Управление мотором с помощью транзистора

Транзисторное управление двигателями в схемах на микроконтроллере

Электрический двигатель — это машина, преобразующая электрическую энергию в механическую. Первые электродвигатели появились в середине 19 века. Успехи в их разработке связывают с именами таких выдающихся физиков и инженеров, как Н.Тесла, Б.Якоби, Г.Феррарис, В.Сименс.

Различают электро двигатели постоянного и переменного тока. Преимущество первых заключается в возможности экономичного и плавного регулирования частоты вращения вала. Преимущество вторых — большая удельная мощность на единицу веса. В микроконтроллерной практике часто применяют низковольтные двигатели постоянного тока, используемые в бытовых и компьютерных вентиляторах (Табл. 2.13). Встречаются также конструкции с сетевыми двигателями.

Таблица 2.13. Параметры вентиляторов фирмы Sunon

Управление мотором с помощью транзистора

Обмотку двигателя следует рассматривать как катушку с большой индуктивностью, поэтому её можно коммутировать обычными транзисторными ключами (Рис. 2.78, а…т). Главное — это не забыть про защиту от ЭДС самоиндукции.

В двигателях постоянного тока имеется возможность изменять направление вращения ротора в зависимости от полярности рабочего напряжения. В таких случаях широко используют мостовые схемы «Н-bridge» (Рис. 2.79, а…и).

Управление мотором с помощью транзистора

Рис. 2.78. Схемы подключения электродвигателей через транзисторные ключи (начало):

а) регулирование скорости потока воздуха вентилятора M1. Конденсатор С/ уменьшает ВЧ- помехи. Диод VD1 защищает транзистор VT1 от выбросов напряжения. Резистор R1 определяет степень насыщения транзистора Г77, а резистор R2 закрывает его при рестарте MK. Частота импульсов ШИМ на выходе МК должна быть не менее 30 кГц, т.е. за пределами звукового диапазона, чтобы исключить неприятный «свист». Элементы С/ и R2 могут отсутствовать;

б) плавное регулирование частоты вращения вала двигателя M1 через канал ШИМ. Конденсатор С/ является первичным, а конденсатор С2— вторичным фильтром сигналов ШИМ; О

Управление мотором с помощью транзистора

Рис. 2.78. Схемы подключения электродвигателей через транзисторные ключи

в) транзисторы VT1, VT2 соединяются параллельно для увеличения суммарного коллекторного тока. Резисторы R1, R2 обеспечивают равномерную нагрузку по мощности на оба транзистора, что связано с разбросом у них коэффициентов И2]Э и ВАХ переходов «база — эмиттер»;

г) двигатель M1 (фирма Airtronics) имеет «цифровой» вход управления, что позволяет подключать к нему MK напрямую. Транзисторные ключи (драйверы) находятся внутри двигателя;

д) два отдельных источника питания позволяют значительно снизить влияние на MK электрических помех, которые генерирует двигатель M1. Система будет работать устойчивее. GB1 — это маломощная литиевая батарея, GB2, GB3 — это пальчиковые гальванические элементы с общим напряжением 3.2 В и мощностью, достаточной для запуска и работы двигателя M1\

е) параллельные резисторы R2, R3 служат ограничителями тока, протекающего через двигатель M1. Кроме того, они стабилизируютток в нагрузке, если транзистор VT1 находится в активном режиме или на грани входа в режим насыщения;

ж) MK включает/выключает двигатель M1. Резистором R3 подстраивается частота оборотов его вала. Стабилизатором служит «магнитофонная» микросхема DA1 фирмы Panasonic. С её помощью на зажимах двигателя M1 поддерживаются постоянные параметры, которые практически не зависят от колебаний температуры и напряжения питания;

з) дроссели L7, L2 и конденсаторы C7, С2фильтруют излучаемые двигателем радиопомехи. С той же целью двигатель помещается в заземлённый экранированный корпус;

Управление мотором с помощью транзистора

Рис. 2.78. Схемы подключения электродвигателей через транзисторные ключи

Читайте также: Как выбрать хороший лодочный мотор

и) вибромотор M1 является источником мощных электромагнитных и радиочастотных помех. Элементы L/, L2, C1 служат фильтрами. Резистор R2 ограничивает пусковой ток через два приоткрытом транзисторе VT1 Диоды VD1, УА2срезаютвершиныимпульсныхпомех;

л) применение ключа на полевом транзисторе VT1 повышает КПД по сравнению с ключом на биполярном транзисторе, ввиду более низкого сопротивления «сток — исток». Резистор R1 ограничивает амплитуду наводок, которые могут «просачиваться» от работающего двигателя M1 во внутренние цепи MK через ёмкость «затвор — сток» транзистора VT1;

м) транзистор VT2 является мощным силовым ключом, который подаёт питание на двигатель ML а транзистор VT1 — демпфером, который быстро тормозит вращение вала после выключения. Резистор R1 снижает нагрузку на выход MK при заряде ёмкостей затворов полевых транзисторов VT1, VT2. Резистор Я2отключаетдвигатель M1 при рестарте MK;

н) ключ на транзисторах VT1, VT2 собран по схеме Дарлингтона и имеет большое усиление. Для регулирования скорости вращения вала двигателя M1 может применяться метод ШИМ или фазо-импульсное управление. Система не имеет обратной связи, поэтому при снижении скорости вращения из-за внешнего торможения будет уменьшаться рабочая мощность на валу;

Управление мотором с помощью транзистора

Рис. 2.78. Схемы подключения электродвигателей через транзисторные ключи

м) встраивание MK в уже существующий тракт регулирования скорости вращения вала двигателя Ml. В этот тракт входят все элементы схемы, кроме резистора R2. Резистором R4 выставляется «грубая» частота вращения. Точная подстройка осуществляется импульсами с выхода MK. Возможна организация обратной связи, когда МК следит за каким-либо параметром и динамично подстраивает скорость вращения в зависимости от напряжения питания или температуры;

о) скорость вращения вала двигателя M1 определяется скважностью импульсов в канале ШИМ, генерируемых с нижнего выхода MK. Основным коммутирующим ключом служит транзистор VT2.2, остальные транзисторные ключи участвуют в быстрой остановке двигателя M1 по сигналу ВЫСОКОГО уровня с верхнего выхода MK;

п) плавное регулирование частоты оборотов вала двигателя M1 производится резистором R8. ОУ ТШ служит стабилизатором напряжения с двойной обратной связью через элементы R1, R8, C2 и R9, R10, C1. Комбинацией уровней с трёх выходов MK (ЦАП) можно ступенчато изменять скорость вращения вала двигателя M1 (точный подбор резисторами R2…R4). Линии MK могут переводиться в режим входа без « pull-up» резистора для увеличения числа «ступенек» ЦАП;

Управление мотором с помощью транзистора

Рис. 2.78. Схемы подключения электродвигателей через транзисторные ключи (окончание):

p) фазо-импульсное управление двигателем переменного тока M1. Чем большее время за период сетевого напряжения открыт транзистор VT1, тем быстрее вращается вал двигателя;

с) включение мощного двигателя переменного тока Ml производится через оптотиристор KS7, который обеспечивает гальваническую развязку от цепей MK;

т) аналогично Рис. 2.78, п, но с одним кольцом обратной связи через элементы C7, R6, R8. Резистор R4 регулирует частоту вращения вала двигателя Ml плавно, а MK — дискретно.

Управление мотором с помощью транзистора

Рис. 2.79. Мостовые схемы подключения электродвигателей к MK (начало):

а) направление вращения вала двигателя Ml изменяется мостовой «механической» схемой на двух группах контактов реле KL1, K1.2. Частота переключения контактов реле должна быть низкой, чтобы быстро не выработался ресурс. Дроссели L7, L2 снижают коммутационные токи при переключении реле и, соответственно, уровень излучаемых электромагнитных помех;

Читайте также: Лодочный мотор тохатсу в архангельске

Управление мотором с помощью транзистора

Рис. 2.79. Мостовые схемы подключения электродвигателей к MK (продолжение):

б) при ВЫСОКОМ уровне на верхнем и НИЗКОМ уровне на нижнем выходе МК транзисторы К77…к ТЗ открываются, а транзисторы КГ4…КГ6закрываются,инаоборот. Когда полярность питания двигателя Ml изменяется на противоположную, то его ротор вращается в обратную сторону. Сигналы с двух выходов МК должны быть противофазными, но с небольшой паузой НИЗКОГО уровня между импульсами, чтобы закрыть оба плеча (устранение сквозных токов). Диоды VD1..VD4уменьшают выбросы напряжения, тем самым защищая транзисторы от пробоя;

в) аналогично Рис. 2.79, б, но с другими номиналами элементов, а также с аппаратной защитой от одновременного открывания транзисторов одного плеча при помощи диодов VD3, VD4. Диоды VD1, КД2повышают помехоустойчивость при большом расстоянии до MK. Конденсатор С/ снижает «искровые» импульсные радиопомехи, генерируемые двигателем Ml;

Управление мотором с помощью транзистора

Рис. 2.79. Мостовые схемы подключения электродвигателей к MK (продолжение):

г) аналогично Рис. 2.79, б, но с отсутствием «запирающих» резисторов в базовых цепях транзисторов VT2, VT4. Расчётнато,чтообмоткадвигателяЛ//достаточнонизкоомная,следователо, при рестарте МК внешние помехи на «висящих в воздухе» базах транзисторов VT1 VT2, VT4, VT6 не смогут открыть их коллекторные переходы;

д) аналогично Рис. 2.79, б, но с максимальным упрощением схемы. Рекомендуется для устройств, выполняющих второстепенные функции. Напряжение питания +Еи должно соответствовать рабочему напряжению двигателя M1\

е) в отличие от предыдущих схем, транзисторы VT1…VT4 включаются по схеме с общим эмиттером и управляются ВЫСОКИМ/НИЗКИМ уровнем непосредственно с выходов MK. Двигатель M1 должен быть рассчитан на рабочее напряжение 3…3.5 В. Диоды VD1… VD4 уменьшают выбросы напряжения. Фильтр LL C1 снижает импульсные помехи по питанию от двигателя M1, которые могут приводить к сбоям в работе MK. Встречающиеся замены деталей: VT1 VT3- KT972; VT2, VT4- KT973; VD1…VD4- КД522Б, Rx = 3.3 кОм; R2 = 3.3 кОм;

ж) мостовая схема на четырёх управляющих транзисторах VT1 VT2, VT4, VT5 структуры р—п—р. Подстроечным резистором R4 регулируется напряжение на двигателе Ml, а значит, и частота оборотов сразу для двух направлений вращения ротора;

Управление мотором с помощью транзистора

Рис. 2.79. Мостовые схемы подключения электродвигателей к MK (окончание):

з) мостовая схема для управления мощным двигателем Ml (24 В, 30 А). Смена полярности напряжения на двигателе производится противофазными уровнями на средних выходах MK, а скорость вращения — методом ШИМ на верхнем и нижнем выходах MK;

и) транзисторы VT2, VT5 подают питание на мостовую схему управления двигателем Ml. Их запараллеливание позволяет подключить к диоду VD1 ещё одну такую же схему.

Источник: Рюмик, С. М., 1000 и одна микроконтроллерная схема. Вып. 2 / С. М. Рюмик. — М.:ЛР Додэка-ХХ1, 2011. — 400 с.: ил. + CD. — (Серия «Программируемые системы»).

Видео:Драйвер прямого и обратного хода коллекторного двигателя на транзисторах - СВОИМИ РУКАМИСкачать

Драйвер прямого и обратного хода коллекторного двигателя на транзисторах - СВОИМИ РУКАМИ

Управление мотором постоянного тока с помощью одного транзистора

В данной статье рассматривается наиболее простой способ подключения мотора постоянного тока к Arduino.

Видео:Самое Колхозное Управление мотором с помощью одного транзистораСкачать

Самое Колхозное Управление мотором с помощью одного транзистора

Введение

Моторы постоянного тока нельзя подключать напрямую к Arduino. Это обусловлено тем, что пины не способны выдавать ток более 40 мА. Мотору же, в зависимости от нагрузки, необходимо несколько сотен миллиампер. Потому возникает потребность увеличения мощности. Делается это, как-правило, с помощью транзисторов.

Читайте также: Масло тотал для двухтактных лодочных моторов

В статье «Транзисторы: схема, принцип работы,​ чем отличаются биполярные и полевые» можно ознакомиться с основными типами транзисторов и их принципами работы.

Так же рекомендуется посмотреть: Видеоуроки по Arduino, 5-я серия — Моторы и транзисторы. В данном уроке Джереми Блюм рассказывает о подключении мотора постоянного тока к Arduino через биполярный транзистор.

Видео:Уроки Ардуино #9 - управление нагрузкой MOSFET транзисторСкачать

Уроки Ардуино #9 - управление нагрузкой MOSFET транзистор

Необходимые компоненты

Мы рассмотрим вариант взаимодействия с полевым транзистором. Принципы подключения мотора будут разобраны на конкретном железе: DC-мотор, плата Arduino, N-канальный полевой транзистор, резистор на 10 кОм (R1), резистор на 220 Ом (R2).

Вы же в своих экспериментах вольны использовать то, что есть в наличии. Важны лишь 3 условия:

Управление мотором с помощью транзистора

Видео:КАК УПРАВЛЯТЬ МОЩНОСТЬЮ С ПОМОЩЬЮ ТРАНЗИСТОРАСкачать

КАК УПРАВЛЯТЬ МОЩНОСТЬЮ С ПОМОЩЬЮ ТРАНЗИСТОРА

Схема подключения

По-сути, обмотка мотора представляет собой катушку индуктивности. В момент подачи напряжения возникнет обратная электродвижущая сила, которая может вывести из строя транзистор. Flyback диод устанавливается в обратном направлении и предотвращает утечку тока с мотора на транзистор. Поэтому, если в транзисторе нет flyback диода, его необходимо установить дополнительно: анод на исток, катод на сток.

Транзистор IRF530N является мощным и поставляется в корпусе TO-220. Ниже приведена его распиновка.

Управление мотором с помощью транзистора

В данной схеме транзистор будет работать в ключевом режиме: по одной команде (установка уровня HIGH на затворе) от Arduino транзистор будет подключать мотор к источнику питания (отпираться), по другой команде (установка уровня LOW на затворе) — отключать мотор от источника питания.

Управление мотором с помощью транзистора

Резистор R1 подтягивает к земле затвор транзистора. Номинал не принципиален — можно использовать любые резисторы в диапазоне от 1 до 10 кОм. Резистор R2 служит для защиты пина микроконтроллера. Диапазон, примерно, от 10 до 500 Ом.

Чтобы запитать данную схему, можно подключить к Arduino внешний источник питания на 6-9 В, либо подать питание непосредственно на макетную плату ( синяя шина — минус, красная шина — плюс).

Видео:РЕВЕРС МОТОРА без Н моста и транзисторов !!! НА одних ДИОДАХ !Скачать

РЕВЕРС МОТОРА без Н моста и транзисторов !!! НА одних ДИОДАХ !

Программинг

Для наибольшей простоты воспользуемся, пожалуй, самым известным скетчем из готовых примеров — Blink.

Цифровой пин 13 раз в секунду меняет своё состояние. Когда на выходе устанавливается значение HIGH — загорается светодиод и начинает вращаться мотор. Когда устанавливается LOW — светодиод гаснет, а мотор останавливается.

Результаты

Была получена возможность подключать к выводам Arduino мощные устройства, в частности, моторы постоянного тока.

Видео:Управление мощной нагрузкой с помощью биполярного транзистораСкачать

Управление мощной нагрузкой с помощью биполярного транзистора

Использование ШИМ для регулировки скорости мотора

Если мотором управлять ничуть не сложнее, чем светодиодом, то, наверное можно изменять яркость скорость вращения мотора точно так же, как при работе со светодиодами? Именно так! С точки зрения Arduino абсолютно не важно с чем мы имеем дело.

Как вы уже, наверно, могли догадаться, для изменения скорости вращения мотора нам понадобится скетч Fade.

Видео:Схема Управления МОЩНОЙ Нагрузкой ( Используем 1 Транзистор - MOSFET )Скачать

Схема Управления МОЩНОЙ Нагрузкой ( Используем 1 Транзистор - MOSFET )

Схема подключения

Чтобы использовать возможности функции analogWrite(..) , нам придётся перейти на один из пинов (3/5/6/9/10/11), поддерживающих аппаратный ШИМ. Поскольку, по умолчанию, в скетче Fade задействован 9-й пин, остановим свой выбор на нём.

Управление мотором с помощью транзистора

Результат

Была получена возможность изменять скорость вращения мотора, используя аппаратный ШИМ Arduino.

На чём данная статья подходит к завершению. Теперь вы смело можете использовать моторы постоянного тока в своих проектах!

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала
    • Правообладателям
    • Политика конфиденциальности

    Механика © 2023
    Информация, опубликованная на сайте, носит исключительно ознакомительный характер


    💥 Видео

    Управление мотором ардуиноСкачать

    Управление мотором ардуино

    H-МОСТ на транзисторах.Как это работает и зачем он нужен двигателямСкачать

    H-МОСТ на транзисторах.Как это работает и зачем он нужен двигателям

    Простой регулятор напряжения на одном MOSFET транзисторе! Только две детали!Скачать

    Простой регулятор напряжения на одном MOSFET транзисторе! Только две детали!

    Транзистор в качестве реле. Ключ на полевом транзисторе.Скачать

    Транзистор в качестве реле. Ключ на полевом транзисторе.

    Управление двигателем постоянного тока. Схема управления мотором Ардуино проекты.Скачать

    Управление двигателем постоянного тока. Схема управления мотором Ардуино проекты.

    Драйвер двигателей на транзисторахСкачать

    Драйвер двигателей на транзисторах

    Два способа управления нагрузкой с помощью транзистораСкачать

    Два способа управления нагрузкой с помощью транзистора

    ЭТИ детали очень похожи! Но СИМИСТОР лучше ТИРИСТОРА Покажу в чем разницаСкачать

    ЭТИ детали очень похожи! Но СИМИСТОР лучше ТИРИСТОРА Покажу в чем разница

    Мощный ключ на MOSFET,для управления мощной нагрузкой одной кнопкойСкачать

    Мощный ключ на MOSFET,для управления мощной нагрузкой одной кнопкой

    Полевой транзистор вместо реле или кнопкиСкачать

    Полевой транзистор вместо реле или кнопки

    Транзисторный ключ и arduino - это просто!Скачать

    Транзисторный ключ и arduino - это просто!

    Регулятор оборотов электродвигателя своими рукамиСкачать

    Регулятор оборотов электродвигателя своими руками

    Тиристор. Тиристорный коммутатор. Тиристорный ключ.Скачать

    Тиристор. Тиристорный коммутатор. Тиристорный ключ.
Поделиться или сохранить к себе:
Технарь знаток