Во время работы поршневого двигателя внутреннего сгорания подвижные детали, перемещаясь, вызывают появление сил и моментов сил инерции, изменяющихся в течение рабочего цикла и по модулю, и по направлению. Это вызывает неравномерность работы двигателя, выражающуюся в его вибрации, передающейся на опоры и далее на автомобиль в целом.
Действия, направленные на устранение причин вибраций, т. е. неуравновешенности двигателя во время его работы, называются уравновешиванием двигателей .
Уравновешивание двигателя сводится к созданию такой системы, в которой равнодействующие силы и их моменты постоянны по величине или равны нулю. Двигатель считается полностью уравновешенным, если при установившемся режиме работы силы и моменты, действующие на его опоры, постоянны по величине и направлению.
У всех поршневых двигателей внутреннего сгорания (ДВС) возникает реактивный момент, противоположный крутящему моменту, который называется опрокидывающим. Опрокидывающий момент передается на подмоторную раму, и, поскольку его величина изменяется во времени, вызывает вибрацию автомобиля. Значение опрокидывающего момента является функцией угла поворота коленчатого вала, также, как и значение крутящего момента, т. е. эти величины являются переменными.
По этой причине абсолютной уравновешенности поршневого ДВС достигнуть невозможно. Однако в зависимости от того, в какой степени устраняются причины, вызывающие неуравновешенность двигателя, различают двигатели полностью уравновешенные, частично уравновешенные, и неуравновешенные.
Теоретически любые свободные силы инерции и их моменты могут быть уравновешены. Однако на практике это сопровождается значительным усложнением и удорожанием конструкции. А так как уравновешивание осуществляется не только с учетом технической, но и экономической целесообразности, то не все поршневые двигатели уравновешиваются полностью.
- Способы уравновешивания двигателя
- Балансировка коленчатого вала
- Автомобильный справочник
- для настоящих любителей техники
- Коленчатый вал
- Кинематика привода коленчатого вала
- Динамика коленчатого вала
- Уравновешивание масс в одноцилиндровом двигателе
- Уравновешивание масс в многоцилиндровых двигателях
- Крутящая сила
- 📹 Видео
Способы уравновешивания двигателя
В поршневых двигателях внутреннего сгорания уравновешивают центробежные силы инерции вращающихся масс, силы инерции первого и второго порядка, а также моменты, вызываемые этими силами.
Силы инерции 1-го порядка вызываются изменением направления движения деталей поршневой группы во время работы двигателя. Эти силы достигают пиковых значений в моменты прохождения поршнем мертвых точек (при перекладке поршня).
Следствием возникновения сил 1-го порядка является поперечная вибрация двигателя, частота которой равна частоте вращения коленчатого вала. Обычно эти силы частично уравновешиваются балансирами, устанавливаемыми на коленчатом валу. Полное уравновешивание сил инерционных сил 1-го порядка с помощью балансиров невозможно, поскольку сами балансиры совершают вращательное движение, а уравновешиваемые детали поршневой группы — линейное.
Силы инерции 2-го порядка вызываются изменением по величине (по модулю) линейной скорости движения поршня в процессе перемещения его между мертвыми точками. Эти силы достигают максимального значения в середине хода поршня и вызывают поперечную вибрацию двигателя, частота которой в два раза превышает частоту вращение коленчатого вала.
Силы инерции 2-го порядка уравновесить очень сложно, и, поскольку их величина значительно меньше сил инерции 1-го порядка, чаще всего силы 2-го порядка оставляют неуравновешенными, чтобы не усложнять конструкцию двигателя.
Силы инерции первого и второго порядков и их моменты уравновешиваются подбором оптимального числа цилиндров, их расположения и выбором соответствующей схемы коленчатого вала. Если этого не достаточно, то силы инерции уравновешивают противовесами, расположенными на дополнительных валах, имеющих механическую связь с коленчатым валом. Это приводит к значительному усложнению конструкции двигателя, поэтому на практике используется редко.
В рядных двигателях уравновесить силы инерции первого и второго порядков установкой противовесов невозможно. Однако при соответствующем выборе массы противовеса можно частично перенести действие силы инерции первого порядка из одной плоскости в другую, тем самым уменьшив неуравновешенность в этой плоскости.
Центробежные силы инерции вращающихся масс можно уравновесить в двигателе с любым числом цилиндров установкой противовесов на коленчатом валу. В большинстве многоцилиндровых двигателей результирующие силы инерции уравновешиваются не установкой противовесов, а путем подбора соответствующего числа и расположения кривошипов коленчатого вала. Однако даже на уравновешенные валы устанавливают противовесы для уменьшения и более равномерного распределения нагрузки на коренные шейки и подшипники, а также для уменьшения моментов, изгибающих коленчатый вал.
Если нельзя уравновесить опрокидывающий момент, то можно уменьшить его неравномерность (амплитуду) путем снижения неравномерности крутящего момента. Это достигается увеличением числа цилиндров двигателя при равных интервалах между вспышками (тактами рабочего хода) в них.
Читайте также: Подшипник промежуточного вала форд транзит
Предусмотренная конструкторами двигателя уравновешенность может быть сведена к нулю, если не будут выполняться следующие требования к производству деталей двигателя, сборке и регулировке его узлов:
- равенство масс поршневых групп;
- равенство масс и одинаковое расположение центров тяжести шатунов;
- статическая и динамическая сбалансированность коленчатого вала.
При эксплуатации двигателя необходимо, чтобы идентичные рабочие процессы во всех его цилиндрах протекали одинаково. А это зависит от состава смеси, углов опережения зажигания или впрыска топлива, наполнения цилиндров, теплового режима, равномерности распределения смеси по цилиндрам и т. д.
Балансировка коленчатого вала
Коленчатый вал, как и маховик, являясь массивной подвижной частью кривошипно-шатунного механизма, должен вращаться равномерно, без биений. Для этого выполняют его балансировку, подбор и крепление уравновешивающих грузов для обеспечения его полной динамической уравновешенности.
Кроме динамической уравновешенности существует и статическая балансировка, при которой деталь уравновешивают противовесом в произвольно выбранной плоскости, исходя из условия, что деталь будет находиться в равновесии, если ее центр тяжести лежит на оси вращения.
При статической балансировке вал устанавливают на узкие точечные опоры, и путем добавления грузов на его маховик или противовесы добиваются устойчивого равновесия в любом положении.
Динамическая балансировка обеспечивает большую точность, чем статическая. Поэтому коленчатые валы, к которым предъявляются повышенные требования относительно уравновешенности, балансируют динамически.
Динамическую балансировку выполняют на специальных балансировочных станках или стендах, оборудованных устройствами для определения нужного положения уравновешивающего груза, массу которого определяют последовательными пробами, ориентируясь по показаниям приборов.
Во время балансировки вал, закрепленный на стойках станины балансировочного стенда, приводится во вращение с помощью специального привода. При этом центробежные силы приведенных масс оказывают динамическое воздействие, вызывая колебания рамы станка на упругой опоре. Амплитуда колебаний зависит от степени неуравновешенности вала и частоты его вращения на стенде.
Балансировку коленчатого вала проводят или на резонансном режиме, или при угловых скоростях, значительно превышающих резонансные.
Видео:Строение и функция коленчатого вала (3D анимация) - Motorservice GroupСкачать
Автомобильный справочник
Видео:Как крутится коленвал и работает поршень и как смазываются пальцы. BMW & Mercedes.Скачать
для настоящих любителей техники
Видео:РЕМОНТ ПОСТЕЛИ КОЛЕНЧАТОГО ВАЛА | Восстановление работоспособности двигателя | МеханикаСкачать
Коленчатый вал
Коленчатый вал является одной из важных деталей двигателя. Он преобразует поступательное движение поршня во вращательное движение, которое в дальнейшем, через трансмиссию, передается к колесам.
Видео:Проверка коленчатого вала на твердость и биениеСкачать
Кинематика привода коленчатого вала
Кинематика привода коленчатого вала (для одного цилиндра) может быть определена из геометрического расположения осей поршня и поршневого пальца, шатуна и коленчатого вала (радиус коленчатого вала равен половине рабочего хода поршня) (см. рис. «Кривошипно-шатунный механизм поршневого двигателя» ).
Если ход поршня х в верхней мертвой точке принять равным нулю, при радиусе кривошипа r и длине шатуна l получаем (см. рис. «Разложение на составляющие силы воздействующей на поршень» ):
х = r ( 1 — cosa) + l (1 — cosβ),
x = r (1 — cosa + 1/λ (1- √‾1-λ 2 ·sin 2 a))
Некоторые производители применяют компоновку со смещенным поршневым пальцем. За счет изменения положения поршня и в зависимости от положения шатуна можно ожидать снижения трения и уровня шума. Смещение может осуществляться путем сдвига поршневого пальца относительно центрального положения или смещения коленчатого вала.
Если принять смещение для положительных углов поворота коленчатого вала положительным и ввести величину
δ = смещение / длина шатуна
это дает следующее соотношение для хода поршня:
x=r (1 — cosa + 1/λ (1- √‾1-(λ·sin a-δ) 2 ).
На рис. «График зависимости положения поршня от угла поворота коленчатого вала» показано влияние отношения хода поршня к длине шатуна и смещения. Однако различия по сравнению с нормальными значениями смещения в миллиметровом диапазоне (δ х = r(1+1/4·λ+3/64·λ 3 +…- cosa-(1/4λ+3/64·λ 3 +…)cos2a+(3/64·λ 3 +…)cos4a+…)
Это выражение демонстрирует присутствие высших гармоник, обусловленных кинематикой привода коленчатого вала, которые также называются колебаниями двигателя высшего порядка (кратные частоты вращения коленчатого вала).
Поскольку нормальные значения λ составляют около 0,3, членами λ высшего порядка можно пренебречь и в дальнейших расчетах использовать следующее упрощенное выражение:
Однако это упрощение не может быть использовано, если необходимо выполнить детальный анализ вибрации и резонанса.
Из упрощенного уравнения получаются следующие соотношения для скорости поршня v и ускорения поршня а, где была введена угловая скорость da/dt=ω= 2πn (п частота вращения):
Читайте также: Балансировочные валы двигателя что это
Здесь также имеют место высшие гармоники, которые не следует игнорировать при исследовании явлений резонанса.
Видео:Шлифовка коленчатого вала | Восстановление работоспособности двигателя | #shorts #ремонтдвигателяСкачать
Динамика коленчатого вала
Силы, воздействующие на узел коленчатого вала, и результирующие моменты первоначально можно определить следующим образом без учета сил инерции (рис.»Разложение на составляющие силы воздействующей на поршень» ).
Сила на поршневом пальце возникает под действием давления газов в камере сгорания, передающегося на поршень. Имеет место следующее:
FG = (P -PKGH) Apiston
Сила на шатуне определяется посредством векторного анализа силы на поршневом пальце в направлении шатуна. Имеет место следующее:
Нормальная сила поршня FN — это векторная составляющая силы на поршневом пальце, перпендикулярная к стенке цилиндра и уравновешивающая силу на шатуне:
FN=FG·tanβ=FG·λ sina/√¯1-λ 2 ·sin 2 a
Эта сила вносит значительный вклад в создание трения между поршнем и стенкой цилиндра. Сторона, с которой соприкасается поршень после верхней мертвой точки под действием давления газов, называется большой упорной поверхностью, а противоположная сторона — малой упорной поверхностью. Следовательно, наибольшее трение имеет место вскоре после прохождения ВМТ на большой упорной поверхности.
Тангенциальная сила на шатунной шейке коленчатого вала вызывает ускорение коленчатого вала и, следовательно, увеличение крутящего момента коленчатого вала. Она определяется путем векторного анализа силы на шатуне:
Подкоренное выражение может быть упрощено следующим образом:
Радиальная сила FR на шатунной шейке коленчатого вала:
Силы инерции можно разделить на колебательные и вращательные составляющие. Массы поршня, поршневых колец и поршневого пальца mк относятся к колебательной составляющей и могут быть виртуально сосредоточены в поршневом пальце.
Щека коленчатого вала с шатунной шейкой относятся к вращательной составляющей. Здесь масса обычно сосредотачивается на радиусе кривошипа, на центральной оси шатунной шейки. Применимо следующее:
где ml — масса соответствующего компонента (щека, палец и т.д.), а rsl — соответствующий радиус центра массы.
В связи с колебательным движением шатуна целесообразно разделить массу шатуна на колебательную и вращательную составляющие. Это может быть сделано, если известно точное положение центра тяжести и момента инерции шатуна, предполагая наличие двух динамически идентичных отдельных масс малой и большой головок шатуна, и определяя Условие равновесия сил, моментов и инерционных масс. Обычно предполагается, что одна треть массы шатуна тpl является колебательной, а две трети — вращательной. Затем при т0 = mK + 1/3 тРl, как колебательной массы и соответствующем ускорении поршня (см. ниже) колебательная сила инерции выражается как:
Таким образом, колебательная сила инерции возрастает пропорционально квадрату частоты вращения двигателя (ω = 2π·п) и имеет составляющую первого порядка и меньшую составляющую второго порядка.
Вращательная сила инерции выводится, как центробежная сила из уменьшенной массы mr = mw + 2/3 тРl и скорости вращения как:
Точно так же вращательная сила инерции возрастает пропорционально квадрату частоты вращения двигателя, но не имеет составляющих высших порядков. Вращательная сила инерции, следовательно, может быть легко уравновешена противовесами, вращающимися со скоростью, равной частоте вращения двигателя. Неравномерности вращения коленчатого вала столь малы по сравнению с этими силами, что в балансе масс ими можно пренебречь.
Как было показано выше в кинематике узла коленчатого вала, высшие гармоники (колебания высшего порядка) возникают за счет геометрии кривошипно-шатунного механизма. Амплитуда колебаний 4-го и выше порядков быстро снижается, и в балансе масс этими колебаниями, как правило, пренебрегают.
Видео:Люфт шатуна Cummins B3.3Скачать
Уравновешивание масс в одноцилиндровом двигателе
Компонент вращающейся массы в одноцилиндровом двигателе может быть полностью уравновешен при помощи соответствующего противовеса. Противовесы обычно предусматриваются на обеих сторонах, и массы должны быть сбалансированы относительно радиуса вращения центра масс. Колебания сил можно представить в виде векторов силы (рис. «Полностью уравновешенные массы 1-го и 2-го порядков» ), когда они моделируются как вращающиеся в противоположных направлениях, и имеющие в каждом случае половинную величину.
Следовательно, для уравновешивания колебательных сил инерции могут быть использованы два вращающихся в противоположном направлении вала. Горизонтальная составляющая исчезает и, как минимум составляющая колебательной силы инерции первого порядка может быть скомпенсирована.
Для практически полного уравновешивания масс требуются дополнительные уравновешивающие валы, которые должны вращаться со скоростью в два раза выше частоты вращения двигателя, чтобы полностью уравновесить составляющую колебаний второго порядка.
Читайте также: Крестовина рулевого вала st 1538
Часто конструкторам приходится идти на компромисс вследствие того, что системы с противоположно вращающимися валами являются дорогостоящими, и уже для уравновешивания сил инерции первого порядка требуются значительные массы. Например, масса противовеса может быть равна половине колеблющейся массы. При этом неуравновешенные силы инерции, действующие наружу в направлении продольной оси цилиндра, уменьшаются наполовину, однако за счет больших масс, вращающихся компонентов возникают поперечные силы (см. табл. «Уравновешивание масс в одноцилиндровом двигателе, в зависимости от степени уравновешивания» ). Такая частичная компенсация называется 50% — ной балансировкой. Обычными цифрами являются 100% уравновешивание вращающихся масс и 50% уравновешивание колеблющихся масс.
Видео:BMW N57 3.0 дизель: алюминиевый блок цилиндров и слабенький коленвалСкачать
Уравновешивание масс в многоцилиндровых двигателях
В многоцилиндровом двигателе силы инерции состоят из сил инерции каждого отдельного цилиндра, которые накладываются друг на друга. Кроме того, за счет промежутков между цилиндрами создаются неуравновешенные моменты инерции. Все возможные поперечные и продольные отклоняющие моменты, и неуравновешенные силы инерции показаны в табл. «Поперечные и продольные отклоняющие моменты и неуравновешенные силы инерции в многоцилиндровых двигателях» .
Взаимное уравновешивание сил инерции является одним из главных факторов, определяющих выбор конфигурации коленчатого вала, а, следовательно, и конструкции самого двигателя. В многоцилиндровых двигателях силы инерции могут быть уравновешены, если общий центр тяжести всех деталей кривошипно-шатунного механизма располагается в средней точке коленчатого вала, т.е., если коленчатый
вал является симметричным (глядя спереди). Это представлено полярными диаграммами сил 1-го и 2-го порядка (см. табл. «Полярная диаграмма сил для рядных двигателей» ).
Диаграмма 2-го порядка для четырехцилиндрового рядного двигателя является асимметричной, указывая на то, что этот порядок характеризуется наличием больших неуравновешенных сил инерции. Эти силы могут быть уравновешены двумя балансирными валами, вращающимися в противоположных направлениях, но с удвоенной частотой (система Ланчестера).
В табл. «Неуравновешенные силы и моменты 1-го и 2-го порядка и интервалы между моментами зажигания для наиболее распространенных моделей двигателей» приведена сводка неуравновешенных сил и моментов для различного числа цилиндров и конфигураций кривошипно-шатунных механизмов.
Видео:Полировка коленвала ❤️🔥 #ремонтдвс #шлифовкаколенвала #ремонтколенвала #коленчатыйвал #ремонтавтоСкачать
Крутящая сила
Массы в двигателе движутся с постоянно изменяющимся ускорением, что приводит к возникновению сил инерции. Циклически изменяющиеся давления в цилиндрах называются силами газообразных продуктов сгорания смеси. Те и другие силы по отношению к двигателю имеют как внутренние, так и внешние составляющие. Внутренние силы и моменты должны поглощаться компонентами двигателя, в особенности коленчатым валом и картером двигателя, в то время как внешние силы через опоры двигателя передаются на шасси автомобиля.
На поршень действуют циклические усилия, создаваемые при сгорании топливовоздушной смеси, а циклические инерционные усилия действуют на поршень, шатун и коленчатый вал. Все эти силы в сумме создают тангенциальную составляющую силы, действующую на шейку коленчатого вала. Эта сила, умноженная на радиус кривошипа, дает крутящий момент, также изменяющийся по периодическому закону.
В многоцилиндровых двигателях кривые тангенциального давления для отдельных цилиндров суммируют в соответствии с числом цилиндров двигателя, их расположением, конструкцией коленчатого вала и порядком работы цилиндров. Полученная результирующая кривая является характеристикой двигателя (с точки зрения его конструкции) и включает весь рабочий цикл (т.е., для четырехтактных двигателей два оборота коленчатого вала) (см. рис. «Полностью уравновешенные массы 1-го и 2-го порядков» ). Этот процесс можно проиллюстрировать диаграммой крутящих сил. Эта переменная крутящая сила и результирующий крутящий момент, в зависимости от момента инерции J, создают переменную скорость вращения ω:
с учетом всех наложенных и вновь созданных порядков колебаний (в том числе половинных порядков). Это отклонение от постоянной скорости вращения называется коэффициентом циклического изменения скорости вращения и определяется следующим образом:
Этот коэффициент циклического изменения может быть уменьшен до приемлемого уровня при помощи механизмов, запасающих энергию, таких как, например, маховики. Крутильные колебания, которые можно отследить назад к описанным выше крутящим силам, также называются крутильными колебаниями 1-го порядка. Эти колебания нельзя смешивать с высокочастотными колебаниями, возникающими вследствие упругих деформаций и собственного резонанса коленчатого вала, называемыми колебаниями 2-го порядка.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
📹 Видео
Дополнительное упорное полукольцо коленчатого валаСкачать
Набивка Газ 53Скачать
КАК БЫСТРО ОТКРУТИТЬ ШКИВ КОЛЕНЧАТОГО ВАЛАСкачать
Полировка коленчатого вала KIA/HYUNDAI , часть 2🌪 #коленвал #полировка #ремонтавто #ремонтдвсСкачать
Замеряли осевой люфт коленчатого валаСкачать
Люфт коленчатого вала Honda dio 34.Скачать
Четвертый симптом неисправности датчика положения коленчатого валаСкачать
Как определить гнет ли клапана ?Скачать
Проверка твердости шеек коленчатого валаСкачать
доработка маслоканалов коленвалаСкачать
как снять напряжение с коленвала после сборки мотораСкачать
Коленвал D35(31кг) Mercedes м104 с36 AMG на 280 сил, облегчил на 6 кг болгаркой. 😃Скачать