно, без рывков, необходима обратная связь. Поэтому контроллер ESC должен знать позиции и полюса магнитов ротора чтобы правильно запитывать статор. Эту информацию можно получить двумя способами: первый из них заключается в размещении датчика Холла внутри двигателя. Датчик Холла будет обнаруживать магнит и передавать информацию об этом в контроллер ESC. Этот тип двигателей называется Sensor BLDC (с датчиком) и он находит применение в электрических движущихся транспортных средствах. Второй метод обнаружения позиции магнитов заключается в использовании обратной ЭДС (электродвижущей силы), генерируемой катушками в то время когда магниты пересекают их. Достоинством этого метода является то, что он не требует использования каких либо дополнительных устройств (датчик Холла) – фазовый провод самостоятельно используется в качестве обратной связи благодаря наличию обратной ЭДС. Этот метод используется в двигателе, рассматриваемом в нашей статье, и именно он чаще всего применяется в дронах и других летающих устройствах.

Читайте также: Подвесные лодочные моторы lifan

Видео:Какой блок питания и способ регулировки лучше использовать для электродвигателя постоянного тока 775Скачать

Какой блок питания и способ регулировки лучше использовать для электродвигателя постоянного тока 775

Почему дроны и вертолеты используют именно BLDC двигатели?

Сейчас существует множество различных типов дронов – с двумя лопастями, с четырьмя лопастями и т.д. Но все они используют именно BLDC двигатели. Почему именно их, ведь BLDC двигатели стоят дороже чем обычные электродвигатели постоянного тока?

Управление бесщеточным мотором постоянного тока

Существует несколько причин для этого:

  • большой крутящий момент, который очень важен для того чтобы оторвать летающее средство от земли;
  • эти двигатели доступны в формате OutRunner, что позволяет обойтись без сцепления в конструкции дрона;
  • маленький уровень вибраций во время работы, что очень важно для неподвижного зависания дрона в воздухе;
  • хорошее соотношение мощности к весу двигателя. Это очень важно для использования на летающих механизмах чтобы все элементы его конструкции имели как можно меньший вес. Обычный двигатель постоянного тока, обеспечивающий такой же крутящий момент как и BLDC двигатель, будет как минимум в два раза тяжелее него.

Видео:Характеристики двигателей RC моделей. Электромотор. Щёточные и бесщёточные моторы. ESC. Что такое KVСкачать

Характеристики двигателей RC моделей. Электромотор. Щёточные и бесщёточные моторы. ESC. Что такое KV

Зачем нужен контроллер ESC

Как мы уже знаем, для функционирования BLDC двигателей необходим какой-нибудь контроллер, который преобразует напряжение постоянного тока от батарейки в последовательность импульсов, подаваемую в определенном порядке на провода (фазы) двигателя. Этот контроллер называется ESC (Electronic Speed Controller – электронный контроллер скорости). Основной обязанностью данного контроллера является правильная подача питания на провода BLDC двигателя чтобы двигатель вращался в нужном направлении. Это осуществляется с помощью считывания обратной ЭДС (back EMF) с каждого провода и подачи питания на катушку в то время когда магнит пересекает ее. Внутри себя контроллер ESC содержит достаточно много разнообразной электроники и при желании вы можете подробно изучить его устройство по соответствующим материалам в сети интернет. Здесь же мы кратко рассмотрим рассмотрим только основные компоненты его конструкции.

Управление бесщеточным мотором постоянного тока

Управление скоростью вращения на основе ШИМ (широтно-импульсной модуляции, в англ. PWM) . Контроллер ESC может управлять скоростью вращения BLDC двигателя при помощи считывания сигнала ШИМ подаваемого на его оранжевый провод. Принцип управления им очень похож на управление сервомоторами. Сигнал ШИМ, подаваемый на контроллер ESC, должен иметь период 20ms, а коэффициент заполнения этого ШИМ сигнала будет определять скорость вращения BLDC двигателя. Поскольку точно такой же принцип используется для управления углом поворотом сервомотора, то для управления BLDC двигателем мы можем использовать библиотеку для управления сервомоторами. Если вы не сталкивались с этим принципом ранее, то вы можете прочитать статью о подключении сервомотора к плате Arduino.

Battery Eliminator Circuit (BEC) – цепь, исключающая батарею . Почти все контроллеры ESC поставляются с этой схемой. Как следует из ее названия, данная схема устраняет потребность в использовании отдельной батареи для питания микроконтроллера, то есть в данном случае нам не понадобится отдельный источник питания для платы Arduino – контроллер ESC сам обеспечит плату Arduino регулируемым напряжением питания +5V. В различных контроллерах ESC используются различные схемы регулировки данного напряжения, но в большинстве случаев распространена схема с линейной регулировкой.

Встроенное ПО . Каждый контроллер ESC содержит в своем ПЗУ встроенную прикладную программу, написанную производителем контроллера. Эта программа во многом определяет логику функционирования контроллера. Наиболее популярными встроенными программами для контролеров ESC являются Traditional, Simon-K и BL-Heli. Эта программа может изменяться пользователем, однако мы в этой статье не будем рассматривать данный вопрос.

Видео:Схема двигателя постоянного тока. Устройство и принцип работы.Скачать

Схема двигателя постоянного тока. Устройство и принцип работы.

Некоторые термины, используемые в тематике BLDC и ESC

При изучении принципов работы BLDC двигателей и контроллеров ESC вы можете столкнуться с некоторыми терминами, используемыми в данной тематике. Кратко рассмотрим основные из этих терминов.

Braking (торможение) – определяет насколько быстро BLDC двигатель может остановить свое вращение. Это особенно актуально для летающих средств (дронов, геликоптеров и т.д.) поскольку они вынуждены часто изменять количество оборотов двигателя в минуту чтобы маневрировать в воздухе.

Читайте также: Что заливается в гидроподъемник лодочного мотора

Soft Start (плавный пуск, старт) – эта способность особенно важна для BLDC двигателей когда вращающий момент от него на исполнительный механизм (колесо, винт и т.д.) передается через механизм передач, обычно состоящий из шестерен. Плавный пуск означает, что двигатель не начнет сразу вращаться с максимальной скоростью, а будет увеличивать свою скорость вращения постепенно независимо от того, с какой скоростью нарастает управляющее воздействие. Плавный пуск значительно снижает износ шестерен, входящих в передаточный механизм.

Motor Direction (направление вращения двигателя) – обычно направление вращения BLDC двигателей не изменяется в процессе эксплуатации, однако во время сборки и тестирования работы изделия может потребоваться изменение направления вращения двигателя, обычно это можно сделать просто поменяв местами любые два провода двигателя.

Low Voltage Stop (остановка при низком напряжении питания) . Обычно BLDC двигатели калибруют так, чтобы при одинаковом уровне управляющего воздействия скорость его вращения была постоянной. Однако этого трудно достигнуть потому что со временем напряжение питающей батареи уменьшается. Чтобы предотвратить это обычно контроллеры ESC программируют таким образом чтобы они останавливали работу BLDC двигателя когда напряжение питающей батареи опускается ниже определенной границы. Особенно эта функция полезна при использовании BLDC двигателей в дронах.

Response time (время отклика, время реакции, время ответа) . Означает способность двигателя быстро изменять скорость вращения при изменении управляющего воздействия. Чем меньше время реакции, тем лучше контроль над двигателем.

Advance (движение вперед) . Эта проблема является своеобразной «ахиллесовой пятой» для BLDC двигателей. Все BLDC двигатели имеют хотя бы небольшой подобный баг. Эта проблема вызвана тем, что когда катушка статора запитана ротор движется вперед поскольку на нем есть постоянный магнит. И когда управляющее напряжение с этой катушки снимают (чтобы подать его на следующую катушку) ротор продвигается вперед немного дальше чем предусмотрено логикой функционирования двигателя. Это нежелательное продвижение двигателя вперед в англоязычной литературе называют “Advance” и оно может приводить к нежелательным вибрациям, нагреву и шуму при работе двигателя. Поэтому хорошие контроллеры ESC стараются по возможности устранить этот эффект в работе BLDC двигателей.

Видео:Регулятор оборотов двигателя постоянного тока на ШИМ контроллереСкачать

Регулятор оборотов двигателя постоянного тока на ШИМ контроллере

Работа схемы

Схема подключения BLDC двигателя и контроллера ESC к плате Arduino представлена на следующем рисунке.

Управление бесщеточным мотором постоянного тока

Как видите, схема достаточно проста. Контроллеру ESC необходим источник питания с напряжением 12V и током как минимум 5A. Для питания схемы можно использовать адаптер или Li-Po батарейку. Три фазы (провода) BLDC двигателя необходимо подсоединить к трем выходным проводам контроллера ESC – неважно в каком порядке.

Предупреждение : у некоторых контроллеров ESC нет выходных проводов, в этом случае вам необходимо будет припаивать провода от BLDC двигателя к контактам контроллера ESC. Обязательно изолируйте эти оголенные места (пайки) с помощью изоляционной ленты потому что через эти провода возможно протекание достаточно больших токов и любое короткое замыкание может привести к повреждению двигателя и контроллера ESC.

Схема BEC (Battery Eliminator circuit) в контроллере ESC будет самостоятельно обеспечивать (регулировать) постоянное напряжение +5V, поэтому его можно непосредственно использовать для питания платы Arduino. Для управления скоростью вращения двигателя в схеме используется потенциометр, подключенный к контакту A0 платы Arduino.

Внешний вид собранной конструкции показан на следующем рисунке.

Управление бесщеточным мотором постоянного тока

Видео:КАКОЙ ЭЛЕКТРОМОТОР ЛУЧШЕ, ЩЁТОЧНЫЙ ИЛИ БЕЗЩЁТОЧНЫЙ, КОЛЛЕКТОРНЫЙ ИЛИ БЕСКОЛЛЕКТОРНЫЙСкачать

КАКОЙ ЭЛЕКТРОМОТОР ЛУЧШЕ, ЩЁТОЧНЫЙ ИЛИ БЕЗЩЁТОЧНЫЙ, КОЛЛЕКТОРНЫЙ ИЛИ БЕСКОЛЛЕКТОРНЫЙ

Объяснение программы для Arduino

Полный код программы приведен в конце статьи, здесь же мы рассмотрим только его основные фрагменты.

Для управления BLDC двигателем мы будем формировать ШИМ сигнал с частотой 50 Гц и изменяемым от 0 до 100% коэффициентом заполнения. Значение коэффициента заполнения будет управляться с помощью потенциометра. То есть, вращая потенциометр, мы будем управлять скоростью вращения двигателя. Как уже указывалось, управление BLDC двигателем очень похоже на управление сервомотором с помощью ШИМ 50 Гц, поэтому в данном случае мы будем использовать ту же самую библиотеку, которую использовали для управления сервомотором. Если вы начинающий в изучении платформы Arduino, то перед дальнейшим прочтением данной статьи рекомендуем вам изучить принципы формирования ШИМ сигнала в Arduino и подключение сервомотора к плате Arduino.

ШИМ сигнал можно генерировать только на тех цифровых контактах платы Arduino, которые обозначены символом

. В нашей схеме мы будем управлять контроллером ESC с контакта 9 платы Arduino, поэтому следующей командой мы прикрепим контроллер ESC к этому контакту:

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    🎥 Видео

    Управление бесколлекторным двигателем постоянного тока с датчиками ХоллаСкачать

    Управление бесколлекторным двигателем постоянного тока с датчиками Холла

    Регулирование частоты вращения двигателей постоянного токаСкачать

    Регулирование частоты вращения двигателей постоянного тока

    Управление BLDC-моторомСкачать

    Управление BLDC-мотором

    Асинхронные и Синхронные двигатели и генераторы. Мощный #энерголикбез ПЕРСПЕКТИВЫ ЭЛЕКТРОДВИГАТЕЛЕЙСкачать

    Асинхронные и Синхронные двигатели и генераторы. Мощный #энерголикбез ПЕРСПЕКТИВЫ ЭЛЕКТРОДВИГАТЕЛЕЙ

    контроллер трехфазного двигателя постоянного тока без даччико обратной связиСкачать

    контроллер трехфазного двигателя постоянного тока без даччико обратной связи
Поделиться или сохранить к себе:
Технарь знаток