Условия работы поршневого компрессора

Принцип работы и термодинамические условия работы поршневого компрессора

Принципиальная схема поршневого компрессора (рис. 3.1.) включает щитндр 1, поршень 2, всасывающий 3 и нагнетательный 4 клапаны, шток 5 и кривошипно-шатунный механизм, состоящий из крейцкопфа 6, шатуна 7 и кривошипа 8.

Условия работы поршневого компрессора

Рис. 3.1. Схема поршневого компрессора

Рабочий процесс в поршневом компрессоре осуществляется за четыре этапа:

1. Расширение газа во «вредном» пространстве цилиндра компрессора (в клапанах и околоклапанном пространстве, в зазоре между крышкой цилиндра и плоскостью АЛ, соответствующей крайнему положению поршня).

2. Всасывание. Расширение и всасывание происходят при движении поршня от плоскости АА до плоскости ВВ на длине хода поршня s. При этом всасывающий клапан открывается не сразу, а лишь после того, как газ, находящийся во «вредном» пространстве цилиндра, расширится и его давление станет меньше давления во всасывающей линии. В этот момент откроется клапан 3, и газ нач­нет поступать в цилиндр компрессора.

3. Сжатие происходит при движении поршня от плоскости ВВ до плоскости СС.

4. Нагнетание происходит при движении поршня от плоско­сти СС до плоскости АА. Нагнетание газа в трубопровод начинает­ся тогда, когда давление газа в 1щлиндре превысит давление в на­гнетательной линии, в этот момент откроется клапан 4, и газ нач­нет поступать в трубопровод.

Расширение и сжатие газа в компрессоре связаны с измене­нием его температуры и являются объектом изучения технической термодинамики. Характер изменения объема газа зависит от усло­вий теплообмена между газом, деталями компрессора и окружаю­щей средой. В зависимости от этого сжатие или расширение могут происходить:

— без теплообмена (адиабатический процесс), т. е. с нагревом газа при его сжатии или охлаждением газа при его расши­рении;

— с частичным теплообменом (политропический процесс);

— с полным теплообменом (изотермический процесс), т. е. с сохранением одной и той же, постоянной при сжатии и расширении, температуры газа.

Как видно из определений, адиабатический и изотермиче­ский процессы являются частными случаями политропического процесса.

Политропический процесс изменения состояния идеального газа задается уравнением:

Условия работы поршневого компрессора

(3.1)

Условия работы поршневого компрессора

где р — давление; V- объем газа; т — показатель политропы

При адиабатическом процессе т = к иназывается показате­лем адиабаты. Он равен 1,67 для одноатомных газов, 1,4. 1,41 для двухатомных и 1,2. 1,3 для трех- и многоатомных газов.

При изотермическом процессе m = 1.

Из условий работы поршневого компрессора видно, что процессы сжатия и расширения газа происходят в основном при политропическом процессе.

Изменение температуры газа можно определить, используя уравнение состояния идеального газа:

Условия работы поршневого компрессора

(3.2)

где R — газовая постоянная;

Условия работы поршневого компрессора

Т — абсолютная температура газа в цилиндре,

Для политропического процесса температура после сжатия определяется по формуле:

Условия работы поршневого компрессора

(3.3.)

где Условия работы поршневого компрессора— конечная температура газа после сжатия, Условия работы поршневого компрессораУсловия работы поршневого компрессора— начальная температура газа, Условия работы поршневого компрессора

Дата добавления: 2015-09-11 ; просмотров: 1066 ;

Видео:Подготовка, настройка и запуск компрессора. Как не допустить ошибокСкачать

Подготовка, настройка и запуск компрессора. Как не допустить ошибок

Вопрос 3.1. Принцип работы и термодинамические условия работы поршневого компрессора

Принципиальная схема поршневого компрессора (рис. 3.1) включает цилиндр 1, поршень 2, всасывающий 3 и нагнетательный 4 кла­паны, шток 5 и кривошипно-шатунный механизм, состоящий из крей­цкопфа 6, шатуна 7 и кривошипа 8.

Условия работы поршневого компрессора

Рис 3.1. Схема поршневого компрессора

Рабочий процесс в поршневом компрессоре осуществляется за четыре этапа:

1 — расширение газа во вредном пространстве цилиндра компрес­сора (в клапанах и околоклапанном пространстве, в зазоре между крышкой цилиндра и плоскостью АA, соответствующей крайнему положению поршня);

2 — всасывание (расширение и всасывание происходят при дви­жении поршня от плоскости АA до плоскости ВВ на длине хода пор­шня s; при этом всасывающий клапан открывается не сразу, а лишь после того, как газ, находящийся во вредном пространстве цилиндра, расширится, и его давление станет меньше давления во всасывающей линии, в этот момент откроется клапан 3, и газ начнет поступать в цилиндр компрессора);

3 — сжатие (происходит при движении поршня от плоскости ВВ до плоскости СС);

4 — нагнетание (происходит при движении поршня от плоскости СС до плоскости АA; нагнетание газа в трубопровод начинается тог­да, когда давление газа в цилиндре превысит давление в нагнетатель­ной линии, в этот момент откроется клапан 4, и газ начнет поступать в трубопровод).

Расширение и сжатие газа в компрессоре связаны с изменением его температуры и являются объектом изучения технической термо­динамики.

Характер изменения объема газа зависит от условий теплообмена между газом, деталями компрессора и окружающей средой. В зави­симости от этого сжатие или расширение могут происходить:

Читайте также: Сколько стоит замена мотора компрессора у холодильника

— без теплообмена (адиабатический процесс); т. е. с нагревом газа при его сжатии или охлаждением газа при его расширении;

— с частичным теплообменом (политропический процесс);

— с полным теплообменом (изотермический процесс), т.е. с сохра­нением одной и той же, постоянной при сжатии и расширении, тем­пературы газа.

Как видно из определений, адиабатический и изотермический про­цессы являются частными случаями политропического процесса.

Политропический процесс изменения состояния идеального газа удовлетворяет уравнению:

Условия работы поршневого компрессора

(3.1)

Условия работы поршневого компрессора

где — давление;

V — объем газа;
т — показатель политропы.

При адиабатических процессах т обозначается через k и называ­ется показателем адиабаты и равен 1,67 для одноатомных газов, 1,4. ..1,41 для двухатомных и 1,2. ..1,3 для трех- и многоатомных газов. При изотермическом процессе т = 1.

Из условий работы поршневого компрессора видно, что процес­сы сжатия и расширения газа происходят в основном при политро­пическом процессе.

Изменение температуры газа можно определить, используя урав­нение состояния идеального газа:

Условия работы поршневого компрессора

(3.2)

где R — газовая постоянная;

Т — абсолютная температура газа в цилиндре в °К. Для политропического процесса температура после сжатия равна:

Условия работы поршневого компрессора

(3.3)

где Т2 конечная температура газа после сжатия;

Т1 начальная температура газа в °К.

Видео:Поршневой компрессорСкачать

Поршневой компрессор

Теоретические основы работы поршневых компрессоров

Принцип работы поршневого компрессора.

Индикаторные диаграммы рабочих циклов поршневого компрессора.

Подача поршневого компрессора, факторы, влияющие на неё.

Многоступенчатое сжатие газа.

Поршневой компрессор — машина, предназначенная для преобразования энергии газа (пара, жидкости) с помощью поршня и обеспечивающая высокие давления нагнетания (до 40 МПа и выше).

Преимущества таких компрессоров — высо­кие значения к. п. д. и степени повышения давления цилиндров в одной ступени, максимальное давление сжатия газа, возмож­ность эксплуатации в широком диапазоне изменения давлений компримируемого газа, возможность построения на базе одной модели различных компрессорных схем и сохранения мощности при изменении условий эксплуатации. Важное достоинство поршневых компрессоров — незначи­тельная чувствительность к изменению плотности компримиру­емого газа. В то же время динамическая неуравновешенность от возвратно-поступательного компрессора оказывается причи­ной повышенной металлоемкости.

Для компримирования нефтяного и природного газов, а также воздуха, в районах с развитой системой электроснаб­жения применяют угловые и оппозитные поршневые компрес­соры с приводом от электродвигателя.

Принципиальная схема поршневого компрессора (рис. 2.1) включает цилиндр 1, поршень 2, всасывающий 3 и нагнетательный 4 клапаны, шток 5 и кривошипно – шатунный механизм, состоящий из крейцкопфа 6, шатуна 7 и кривошипа 8.

Условия работы поршневого компрессора

Рисунок 2.1 — Схема работы поршневого компрессора

Рабочий процесс в поршневом компрессоре осуществляется за четыре этапа:

1. расширение газа во вредном пространстве цилиндра компрессора (в клапанах и околоклапанном пространстве, в зазоре между крышкой цилиндра и плоскостью АА, соответствующей крайнему положению поршня);

2. всасывание (расширение и всасывание происходят при движении поршня от плоскости АА до плоскости ВВ на длине хода поршня s; при этом всасывающий клапан открывается не сразу, а лишь после того, как газ, находящийся во вредном пространстве цилиндра, расширится, и его давление станет меньше давления во всасывающей линии, в этот момент откроется клапан 3, и газ начнет поступать в цилиндр компрессора);

3. сжатие (происходит при движении поршня от плоскости ВВ до плоскости СС);

4. нагнетание (происходит при движении поршня от плоскости СС до плоскости АА; нагнетание газа в трубопровод начинается тогда, когда давление газа в цилиндре превысит давление в нагнетательной линии, в этот момент откроется клапан 4, и газ начнет поступать в трубопровод).

Характер изменения объема газа зависит от условий теплообмена между газом, деталями компрессора и окружающей средой. В зависимости от этого сжатие или расширение могут происходить:

— без теплообмена (адиабатический процесс); т. е. с нагревом газа при его сжатии;

— с частичным теплообменом (политропический процесс);

— с полным теплообменом (изотермический процесс) т. е. с сохранением одной и той же, постоянной при сжатии и расширении, температуры газа.

Как видно из определений, адиабатический и изотермический процессы являются частными случаями политропического процесса.

Политропический процесс изменения состояния идеального газа удовлетворяет уравнению:

Условия работы поршневого компрессора

где p – давление; V – объем газа; m – показатель политропы.

Читайте также: Регулировка включения компрессора 3эс5к

При адиабатических процессах m обозначается через k и называется показателем адиабаты. Показатель адиабаты определяется как отношение удельных (или молярных) теплоемкостей газа при постоянном давлении и объеме. Для одноатомных газов k = 1,67, для двухатомных k = 1,40 – 1,41, для многоатомных k = 1,2 – 1,3. При политропических процессах показатель политропы m может принимать значение от единицы до k и быть больше k. При изотермическом процессе m = 1.

При рассмотрении идеального цикла поршневого компрессора принимают следующие допущения:

1. Отсутствуют сопротивления движению потока газа (в том чис­ле и в клапанах).

2. Давление и температура газа во всасывающей и нагнетатель­ной линиях постоянны.

3. Давление и температура газа в период всасывания, так же как и в период выталкивания газа из цилиндра, не меняются.

4. Мертвое (вредное) пространство в цилиндре компрессора от­сутствует.

5. Нет потерь мощности на трение и нет утечек газа.

Индикаторная диаграмма идеального цикла представлена на рис. 2.2. Процесс сжатия газа поршнем характеризуют кривые 1-2. При изотермическом про­цессе это будет кривая 1-2′», при адиабатическом 1-2″, а при по­литропическом 1-2 или 1-2″. Рассматривая политропический процесс 1-2, видим, что за этот период цикла, объем газа умень­шится с V1 до V2 давление изме­нится от р1 до р2, а температура -от Т1 до Т2. Далее идет нагнета­ние газа в трубопровод 2-3. Дав­ление и температура газа остают­ся в этот период неизменными (p2 и T2). Весь объем газа V2 переходит в нагнетательный трубопровод. За период 3-4 в цилиндре снижается давление до давления во всасывающем трубопроводе (p1) закрывается нагнетательный клапан и с началом движения поршня вправо открывается всасывающий клапан. Период всасывания харак­теризуется линией 4-1. Здесь давление и температура газа равны р1 и T1, в цилиндр поступает объем газа, равный V1.

Условия работы поршневого компрессора

Рисунок 2.2 – Индикаторная диаграмма идеального цикла поршневого компрессора

Условия работы поршневого компрессора

Рисунок 2.3 – Индикаторная диаграмма реального цикла поршневого компрессора

Рассмотрим реальный цикл работы поршневого компрессора. Процесс сжатия газа в цилиндре соответствует линии 1-2 на инди­каторной диаграмме (рис. 2.3). В начальный момент сжатия относи­тельно холодный газ получает тепло от нагретого цилиндра, вследствие чего процесс идет с подводом тепла к газу, и политропа отклоняется вправо от политропы идеально­го процесса (пунктирная ли­ния). В конце процесса сжатия газа температура его повышает­ся и становится больше темпе­ратуры цилиндра и клапанов, и процесс сжатия идет с отводом тепла от газа. Политропа на этом участке отклоняется влево от политропы идеального про­цесса. Эти явления приводят к тому, что показатель реальной политропы процесса сжатия газа становится переменным, и расчет процесса надо вести по условному эквивалентному показателю политропы.

Понижение давления в цилиндре против давления во всасываю­щей линии (см. рис. 2.3, точка 1), в начале сжатия обусловлено со­противлением потоку газа во всасывающем клапане. Повышение давления против давления в нагнетательном трубопроводе (точка 2) в конце сжатия обусловлено усилиями, затрачиваемыми на открытие нагнетательного клапана (сопротивление пружин клапана и инерция масс деталей клапана, приводимых в движение при его открытии). Процесс нагнетания соответствует линии 2-3. Повышенное, про­тив идеального процесса, давление нагнетания обусловливается со­противлениями потоку газа в нагнетательном клапане и подводящих каналах. Некоторая волнистость линии нагнетания обусловливается непостоянством сопротивлений потоку газа из-за изменений скорос­тей поршня и газа, пульсацией давления в газопроводе и вибрацией клапанных пластин.

За процессом нагнетания в реальном цилиндре идет процесс рас­ширения газа, оставшегося в мертвом (вредном) пространстве под давлением р2» (линия 3-4). Объем вредного пространства Vм. Газ рас­ширяется, снижая давление от р2» до р4 и увеличивая свой объем до V4. При этом поршень движется вправо. Процесс расширения закан­чивается при открытии всасывающего клапана. Давление в цилинд­ре при этом будет ниже, чем во всасывающем трубопроводе, за счет усилий, затрачиваемых на открытие всасывающего клапана. Процесс расширения газа идет вначале с отбором тепла от сжато­го газа, а затем с подводом тепла к газу, и потому показатель политро­пы будет не постоянен (так же как и при сжатии газа).

За процессом расширения идет всасывание газа (линия 4-1). Давление в цилиндре при этом будет ниже давления в подводя­щем трубопроводе за счет сопротивления движению потока газа в клапане и каналах. Колебание давления всасывания в цилиндре обусловлено теми же явлениями, которые наблюдаются и при нагнетании газа.

Читайте также: Манжета для компрессора кондиционера

Работа, затрачиваемая на сжатие газа, в реальном цикле опреде­ляется площадью индикаторной диаграммы 1-2-3-4 (см. рис. 2.3).

Подачей компрессораназывают объем или массу газа, проходя­щего за единицу времени по линии всасывания или линии нагнета­ния компрессора. Расход газа на нагнетании всегда меньше, чем на всасывании, за счет утечек газа через неплотности.

Объемный расход газа обычно приводится к условиям всасыва­ния (к давлению и температуре во всасывающей линии), нормаль­ным условиям (давление 100 кПа и температура 293°К) или стандартным условиям (100 кПа и 293°К).

Потребителя интересует обычно количество газа, подаваемого ему от компрессора, приведенное к нормальным или стандартным усло­виям. Иногда эту подачу называют коммерческой.

Подача компрессора с одним цилиндром одинарного действия (см. рис. 3.3)

Условия работы поршневого компрессора

(2.1)

Условия работы поршневого компрессора

где ar w:top=»1134″ w:right=»850″ w:bottom=»1134″ w:left=»1701″ w:header=»720″ w:footer=»720″ w:gutter=»0″/> «> — коэффициент подачи, зависящий от многих факторов;

Условия работы поршневого компрессора

— объем описываемый поршнем за ход в одну сторону;

п — число двойных ходов поршня в минуту (с возвращением в исходное положение).

Условия работы поршневого компрессора

(2.2)

Условия работы поршневого компрессора

— объемный;

Условия работы поршневого компрессора

— герметичности;

Условия работы поршневого компрессора

— температурный;

Условия работы поршневого компрессора

— давления.

Объемный коэффициент отражает степень полноты использова­ния объема цилиндра. Коэффициент герметичности Условия работы поршневого компрессораэто функция подачи компрессо­ра от запаздывания закрытия клапанов, негерметичности уплотнений зазора между поршнем и цилиндром, уплотнений штоков у цилинд­ров двойного действия, негерметичности соединений рабочих кана­лов. Коэффициент герметичности обычно принимается в пределах 0,95. 0,98. Температурный коэффициент Условия работы поршневого компрессораотражает влияние нагрева газа при всасывании за счет теплообмена с горячими стенками цилиндра и каналов. При нагреве увеличивается объем газа, находящегося в цилиндре, и уменьшается полезный объем газа, поступающего в ци­линдр из всасывающего патрубка. Температурный коэффициент зависит от степени сжатия газа, поскольку от этого зависят температура нагнетаемого газа и темпе­ратура стенок каналов и цилиндра. Коэффициент давления Условия работы поршневого компрессораучитывает снижение подачи компрес­сора за счет уменьшения давления газа в цилиндре при всасывании по сравнению с давлением во всасывающем патрубке. В результате этого снижения давления газ расширяется, и в цилиндр входит мень­шее его количество. На подачу влияет уменьшение давления не в на­чале, а в конце периода всасывания. Коэффициент давления обычно находится в пределах 0,95…0,98.

При необходимости сжимать газ до давления, превышающего 0,4…0,7 МПа по манометру, применяют многоступенчатое сжатие, сущность которого состоит в том, что процесс сжатия газа разбивается на несколько этапов или ступеней. В каждой из этих ступеней газ сжи­мается до некоторого промежуточного давления и перед тем как по­ступать в следующую ступень, охлаждается в межступенчатом холо­дильнике. В последней ступени газ дожимается до конечного давле­ния. В современных компрессорах высокого давления число ступе­ней сжатия достигает семи.

Причины, заставляющие применять многоступенчатое сжатие, следующие;

— выигрыш в затраченной работе;

— ограничение температуры конца сжатия;

— более высокий коэффициент подачи.

Для уменьшения работы сжатия применяется ступенчатое сжа­тие газа с охлаждением его в охладителях, расположенных между сту­пенями компрессора.

В результате охлаждения газа устраняется и другая причина, обус­ловливающая применение ступенчатого сжатия, это недопустимое повышение температуры газа при большой степени повышения дав­ления одноступенчатым компрессором. Температура на этапе сжатия газа не должна достигать значений, при которых происходит измене­ние свойств компрессорного масла. С повышением температуры газа вязкость масла уменьшается, ухудшаются условия смазки, и увели­чивается износ трущихся деталей компрессора. При достижении тем­ператур порядка 180. 200°С масло разлагается, в результате чего по­верхности деталей цилиндра компрессора и нагнетательная линия покрываются нагаром. Это ухудшает охлаждение компрессора и на­рушает его нормальную работу (увеличивается трение между порш­невыми кольцами и цилиндром, возможны поломки колец и задиры поверхности цилиндра, ухудшается работа клапанов, возникает опас­ность самовозгорания и взрыва в нагнетательной линии).

1. Принцип действия поршневого компрессора.

2. Условия сжатия газа в поршневых компрессорах. Политропный процесс.

3. Идеальная индикаторная диаграмма цикла поршневого комп­рессора.

4. Работа на сжатие единицы массы газа в компрессоре.

5. От чего зависит температура в конце процесса сжатия в одной ступени?

6. Производительность поршневых компрессоров.

7. Объемный коэффициент подачи поршневого компрессора.

8. Принцип получения высоких давлений в поршневых компрес­сорах.


💥 Видео

Работа Поршневого компрессораСкачать

Работа Поршневого компрессора

Как использовать поршневой воздушный компрессор. Настройка компрессора. Советы по эксплуатации.Скачать

Как использовать поршневой воздушный компрессор. Настройка компрессора. Советы по эксплуатации.

Поршневой компрессорСкачать

Поршневой компрессор

Принцип работы поршневых компрессоров ManeuropСкачать

Принцип работы поршневых компрессоров Maneurop

Работа поршневого компрессораСкачать

Работа поршневого компрессора

Устройство и принцип работы винтового компрессораСкачать

Устройство и принцип работы винтового компрессора

Как выбрать компрессор для гаража или строительства?Скачать

Как выбрать компрессор для гаража или строительства?

Компрессор поршневой 2ВМ4Скачать

Компрессор поршневой 2ВМ4

Поршневой воздушный компрессорСкачать

Поршневой воздушный  компрессор

Компрессор поршневой Механизм движения.aviСкачать

Компрессор поршневой Механизм движения.avi

9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.Скачать

9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.

Какой компрессор лучше: безмасляный, ременный или коаксиальныйСкачать

Какой компрессор лучше: безмасляный, ременный или коаксиальный

Как настроить КОМПРЕССОР правильноСкачать

Как настроить КОМПРЕССОР правильно

Пуск и эксплуатация компрессоровСкачать

Пуск и эксплуатация компрессоров

Лабораторная установка «Изучение работы поршневого компрессора»Скачать

Лабораторная установка «Изучение работы поршневого компрессора»

поршневые компрессорыСкачать

поршневые компрессоры

#НаукаОмГТУ Игорь Бусаров: «Система газораспределения поршневого компрессора»Скачать

#НаукаОмГТУ Игорь Бусаров: «Система газораспределения поршневого компрессора»

ПРИНЦИП РАБОТЫ КЛАПАНОВ поршневого холодильного компрессора.Скачать

ПРИНЦИП РАБОТЫ КЛАПАНОВ поршневого холодильного компрессора.
Поделиться или сохранить к себе:
Технарь знаток