Для овладения мастерством вождения мотоцикла на высоких скоростях, углубленного изучения мотоциклетной техники, участия в соревнованиях, сдачи разрядных спортивных норм с успехом широко используются отечественные мотоциклы массового производства. Однако улучшения рекордов скорости достигают преимущественно на специальных гоночных мотоциклах. Мотоциклы с двигателями, собранными из деталей серийного производства, могут в результате различных усовершенствований показать большие скорости, но не отвечают специальным спортивным требованиям. При выборе двигателя для достижения наиболее высокой скорости необходимо иметь в виду, что если прочие условия равны, то двигатель, имеющий большее количество цилиндров, будет обладать большей мощностью. Для достижений спортивных результатов на уровне существующих разрядных норм необходимо выполнение некоторых мероприятий по увеличению мощности двигателя, а также уменьшению сопротивлений, препятствующих движению.
Рабочий процесс двигателя — это превращение тепловой энергии рабочей смеси в механическую работу. Следовательно, необходимо добиваться, чтобы как можно больше рабочей смеси попало в цилиндр, чтобы возможно большая часть тепловой энергии превратилась в механическую работу и чтобы оба эти процесса произошли в кратчайшее время. Другими словами, мощность возрастает вследствие:
1) увеличения наполнения цилиндра рабочей смесью;
2) увеличения степени сжатия;
3) увеличение числа оборотов коленчатого вала двигателя и
4) уменьшения потерь на трение.
Вследствие того, что в двигатель увеличенной мощности в единицу времени поступает большое количество горючей смеси, то для предупреждения перегрева охлаждение двигателя должно быть увеличено.
Увеличение наполнения цилиндра горючей смесью. Объем смеси, поступающей в цилиндр за период впуска при определенной температуре и давлении окружающей среды, меньше рабочего объема цилиндра. Это происходит главным образом из-за сопротивлений впускной системы. Отношение количества горючей смеси, поступившей в цилиндр, к теоретически возможному называют коэфициентом наполнения. Чем больше коэфициент наполнения, тем выше мощность двигателя. В двухтактных двигателях, вследствие ряда причин, связанных с продувкой — зарядом, наполнение на 50 — 60% меньше, чем у четырехтактных двигателей. Однако литровая мощность двухтактных двигателей не уступает литровой мощности четырехтактных двигателей вследствие того, что уменьшение наполнения компенсируется двойным количеством рабочих ходов.
В Советском Союзе даже серийные двухтактные двигатели с рабочим объемом 125 см 3 , подготовленные для соревнований заводом-изготовителем и отдельными спортсменами, развивают в среднем до 10 л. с., т. е. имеют литровую мощность 80 л. с. Такая высокая литровая мощность у четырехтактных мотоциклетных двигателей без наддува была достигнута лишь в единичных случаях.
Наполнение цилиндра горючей смесью на больших числах оборотов коленчатого вала двигателя, на которых сопротивление впускной системы возрастает, можно увеличить, если осуществить следующие мероприятия.
1. Увеличить сечения для прохода смеси. В четырехтактных двигателях для этого уменьшают до 30° угол фаски, увеличивают диаметр и высоту подъема впускного клапана, сечение канала в цилиндре или головке цилиндра до клапана, сечение канала в патрубке карбюратора и в карбюраторе. В двухтактном двигателе увеличивают ширину впускных и продувочных окон, каналов, патрубка карбюратора и карбюратора.
2. Устранить во впускном патрубке резкие переходы от широкого сечения к узкому и наоборот, а также по возможности уменьшить сопротивление движению смеси в изогнутых каналах, патрубках и т. п.
3. Отполировать все поверхности, соприкасающиеся с потоком горючей смеси, до приобретения ими зеркального блеска. Для полировки каналы последовательно подвергают обработке фигурными фрезами и точильными камнями (фиг. 153), наждачными шкурками (сначала с более крупным, а затем с мелким зерном) и войлочными кругами с полировочной пастой.
Работу выполняют с помощью гибкого вала с зажимным патроном (приводимым во вращение от электродвигателя) или напильниками, шаберами, шкурками.
4. Увеличить продолжительность фазы впуска. Увеличения фаз впуска достигают путем более раннего открытия клапана (окон) и более позднего закрытия клапана (окон).
Более существенное значение для наполнения на больших числах оборотов коленчатого вала двигателя имеет увеличение запаздывания конца впуска.
При предварении начала впуска к моменту прихода поршня в в.м.т. проходное сечение под клапанами (в окнах) будет больше. Во время большого запаздывания конца впуска смесь может дольше поступать по инерции в цилиндр.
Для получения большего эффекта от увеличения фазы впуска следует комплексно увеличивать фазу выпуска у четырехтактных двигателей и фазы выпуска и продувки у двухтактных двигателей. Фазы изменяют обычно по аналогии с подобным двигателем, у которого достигнута наибольшая мощность или путем экспериментов.
При увеличении фазы выпуска улучшается очистка цилиндра от отработавших газов, что способствует лучшему наполнению цилиндра, и уменьшается противодавление газов на поршень.
В четырехтактном двигателе для увеличения фаз газораспределения устанавливают специальный распределительный вал с соответственно измененным профилем кулачков, увеличивают опорные поверхности скользящих по кулачкам деталей — толкателей или промежуточных рычагов.
В двухтактных двигателях увеличения фазы впуска достигают сдвигом (путем опиливания) нижней кромки впускного окна или юбки поршня, фаз продувки и выпуска — спиливанием верхних кромок окон. При изменении фаз распиловкой окон одновременно улучшают место перехода канала в кромки окон в соответствии с данным типом продувки, особенно у продувочных окон.
Для большого увеличения фазы впуска у серийных двухтактных двигателей устанавливают на впускном пути золотниковый распределительный механизм. У серийных двигателей при газораспределении поршнем фаза впуска в среднем составляет 100 — 120°. Цилиндрический золотник на впуске позволяет увеличивать фазу до 220 — 240°. Среди возможных вариантов установки золотника можно отметить следующие.
Установка золотника на цилиндре (фиг. 154) на месте патрубка для карбюратора.
Корпус золотника крепят к цилиндру или отливают совместно с алюминиевым цилиндром. Цилиндрическое тело золотника приводят во вращение с помощью роликовой цепи и двух звездочек от коренной шейки двигателя. Смесь из золотника поступает в двигатель по обычному пути — в нижнюю часть цилиндра под поршень. Для уплотнения зазора между наружной поверхностью золотника и стенками корпуса золотник и отверстие для него соответственно растачивают на конус и шлифуют. При сближении конических поверхностей зазор между ними, образовавшийся от износа, может быть уменьшен.
На фиг. 155 показан золотник, установленный в картере параллельно коренным шейкам, между полостью кривошипа и коробкой передач.
Корпусом для золотника служит отверстие, расточенное в картере. Золотник получает вращение от коренной шейки с помощью пары шестерен или роликовой цепи и пары звездочек. Смесь из золотника поступает непосредственно в картер к ободам маховиков. Для предложенного авторами золотника в полой коренной шейке кривошипа, золотниковая часть которой вращается внутри бронзовой втулки (фиг. 156), никакого специального привода не требуется. Его преимущество заключается в конструктивной простоте и в использовании давления вихря рабочей смеси, возникающего от вращения маховиков и обладающего некоторым динамическим напором.
Видео:ИЗМЕРЯЙ ОБОРОТЫ ВАЛА,ТЕЛЕФОНОМ# ЛАЙФХАК,КАК ИЗМЕРИТЬ ОБОРОТЫ ДВИГАТЕЛЯ# ВЕРСИЯ 2Скачать
При вводе смеси в картер через окно в нижней части цилиндра (т. е. на периферии картера) направление движения поступающей порции смеси прямо противоположно радиальной составляющей вызванного кривошипом вихря; при вводе смеси в центре вала указанные направления совпадают. Таким образом, при ходе поршня вверх вихрь способствует поступлению смеси, при ходе вниз препятствует выталкиванию смеси из картера, образуя «газовый затвор». Фазы впуска могут бйть увеличены. Наполнение на высоких числа х оборотов коленчатого вала двигателя возрастает.
При данном выполнении золотника не требуется полировка маховиков, их шероховатость и даже установка лопаток способствуют усилению вихря.
Поворотом промежуточной бронзовой втулки обеспечивается подбор наивыгоднейших фаз на работающем двигателе.
5. Расположить наклонно карбюратор (фиг. 157).
При наклонном расположении патрубка цилиндра и смесительной камеры карбюратора поток смеси претерпевает, меньше поворотов и движется сверху вниз.
6. Установить насадку — раструб на карбюратор (фиг. 157). Насадка — раструб, установленная на входной горловине карбюратора, облегчает поступление воздуха в карбюратор и обычно требует соответственного увеличения жиклера.
7. Применить так называемый «прямоточный карбюратор».
8. Установить взамен одного два стандартных карбюратора.
9. Уменьшить сопротивление в выпускной системе. Для уменьшения сопротивлений в выпускной системе увеличивают способами, указанными выше, проходное сечение у клапана (в окнах) и фазу выпуска, а также производят изменения в выпускном устройстве.
При удалении перегородок из глушителя или глушителя целиком уменьшается сопротивление выпускной системы, что способствует улучшению наполнения и увеличению мощности примерно на 10%. Но так как езда без глушителя вне зоны соревнований запрещена и связана с неприятным шумом, то прежде чем осуществить это мероприятие, следует учесть, что увеличение мощности на 10% не обеспечивает такого же возрастания скорости.
Влияние глушителя при скорости движения около 100 км/час выразится в уменьшении скорости всего лишь на 2 — 3 км/час.
Большего эффекта достигают при подборе определенной длины выпускной трубы и установке на ее конце раструба — мегафона.
В этом случае выпускная труба и мегафон не только уменьшают сопротивление выпускной системы, но начинают «подсасывать» из цилиндра отработавшие газы.
Правильно подобранная длина трубы способствует лучшему наполнению двигателя. Подбор осуществляют путем использования раздвижных труб или последовательного укорочения длины трубы. Стандартные трубы обычно приходится значительно укорачивать.
Конус раструба во избежание отрыва от его стенок движущегося потока газа должен быть в пределах от 8 до 10° (фиг. 158). С увеличением длины раструба его действие усиливается.
В двухтактном двигателе увеличенной мощности лишь правильно подобранная интенсивность «подсасывания» выпускным устройством, не вызывающая увеличения потери рабочей смеси, улучшает продувку — заряд цилиндра и обеспечивает увеличение мощности двигателя. При правильном подборе трубы в выпускном устройстве на высоких числах оборотов коленчатого вала двигателя возникает колебание массы отработавших газов, которое в начальных стадиях продувки — заряда усиливает поступление рабочей смеси в цилиндр, а к концу процесса препятствует потере ее через выпускные трубы.
В четырехтактном двигателе, у которого в в. м. т. имеется достаточно большое перекрытие клапанов (одновременное открытие впускного и выпускного клапанов), увеличение интенсивности «подсасывания» выпускной трубы приводит к увеличению наполнения и по другой причине. Как известно, первоначально поступление горючей смеси в цилиндр происходит под влиянием разрежения, которое образуется над поршнем при его движении от в. м. т. к н. м. т., а затем вследствие приобретаемой смесью инерции. Мегафон усиливает поступление смеси в цилиндр вследствие дополнительного разрежения, образующегося в выпускных трубах.
10. Понизить температуру рабочей смеси. Температура рабочей смеси в цилиндре повышается главным образом в результате получения тепла от стенок цилиндра, его головки и патрубка, головки поршня, выпускного клапана и теплообмена с остатками сгоревших газов. От нагревания плотность и, следовательно, весовой заряд рабочей смеси уменьшаются, коэфициент наполнения снижается.
Понижению температуры рабочей смеси способствуют некоторые мероприятия, изложенные в описании способов охлаждения двигателя.
11. Применить наддув. Известно, что при нормальном питании двигателя количество горючей смеси, поступающей в цилиндр, всегда меньше теоретически возможного и на больших числах оборотов коленчатого вала двигателя быстро уменьшается.
Наддув — наполнение цилиндра горючей смесью под давлением при помощи нагнетателя позволяет вводить большее количество горючей смеси, увеличивает крутящий момент и приемистость двигателя и препятствует снижению наполнения на высоких числах оборотов коленчатого вала.
Как способ увеличения мощности мотоциклетного двигателя наддув и до настоящего времени применяют только на единичных экземплярах гоночных мотоциклов, предназначенных для установления рекордов скорости.
Нагнетатели, посредством которых осуществляют наддув в мотоциклетных двигателях, при каждом обороте вала подают в двигатель определенное количество горючей смеси. Для повышения интенсивности наддува обычно увеличивают число оборотов вала нагнетателя относительно числа оборотов коленчатого вала двигателя путем изменения передаточного отношения привода нагнетателя.
Схемы устройства нагнетателей на фиг. 159, изображают два основных типа нагнетателей.
Читайте также: Положение датчик положения коленчатого вала ваз 21102
Видео:Ременная передача. Урок №3Скачать
Для двухтактных двигателей применяли также обычный поршневой насос.
Нагнетатели устанавливают двумя способами: перед карбюратором (фиг. 160,а) и между карбюратором и цилиндром (фиг. 160, б). В первом случае поплавковую камеру соединяют с впускным патрубком для уравнивания давлений. Для предупреждения поломки нагнетателя от обратной вспышки в цилиндре на впускном пути устанавливают редукционный клапан.
Для приведения в действие нагнетателя необходимо затратить мощность. Следовательно, для получения от двигателя при наддуве дополнительной мощности будет затрачено количество горючей смеси, эквивалентное не только дополнительной мощности, но и той, которая затрачивается на вращение нагнетателя. Это вызовет значительное увеличение тепловой и механической напряженности двигателя.
Поэтому наддуву можно подвергать только специально приспособленные двигатели, выдерживающие повышенные тепловые и механические нагрузки.
Необходимость в нагнетателе возникает только при изготовлении мотоцикла для установления рекордов скорости или иных очень высоких спортивных результатов. При состязаниях на большие дистанции и на кроссах с успехом служат обычные двигатели без наддува.
12. Осуществить впрыск топлива в цилиндр. Одним из способов увеличения наполнения двигателя является непосредственный впрыск топлива в цилиндр с помощью топливного насоса.
13. Уменьшить объем картера двухтактного двигателя. Горючая смесь, поступившая в картер двухтактного двигателя, при ходе поршня вниз подвергается предварительному сжатию, необходимому для осуществления процесса продувки — заряда цилиндра. Давление в картере, требуемое для эффективной продувки цилиндра, у различных двигателей колеблется от 1,2 до 1,5 кг/см 2 .
Для уменьшения затраты мощности на предварительное сжатие смеси в картере целесообразнее осуществлять продувку при меньшем давлении. Однако в практике увеличения мощности двухтактных двигателей установлено, что нередко наблюдается возрастание мощности при увеличении давления продувочной смеси.
Для увеличения давления продувочной смеси обычно уменьшают объем картера путем установки в нем между маховиками алюминиевой детали в виде кольца, из которого удален небольшой участок для свободного перемещения шатуна.
Примерный способ установки этой детали показан на фиг. 161. Кольцо вводят в картер одновременно с маховиками и его положение фиксируют штифтами.
14. Добиться герметичности сборки картера двухтактного двигателя. Даже незначительные утечки рабочей смеси из картера двухтактного двигателя уменьшают его наполнение и существенно влияют на уменьшение мощности. Герметичность всякого картера двухтактного двигателя достигается плотной подгонкой соединительных швов, установкой бумажных прокладок, уплотнением зазоров у коренных шеек сальниками.
В двигателе увеличенной мощности требования к герметичности картера повышаются. Прокладки смазывают бакелитовым или шеллачным лаком, внимательно проверяют качество сальников и с особой тщательностью стягивают половинки картера.
Двигатели, предназначенные для работы на топливе с содержанием спирта, не рекомендуется собирать на прокладках, смазанных бакелитовым или шеллачным лаком, так как спирт растворяет эти лаки. В этом случае особо точно притирают все соединяемые поверхности или устанавливают бумажные прокладки, смазанные жидким стеклом.
Увеличение степени сжатия. Вследствие повышения предварительного сжатия рабочей смеси увеличиваются мощность и экономичность двигателя.
Повышения сжатия достигают путем увеличения степени сжатия, а также обеспечением полной герметичности цилиндра. О последней судят обычно по качеству компрессии. Увеличения степени сжатия достигают путем уменьшения объема камеры сгорания.
Объем камеры сгорания до и после его уменьшения определяют путем заполнения ее маслом из мензурки. Эту операцию выполняют следующим образом.
Узкую мензурку предварительно наполняют маслом до определенного уровня. Устанавливают поршень в в. м. т. (конец хода сжатия). Через отверстие для свечи зажигания в цилиндр вливают содержимое мензурки до тех пор, пока его уровень не установится у нижней кромки резьбы отверстия. Чтобы весь объем камеры сгорания заполнился маслом и в ней не образовывалось пустот, двигатель при наливании масла наклоняют. Величина убыли масла в мензурке соответствует объему камеры сгорания.
Для получения точных результатов измерения рекомендуется: пользоваться только жидким маслом или автолом с керосином; проконтролировать точность установки поршня в в. м. т. путем небольшого повертывания кривошипа в ту и другую сторону — уровень масла в отверстии при этом подниматься не должен; измерить объем дважды, учитывая возможность прилипания части масла к стенкам камеры сгорания.
Уменьшают объем камеры сгорания путем одного или нескольких из перечисленных ниже способов:
1) стачивают торец головки цилиндра;
2) изготовляют головку цилиндра с меньшим объемом;
3) изготовляют новый поршень с более выпуклой головкой или с увеличенным расстоянием от пальца до края днища;
4) стачивают верхний или нижний торец цилиндра;
5) дополнительно фрезеруют картер в месте установки цилиндра.
Можно также увеличивать ход поршня и растачивать цилиндр, но эти два способа связаны с увеличением рабочего объема цилиндра.
О влиянии увеличения степени сжатия на мощность двигателя косвенно можно судить по возрастанию максимального давления вспышки.
Ориентировочные значения максимального давления вспышки в зависимости от степени сжатия следующие:
Максимальное давление в кг/см 2
Увеличение степени сжатия ограничивается детонационной стойкостью топлива, характеризуемой октановым числом. Чем выше октановое число топлива, тем большая степень сжатия может быть применена в двигателе. Если увеличить степень сжатия, но работать на бензине с низким октановым числом, то в цилиндре возникает детонация, мощность двигателя уменьшается и двигатель будет быстрее изнашиваться.
Серийные отечественные мотоциклы работают со степенями сжатия, допустимыми при использовании автомобильного бензина с октановым числом не ниже 66. При повышении степени сжатия двигатель переводят на топливо с более высоким октановым числом (фиг. 162).
Видео:Почему практически невозможно раскрутить двигатель более 20000 оборотов в минуту | B2B На РусскомСкачать
Двигатели с малым рабочим объемом цилиндров по сравнению с двигателями, имеющими цилиндры с большим рабочим объемом, при прочих равных условиях могут работать при меньшей детонационной стойкости топлива и, следовательно, в этих двигателях при высоких степенях сжатия допускается применение топлива с меньшим октановым числом. Октановые числа топлив, наиболее часто используемых для спортивных мотоциклов, указаны в табл. 9.
Октановые числа топлив, применяемых для спортивных мотоциклов
Октановое число топлива с различным содержанием этиловой жидкости в см 3 /кг
Бензин КБ-70
Бензин Б-70
Бензин Б-74
Бензин Б-78
Бензол
Толуол
Этиловый спирт
Метиловый спирт
Для предупреждения вредных последствий спортсменам рекомендуется по возможности подбирать топливо, не содержащее этиловой жидкости, так как при постоянном обращении с мотоциклом неизбежно попадание этилированного бензина на руки и вдыхание его испарений.
Обеспечение работы двигателя с большой степенью сжатия на топливах, не содержащих значительных количеств этиловой жидкости, нередко вызывающей освинцование свечей и клапанов, достигается при применении бензола и толуола в чистом виде и в различных смесях с бензином.
Октановые числа используемых бензино-бензольных и бензино-толуоловых смесей приведены в табл. 10.
Октановые числа топливных смесей
Октановое число топлива с различным содержанием этиловой жидкости в см 3 /кг
50% бензина с октановым числом 70 и 50% химически чистого бензола
Видео:Как повысить обороты электродвигателяСкачать
15% бензина с октановым числом 70 и 85% химически чистого бензола
50% бензина с октановым числом 70 и 50% химически чистого толуола
15% бензина с октановым числом 70 и 85% химически чистого толуола
При максимальных степенях сжатия, ограничиваемых только конструкциями двигателей, используют спирт в чистом виде или в смесях с другим топливом. Спирт в смеси с бензином применяют главным образом по следующим причинам.
Чистый спирт как топливо может быть эффективно использован только при достаточно высоких степенях сжатия, но не всегда удается соответственно уменьшить камеру сгорания, особенно в четырехтактных двигателях. Расход спирта вдвое больше, чем бензина. Спирт является топливом менее доступным, чем бензин. Пуск двигателя на спиртовых смесях с содержанием бензина осуществляется легче, чем на чистом спирте. Но смеси спирта с бензином при недостаточной крепости спирта легко расслаиваются при понижении температуры. Поэтому для мотоциклов, предназначенных для спорта, чаще используют различные смеси спирта с бензолом и толуолом, не расслаивающиеся при любых пропорциях смешения. В смеси спирта и бензина включают бензол, толуол или ацетон, так как последние три вида топлива являются хорошими стабилизаторами смеси.
Увеличение числа оборотов коленчатого вала двигателя. По мере увеличения числа оборотов коленчатого вала мощность двигателя возрастает, достигает максимальной величины, а затем начинает снижаться. Это происходит вследствие уменьшения наполнения цилиндра рабочей смесью при больших числах оборотов. Для того чтобы с возрастанием числа оборотов увеличивалась мощность двигателя, улучшают наполнение цилиндра на больших числах оборотов вала и обеспечивают в возможно более короткий промежуток времени сгорание всего заряда рабочей смеси.
Наполнение цилиндра на больших числах оборотов вала улучшается в результате осуществления изложенных выше мероприятий. Продолжительность сгорания заряда рабочей смеси уменьшится от увеличения степени сжатия и усовершенствования камеры сгорания.
Приспосабливая двигатель к работе на высоких числах оборотов, обращают особое внимание на следующие его части и механизмы.
Камера сгорания. При рассмотрении процесса сгорания заряда рабочей смеси различают два явления: во-первых, скорость в м/сек распространения фронта пламени от свечи; во-вторых, продолжительность протекания всего процесса горения от момента воспламенения смеси искрой до образования конечных продуктов сгорания.
Лучшей формой камеры сгорания в конструкциях, осуществленных для двигателей спортивных мотоциклов, является форма, приближающаяся к полусфере, с зажиганием смеси в центре. Для помещения свечи в центре в головке двигателей с верхним расположением клапанов не остается места. Поэтому место для установки свечи выбирают с таким расчетом, чтобы пути распространения пламени были примерно одинаковыми.
Важное значение имеет наклонное расположение свечи. При наклоне, соответствующем наибольшей длине камеры сгорания, подожженная смесь будет «простреливать» все пространство камеры и тем самым ускорять процесс сгорания. Не следует только направлять свечу непосредственно на поршень, так как это способствует его местному перегреву и прогоранию днища.
Установка двух синхронно действующих свечей ускоряет сгорание смеси, но оказывает существенное влияние только при сравнительно большом рабочем объеме цилиндра.
Скорость распространения пламени, если пренебречь движением смеси, не превышает 20 — 30 м/сек, что недостаточно для быстрого завершения сгорания смеси. Скорость потока смеси в клапанном проходе достигает 90 — 110 м/сек. Однако это не значит, что скорость смеси внутри камеры столь же велика, но косвенно позволяет понять смысл следующего явления: если движению поступающей в цилиндр смеси придать вихревой характер, то время, потребное для сгорания, будет зависеть не только от скорости распространения пламени, но и от интенсивности горящих вихрей.
Механизм газораспределения четырехтактного двигателя. На высоких числах оборотов, вследствие возрастания сил инерции клапанов, пружин, коромысел, длинных штанг и толкателей, упругость пружин может оказаться недостаточной для своевременной посадки клапана в гнездо. Внешним признаком этого явления служит нарушение четкого чередования вспышек в цилиндре и возникновения хлопков в карбюраторе и глушителе на максимальных числах оборотов коленчатого вала двигателя.
Запаздывание посадки клапана в гнездо выявляют при осмотре запорного устройства клапана. На выточке его стержня, на сухариках и в коническом отверстии упорной шайбы пружины обнаруживаются потертости от их взаимного перемещения. На головке поршня могут быть следы от удара головки клапана. Между витками пружин появляются следы от соприкосновения витков.
Для своевременного закрытия клапана облегчают до возможного предела детали механизма газораспределения, не уменьшая их прочности. Особое преимущество в этом отношении имеют пружины шпилечного типа. Допустимо увеличение упругости пружин путем подкладывания регулировочных шайб под их неподвижные концы, учитывая при этом, что применение чрезмерно тугих пружин у мотоциклов для гонок связано с обрыванием выпускного клапана, приводящим к очень серьезным поломкам двигателя.
Поршень и шатун. Силы инерции деталей поршневой группы двигателя увеличенной мощности на максимальных оборотах больше максимальных сил давления газов в момент вспышки. От чрезвычайно больших напряжений, наблюдаются случаи обрыва шатуна в верхней части поршня преимущественно по плоскости расположения верхнего маслосъемного кольца.
В двигателях с коротким ходом, с прочным, но легким шатуном, изготовленным из высококачественной стали или из электрона, и при совершенной конструкции поршня возможность этих поломок уменьшается. Шатун дополнительно подвергают полированию, которое повышает его прочность и позволяет своевременно выявить пороки металла.
Поршневые кольца. При высоких числах оборотов коленчатого вала (около 6500 об/мин. и более) в двигателях увеличенной мощности вследствие большой скорости поршня иногда происходят поломки поршневых колец. Возможность поломок уменьшается при применении узких колец особо высокого качества, тщательной подгонке их к поршню, большой точности изготовления цилиндра и качества полировки зеркала, а также от проведения длительной холодной и горячей обкатки двигателя.
Зажигание. При оценке спортивных качеств, применяемых на мотоциклах двух систем зажигания — батарейного и от магнето — руководствуются следующими соображениями.
С увеличением числа оборотов мощность искры батарейного зажигания уменьшается, а при зажигании от магнето — увеличивается. Двигатели увеличенной мощности отличаются: 1) большим давлением сжатия в цилиндре в момент зажигания рабочей смеси электрической искрой и 2) высоким числом оборотов, соответствующим максимальной мощности. При высоком давлении для преодоления искрового промежутка в свече потребное пробивное напряжение увеличивается.
Поэтому зажигание от магнето при высоком сжатии и высоком числе оборотов должно иметь преимущество перед батарейным. Однако из практики подготовки мотоциклов к спортивным соревнованиям установлено, что батарейное зажигание действует вполне удовлетворительно. Например, двухцилиндровый четырехтактный двигатель со степенью сжатия 9,5 при 6000 об/мин, имея один молоточек прерывателя, дававший соответственно 6000 отрывов в минуту, работал на шоссейных соревнованиях с рекордными результатами на батарейном зажигании, причем не было каких-либо неполадок, которые служили бы основанием для замены батарейного зажигания. Двухтактные двигатели увеличенной мощности с батарейным зажиганием при 5000 — 5500 отрывах молоточка в минуту также работали безупречно. Из этого можно сделать вывод, что батарейное зажигание для указанных степеней повышения мощности вполне пригодно.
Увеличение затраты мощности на вращение вала генератора с максимальным числом оборотов по сравнению с мощностью, потребляемой магнето, ничтожно и может быть по желанию снижено путем включения увеличенного добавочного сопротивления в цепь обмотки возбуждения генератора или уменьшения скорости вращения якоря.
Повреждение обмоток якоря генератора на больших числах оборотов может произойти от электрической перегрузки обмоток и недостаточной механической прочности в условиях сильного возрастания центробежных сил. Электрическую перегрузку, сопровождающуюся нагреванием генератора, устраняют включением дополнительного сопротивления в обмотку возбуждения, и при достаточной механической прочности обмоток якоря генератор вполне пригоден для работы двигателя на больших числах оборотов коленчатого вала, в особенности, если якорь расположен на коренной шейке коленчатого вала.
Основное неудобство батарейного зажигания при занятиях спортом заключается в том, что оно включает в себя, помимо генератора, аккумуляторную батарею, катушку зажигания, реле-регулятор напряжения и контрольный прибор. Расположенные в разных частях мотоцикла аккумуляторная батарея и приборы значительно утяжеляют мотоцикл, а соединение их сложной системой электропроводов делает всю электросистему легко уязвимой.
Магнето, в котором все элементы электрической схемы находятся в общем герметичном корпусе, в смысле удобства обслуживания значительно проще. При установке двигателя достаточно присоединить провода к свечам и один провод — к кнопке выключения зажигания.
К недостаткам зажигания от магнето, при оборудовании им мотоциклов М1А, К-125, ИЖ-350, ИЖ-49 относится обычно недостаточная надежность применяемой спортсменами соединительной муфты; на мотоцикле М-72 — сложность работ по устройству привода.
При выборе магнето для двигателя высокой литровой мощности необходимо учитывать первоначальное назначение магнето и отдавать преимущество типам магнето с неподвижными обмотками. Для двигателей с особо большим числом оборотов коленчатого вала необходимо специальное магнето. В противном случае при применении обычного магнето, для уменьшения пробивного напряжения, расстояние между электродами свечи приходится уменьшать до 0,3 мм.
Так как максимальное давление сжатия образуется в цилиндре не при максимальном числе оборотов коленчатого вала, а на промежуточных режимах, соответствующих максимальному крутящему моменту, то перебои в искрообразовании могут возникнуть на переходном режиме оборотов при зажигании не от специального магнето и на очень высоких числах оборотов при батарейном зажигании.
Из приведенных соображений можно сделать следующие выводы:
1. Наиболее приемлемым зажиганием для спортивных мотоциклов является зажигание от магнето специального типа.
2. При отсутствии последнего с успехом может быть применено батарейное зажигание.
Уравновешивание. В движущихся деталях двигателя развиваются инерционные силы, которые дополнительно нагружают подшипники, вызывают вибрацию двигателя и всего мотоцикла и препятствуют возрастанию числа оборотов коленчатого вала.
Рассматривая возникновение инерционных сил в кривошипном механизме, различают детали, участвующие во вращательном движении и детали, движущиеся возвратно — поступательно.
К вращающимся деталям относятся маховики, шатунная шейка, нижняя головка шатуна с подшипником и около 1/3 массы шатуна. Все эти детали полностью уравновешиваются противовесами маховиков.
Группа деталей, движущихся возвратно — поступательно, состоит из поршня с кольцами и пальцем и 1/3 массы шатуна. Если перечисленные детали совсем не уравновешивать, то разовьется неуравновешенная сила, действующая по оси цилиндра. Если же детали, движущиеся возвратно-поступательно, полностью уравновесить противовесами маховиков, то неуравновешенные силы переместятся в плоскость, перпендикулярную оси цилиндра. Рекомендуемые пределы уравновешивания — 45 — 65%, причем 45% относятся к двигателям с особо большим числом оборотов коленчатого вала.
При уравновешивании двигателя учитывают конструкцию рамы, передней вилки, устойчивость мотоцикла и выбирают наиболее приемлемое для данной конструкции направление неуравновешенных сил, так как их полное устранение практически затруднено.
Среди конструкций двигателей, получивших широкое распространение, наиболее хорошо уравновешиваются двухцилиндровые двигатели с противолежащими цилиндрами типа двигателя отечественного мотоцикла М-72, так как в них силы инерции равны и противоположно направлены. В этих двигателях веса шатунов и поршней должны быть одинаковыми.
В одноцилиндровых двигателях при небольшом изменении веса поршня из легких сплавов, получающемся в результате дополнительной механической обработки, не требуется обязательное эквивалентное уравновешивание кривошипа.
Уменьшение веса возвратно движущихся масс кривошипа и деталей механизма газораспределения является основным способом улучшения уравновешенности двигателя и сильно повышает возможность увеличения максимальных чисел оборотов коленчатого вала двигателя.
Двигатель заводского изготовления уравновешивают в следующем порядке.
Определяют, какой процент веса возвратно — поступательно движущихся деталей у двигателя был уравновешен. Для этого коленчатый вал в сборе с шатуном и поршневой группой, не подвергавшийся еще каким-либо изменениям, устанавливают коренными шейками на две призмы, в качестве которых могут служить две полосы углового железа (фиг. 163).
Читайте также: Можно ли в компрессор лить автомобильное масло
В точке маховика, симметричной центру шатунной шейки, сверлят отверстие и устанавливают в него штифт. К штифту подвешивают груз и добиваются равновесия кривошипа. В качестве разновесов удобно пользоваться шариками подшипников.
После полировки шатуна, облегчения поршня, поршневого пальца и выполнения других работ, связанных с облегчением поршневой группы, кривошип в сборе с поршневой группой вторично устанавливают на призме и определяют разницу в весе груза при первом и втором взвешиваниях.
Для восстановления уравновешенности двигателя на радиусе установки штифта из маховиков около обода удаляют высверливанием количество металла, равное по весу величине разности двух взвешиваний кривошипа, умноженный на 0,45 — 0,65. В соответствии с вычисленным весом подбирают диаметры сверл и сверлят сразу насквозь оба маховика для того, чтобы с каждого было удалено равное количество металла в одинаковых местах. В противном случае маховики при работе двигателя могут расцентрироваться.
При необходимости удаления большого количества металла не следует упускать из виду возможности ослабления прочности маховиков. Вместо одного большого отверстия рекомендуется сверлить несколько отверстий. Первое большое отверстие сверлят на радиусе установки штифта между последним и ободом маховика (с учетом равенства моментов), а следующие располагают симметрично по обеим сторонам от первого, пользуясь сверлами уменьшающихся диаметров.
Центрирование кривошипа двигателя. Соблюдение точной соосности коренных шеек кривошипного механизма, выверенной с точностью до 0,01 мм, является обязательным условием приспособления двигателя к работе на высоких числах оборотов коленчатого вала.
Известен способ центрирования коренных шеек кривошипа при помощи линейки и штангеля, прикладываемых к ободам маховиков, с последующей проверкой точности выполнения операции по легкости вращения кривошипа в собранном картере.
Линейку прикладывают к внешней поверхности обода маховиков в местах, удаленных от кривошипного пальца на 90°. Путем постукивания по ободам маховиков добиваются равного прилегания линейки к ободам или равного просвета между линейкой и ободами. Штангелем измеряют по всей окружности расстояние между маховиками. Если расстояния окажутся неравными, то для частичного исправления кривошипа маховики в месте наибольшего расстояния между ними сжимают тисками.
Затем устанавливают кривошип в картер, последний не стягивают болтами и вращают кривошип. Колебание половинок картера в радиальном и осевом направлениях соответственно указывает на неточное центрирование линейкой и штангелем. Но если кривошип даже при затянутых половинках картера вращается легко на коренных подшипниках, то этой проверки все же недостаточно.
Указанным способом пользуются только для предварительной проверки кривошипа.
Центрирование кривошипа двигателя увеличенной мощности нужно обязательно производить в центрах токарного станка индикатором (фиг. 164). Никакой другой, менее точный способ центрирования кривошипа двигателя, предназначенного для работы с особо большим числом оборотов, недопустим.
Читайте также: Сальник балансировочного вала митсубиси галант
Видео:Как крутится коленвал и работает поршень и как смазываются пальцы. BMW & Mercedes.Скачать
Уменьшение потерь мощности на трение. Эффективная мощность, снимаемая с вала двигателя, является частью индикаторной мощности, получаемой в цилиндре в результате сгорания рабочей смеси, за вычетом потерь на трение.
Отношение эффективной мощности к индикаторной представляет собой механический к. п. д. двигателя. Механический к. п. д. мотоциклетного двигателя 0,7 — 0,85 с возрастанием числа оборотов вала уменьшается, поэтому в среднем не менее 20% индикаторной мощности расходуется на трение.
Из всех потерь мощности на трение наибольший процент, достигающий 65% от общих потерь, составляет трение поршня по цилиндру. Остальные потери приходятся на трение подшипников кривошипа, на механизм газораспределения, вращение масляного насоса, магнето, генератора. Следовательно, для уменьшения потерь на трение основное внимание должно быть направлено на улучшение условий работы поршня.
Потери на трение поршня по зеркалу цилиндра могут быть снижены путем:
1) уменьшения трущейся поверхности поршня;
2) улучшения качества трущихся поверхностей;
3) подбора оптимальных зазоров между поршнем и цилиндром;
4) уменьшения высоты поршневых колец;
5) применения высококачественного масла;
6) соблюдения рационального режима смазки;
7) проведения длительной обкатки.
Уменьшение трущейся поверхности поршня в современных двигателях в достаточной мере предусмотрено в конструкции поршня. Юбке поршня придают форму эллипса и снимают металл около бобышек для поршневого пальца. Вследствие этого в трении участвуют лишь небольшие передние и задние участки юбки поршня.
Улучшения качества трущихся поверхностей достигают тщательной механической обработкой и последующей холодной и горячей обкаткой двигателя.
Величина зазоров между поршнем и цилиндром, рекомендованная заводом для нормальной эксплуатации в двигателе мотоциклов, предназначенных для занятий спортом, может быть увеличена на несколько сотых долей миллиметра в соответствии с работой поршня на высоких числах оборотов вала.
При напряженном температурном режиме уменьшение высоты колец допустимо только в том случае, если обеспечено достаточное охлаждение поршня, так как через поршневые кольца отводится до 80% тепла, воспринимаемого головкой поршня.
Наиболее рациональный путь уменьшения потерь на трение в хорошо собранном двигателе, дающий существенный прирост мощности, — это обкатка двигателей на стенде или с помощью буксира на шоссе.
Обкатка, часто предпринимаемая только для предупреждения заклинивания в цилиндре нового поршня и приработки по всему периметру поршневых колец, необходима по следующим, еще более важным причинам. Как показали исследования, проведенные в Институте машиноведения Академии наук СССР, новые неприработанные детали из-за недостаточно чистой обработки поверхностей и неизбежных перекосов в механизме, имеют опорные площади, передающие и воспринимающие нагрузку, в сотни и даже тысячи раз меньшие, чем предусмотрено расчетами. Вследствие этого в новом необкатанном двигателе, если его сильно нагрузить, у отдельных мест поверхностей трения создаются очень высокие давления, которые могут выдавить масляную пленку и вызвать задир поверхностей. Возможно, повреждения поверхностей невооруженным глазом будут неразличимы, но несомненно, что в результате приработки деталей во время длительной и правильной обкатки сформируются высококачественные поверхности, обеспечивающие наименьшие потери на трение и наибольшую износоустойчивость отдельных деталей и механизма в целом.
Последовательно проводят холодную обкатку, горячую обкатку без нагрузки и горячую обкатку под нагрузкой.
При проведении обкатки пользуются следующими основными рекомендациями.
Степень сжатия двигателя целесообразно понизить до величины, допускающей бездетонационную работу на низкооктановых бензинах.
Обкатку производят на шоссе с гладким покрытием. На горловину карбюратора устанавливают эффективный воздухоочиститель.
В бензин примешивают 2% масла МС. В топливной смеси двухтактных двигателей содержание масла должно быть увеличено с 4 до 5%.
В масло рекомендуется добавлять 1 — 2% коллоидального графита. Карбюратор регулируют для образования богатой рабочей смеси.
Масло в картере за период обкатки сменяют несколько раз, внимательно следя за составом спускаемого масла.
В первый период горячей обкатки под нагрузкой проходят короткие расстояния с умеренно открытым дросселем, а затем закрывают его и дают мотоциклу двигаться по инерции. Вследствие этого поршень попеременно нагревается и охлаждается, более расширяющиеся участки его шлифуются, и достигается хорошая приработка поршня к цилиндру.
Пробег для обкатки нового двигателя или собранного из новых деталей должен быть не менее 2000 км. Только после длительного срока приработки трение между деталями уменьшается до необходимого минимума и мотоцикл в целом становится надежным для движения с высокой скоростью.
Способы улучшения охлаждения двигателя. Охлаждение двигателя усиливается при соблюдении следующих условий.
Полное использование охлаждающей способности ребер цилиндра. Масло, смешанное с грязью, является своеобразной теплоизоляцией. Так, например, теплопроводность пригоревшего масла равна только 1/50 теплопроводности чугуна. Поэтому охлаждающие ребра цилиндра и головки, а также весь двигатель необходимо тщательно очищать. Если промывкой в керосине с помощью кисти и проволочных щеток надлежащей чистоты поверхностей не достигают, то применяют очистку пескоструйной установкой. В этом случае надежно защищают зеркало цилиндра, седла клапанов и поверхности соединения головки и цилиндра от попадания песка. Другой способ очистки цилиндра — это кипячение его в каустике (едкое кали, едкий натр). Точная рецептура раствора каустика значения не имеет, но чем выше концентрация каустического раствора, тем быстрее будет происходить процесс очистки. При погружении в каустический раствор зеркала цилиндра и клапанных седел не причиняется им вред, но требуется тщательная двух — трехкратная последующая промывка в горячей воде.
Для очистки алюминиевых деталей каустический раствор применять недопустимо, так как алюминий в каустике растворяется и детали приходят в полную негодность.
Одним из средств сохранения охлаждающего действия ребер цилиндра является покрытие их специальными, лаками. Несмотря на то, что лаковая пленка будет дополнительным препятствием на пути перехода тепла к воздуху, охлаждение улучшится. Это происходит потому, что металл ребер, очищенный от масла, быстро покрывается слоем коррозии, который менее теплопроводен, чем лаковая пленка.
Применение металлов с повышенной теплопроводностью. Для улучшения охлаждения двигателей, применяемых для спортивных целей, изготовляют цилиндры, головки и другие нагревающиеся детали из металлов, обладающих повышенной теплопроводностью.
При осуществлении указанной замены металлов можно воспользоваться приведенными ниже коэфициентами теплопроводности некоторых наиболее употребительных металлов.
Чугун
Магний (электрон)
Алюминий
Медь (красная)
Таким образом, изготовление, например, алюминиевого цилиндра с вставной гильзой взамен чугунного и головки цилиндра из сплава, содержащего медь, улучшает охлаждение двигателя.
Полировка поверхностей. Полировкой камеры сгорания и головки поршня уменьшают поверхность их соприкасания с газами высокой температуры, а кроме того, полированные поверхности этих деталей лучше отражают тепловые лучи. Передача тепла металлу от сгорающих газов теплопроводностью и лучеиспусканием уменьшается.
Теплоизоляция карбюратора. Карбюратор, установленный непосредственно на коротком патрубке цилиндра или его головке, сильно нагревается. Для уменьшения нагрева карбюратора от двигателя между ними устанавливают теплоизоляторы. При фланцевом креплении карбюратора теплоизолятор представляет собой прокладку из нетеплопроводного материала, например, волокнита или гетинакса (род прессованного картона) толщиной примерно 15 мм, устанавливаемую между фланцем карбюратора и двигателем. Для карбюратора, закрепляемого хомутом, простейшим видом теплоизоляции является кольцевая прокладка в виде втулки из тех же материалов.
Охлаждение маслом. В четырехтактных двигателях при увеличении количества масла, участвующего в циркуляции, установке масляного бака вне двигателя, включении в коммуникацию масляного радиатора улучшается охлаждение двигателя.
Применение богатой рабочей смеси. Обогащением рабочей смеси даже до предела, при котором мощность двигателя начинает несколько снижаться, рекомендуется пользоваться для снижения температуры двигателя увеличенной мощности.
Использование спирта. При использовании в качестве топлива вместо бензина спирта в чистом виде и в смесях с бензином, бензолом и толуолом температура рабочей смеси понижается вследствие высокой скрытой теплоты испарения спиртов.
Ниже указаны величины скрытой теплоты испарения топлива, применяемого для двигателей спортивных мотоциклов.
Скрытая теп-
лота испарения
в кал/кг
Бензин
Бензол
Толуол
Ацетон
Этиловый спирт
Метиловый спирт
При использовании спиртов мощность увеличивается приблизительно на 20% вследствие уменьшения температуры смеси и возможности работы двигателя на очень высокой степени сжатия без детонации.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
Видео:Как НИЗКИЕ обороты УБИВАЮТ двигательСкачать
🌟 Видео
Как за 5 секунд узнать обороты электродвигателя без таблички без разборкиСкачать
Регулировка холостых оборотов коленчатого вала КамАЗ 6520 с двигателем КамАЗ 740....63. Евро 3Скачать
Не хватает мощности двигателя, что делать? Есть выход!Скачать
Какие обороты плохо влияют на двигатель? Высокие или Низкие?Скачать
Влияние R/S и веса поршневой на мощность двигателяСкачать
Строение и функция коленчатого вала (3D анимация) - Motorservice GroupСкачать
как увеличить мощность в два раза за пять минут #секреты #приколы #своимирукамиСкачать
Секретный способ увеличения мощности двигателя - 300 л.с. с ЖИГА Мотора #shortsСкачать
Количество оборотов коленчатого и распределительного валаСкачать
Что убивает мотор На каких оборотах ездитьСкачать
Обороты Двигателя! Зачем Крутить Мотор!Скачать
ОТПИЛИЛИ ЩЁКИ КОЛЕНВАЛА как БУДЕТ РАБОТАТЬ ДВИГАТЕЛЬ???Скачать
Что такое "Перекрутить двигатель" и чем это черевато? - Пояснение физ процессовСкачать
Повышенные обороты на прогретом двигателеСкачать