Меня зовут Виктор Андреевич, — я репетитор по математике . Последние десять лет я занимаюсь только преподаванием. Я не «натаскиваю» своих учеников. Моя цель — помочь ребенку понять предмет, научить его мыслить, а не применять шаблоны, передать свои знания, а не просто «добиться результата».
Предусмотрен дистанционный формат занятий (через Skype или Zoom). На первом же уроке оцениваем уровень подготовки ребенка. Если ребенка устраивает моя подача материала, то принимаем решение о дальнейшем сотрудничестве — составляем расписание и индивидуальный план работы. После каждого занятия дается домашнее задание — оно всегда обязательно для выполнения. [в личном кабинете родители могут контролировать успеваемость ребенка]
Стоимость занятий
Набор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат.
Видеокурсы подготовки к ЕГЭ-2021
Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания.
Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий.
Видео:Видеоурок по математике "Цилиндр"Скачать
Группа Вконтакте
В группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников.
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Преимущества
Педагогический стаж
Сейчас существует много сайтов, где вам подберут репетитора по цене/опыту/возрасту, в зависимости от желаний. Но большинство анкет там принадлежат либо студентам, либо школьным учителям. Для них репетиторство — дополнительный временный заработок, из этого формируется отношение к деятельности. У студентов нет опыта и желания совершенствоваться, у школьных учителей — нет времени и сил после основной деятельности. Я занимаюсь только репетиторством с 2010 года. Все свои силы и знания трачу на совершенствование только в этой области.
Собственная методика
За время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе.
Гарантированный результат
За время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена.
Индивидуальная работа
Все дети разные, поэтому способ и форма объяснения корректируются в зависимости от уровня понимания ребенком предмета. Индивидуальная работа с каждым учеником — каждому даются отдельные задания, теоретический материал.
Читайте также: Чем можно заклеить трещину в блоке цилиндров
Видео:Объём цилиндраСкачать
В конус вписан цилиндр объема 9 плоскость верхнего основания
В прямой круговой конус вписан шар. Отношение площади полной поверхности конуса к площади поверхности шара равно 49 : 12. Найти отношение удвоенного объем шара к объему конуса.
Пусть — осевое сечение конуса, О — центр шара, вписанного в этот конус, E — точка касания шара и конуса.
Из условия задачи следует, что — равнобедренный (AB = BC). Очевидно, что точка О лежит на биссектрисе которая также служит медианой и высотой
l — образующая конуса (отрезки AB и BC); R — радиус основания конуса (отрезок AD); H — высота конуса (отрезок BD); r — радиус шара (отрезок OE); — площадь сферы (площадь поверхности шара); — полная поверхность конуса; — объем шара; — объем конуса.
Очевидно, что Рассмотрим прямоугольные треугольники BEO и BDA с общим острым углом OBE. Отсюда: т. е.
Найдем отношение объема шара к объему конуса:
Теперь найдем отношение площади поверхности шара к площади полной поверхности конуса:
Однако, оказалось, что Значит,
Поскольку нам требуется найти отношение удвоенного объема шара к объему заданного конуса, то таким отношением будет 24 : 49.
Объём конуса, вписанного в правильную четырёхугольную пирамиду, равен 3. Найдите объём конуса, описанного около этой пирамиды.
Объемы данных конусов соотносятся как площади их оснований, и, следовательно, как квадраты их диаметров. Диаметр вписанного конуса равен стороне квадрата, диаметр описанного — диагонали квадрата, длина которой равна длины стороны. Поэтому объем описанного конуса в 2 раза больше объема вписанного. Значит, объем конуса, описанного около этой пирамиды, равен 6.
В конус вписан цилиндр так, что нижнее основание цилиндра лежит на основании конуса, а окружность верхнего основания принадлежит боковой поверхности конуса. Объем конуса равен 72.
а) Найти объем цилиндра, верхнее основание которого делит высоту конуса пополам.
б) Найти наибольший объем вписанного цилиндра.
а) Обозначим радиус основания конуса за высоту за за и — радиус и высоту цилиндра. Проведем осевое сечение конуса. В нем верхнее основание цилиндра будет средней линией треугольника, поэтому радиус цилиндра вдвое меньше радиуса конуса. Высота цилиндра — тоже половина высоты конуса. Объем конуса равен:
б) В осевом сечении образуются два подобных треугольник (см. рисунок). Значит,
Значит, Объем цилиндра равен:
Нужно максимизировать Возьмем производную по
Крайние значения можно не проверять ( или там объем равен нулю). Имеем:
Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?
Объемы данных конусов соотносятся как площади их оснований, и, следовательно, как квадраты их диаметров. Диаметр вписанного конуса равен стороне квадрата, диаметр описанного — диагонали квадрата, длина которой равна длины стороны. Поэтому объем описанного конуса в 2 раза больше объема вписанного.
Не понял про корень из двух. Откуда он взялся?
У квадрата со стороной диагональ равна , в этом можно убедиться с помощью теоремы Пифагора
Объём конуса, описанного около правильной четырёхугольной пирамиды, равен 76. Найдите объём конуса, вписанного в эту пирамиду.
Читайте также: Найдите объем цилиндра вписанного в единичный куб
Объемы данных конусов соотносятся как площади их оснований, и, следовательно, как квадраты их диаметров. Диаметр вписанного конуса равен стороне квадрата, диаметр описанного – диагонали квадрата, длина которой равна длины стороны. Поэтому объем вписанного конуса в 2 раза меньше объема описанного, то есть равен 38.
Конус и цилиндр имеют общее основание и общую высоту (конус вписан в цилиндр). Вычислите объём цилиндра, если объём конуса равен 5.
а конус и цилиндр имеют общую высоту и основание, имеем:
Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара равен 28. Найдите объем конуса.
Запишем формулу для объёма шара:
Объём конуса в 4 раза меньше:
Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем конуса равен 6. Найдите объем шара.
Из формул для объема конуса и шара получаем:
Конус и цилиндр имеют общее основание и общую высоту (конус вписан в цилиндр). Вычислите объём цилиндра, если объём конуса равен 27.
а конус и цилиндр имеют общую высоту и основание, имеем:
Конус и цилиндр имеют общее основание и общую высоту (конус вписан в цилиндр). Вычислите объём цилиндра, если объём конуса равен 21.
а конус и цилиндр имеют общую высоту и основание, имеем:
Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара равен 116. Найдите объем конуса.
Запишем формулу для объёма шара:
Объём конуса в 4 раза меньше:
Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем конуса равен 2. Найдите объем шара.
Из формул для объема конуса и шара получаем:
Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 156. Найдите объём конуса.
Запишем формулу для объёма шара:
Объём конуса в 4 раза меньше:
Здравствуйте, почему в формуле объёма конуса вместо высоты написали радиус ведь кончик конуса не достаёт внутреннюю поверхность шара?
Конус вписан в шар, поэтому его вершина принадлежит поверхности этого шара.
Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 112. Найдите объём конуса.
Запишем формулу для объёма шара:
Объём конуса в 4 раза меньше:
Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём конуса равен 47. Найдите объём шара.
Из формул для объема конуса и шара получаем:
Плоскость, проведенная через центр шара, вписанного в конус, параллельна плоскости основания конуса, делит объем конуса пополам. Найти угол при вершине осевого сечения конуса.
Сделаем выносной чертеж осевого сечения конуса.
Выпишем объемы исходного конуса и отсеченного конуса (соответствует буквам MBN):
Введем обозначение ∠OBN = α. Из прямоугольного треугольника BHC имеем откуда ; из треугольника BON имеем откуда
Так как то получим:
Теперь: OH = OK = r — радиус вписанной сферы.
Из прямоугольного треугольника BKO получим:
В конус, радиус основания которого равен 3, вписан шар радиуса 1,5.
Читайте также: Расточка цилиндров с зеркалом
а) Изобразите осевое сечение комбинации этих тел.
б) Найдите отношение площади полной поверхности конуса к площади поверхности шара.
а) Осевым сечением является равнобедренный треугольник боковые стороны которого являются образующими конуса, а основанием — его диаметр, и вписанная в треугольник окружность, радиус которой равен радиусу шара (см. рис.).
б) Введём обозначения, как показано на рисунке. Пусть — центр вписанной окружности, отрезок — биссектриса угла и пусть имеем:
Тогда Для площадей поверхностей конуса и шара имеем: Тем самым, искомое отношение равно или 8:3.
Если записать 2.67, то это будет ошибкой?
Естественно. Это ж другое число.
В конус, радиус основания которого равен 6, вписан шар радиуса 3.
а) Изобразите осевое сечение комбинации этих тел.
б) Найдите отношение площади полной поверхности конуса к площади поверхности шара.
а) Осевым сечением является равнобедренный треугольник боковые стороны которого являются образующими конуса, а основанием — его диаметр, и вписанная в треугольник окружность, радиус которой равен радиусу шара (см. рис.).
б) Введём обозначения, как показано на рисунке. Пусть — центр вписанной окружности, отрезок — биссектриса угла и пусть имеем:
Тогда Для площадей поверхностей конуса и шара имеем: Тем самым, искомое отношение равно или 8:3.
Аналоги к заданию № 505566: 511411 Все
В усеченный конус, образующая которого наклонена под углом 45 градусов к нижнему основанию, вписан шар. Найти отношение величины боковой поверхности усеченного конуса к величине поверхности шара.
Рассмотрим осевое сечение конуса. В нем получится трапеция ABCD, в которую вписана окружность. Проведем высоты BG и CH из точек B и C. Тогда
кроме того из описанности
Радиус окружности (он же радиус вписанной в конус сферы) равен Тогда площадь сферы составляет
Достроим теперь усеченный конус до конуса. Трапеция при этом достроится до треугольника, он будет прямоугольный и равнобедренный, поэтому его катеты составят Это образующая конуса. Из нее
Поэтому площадь боковой поверхности усеченного конуса будет
Поэтому искомое отношение равно 2.
Цилиндр и конус имеют общее основание, вершина конуса является центром другого основания цилиндра. Каждая образующая конуса наклонена к плоскости основания под углом 30°.
а) Докажите, что площади боковых поверхностей цилиндра и конуса равны
б) Найдите радиус сферы, касающейся боковых поверхностей цилиндра и конуса, а так
же одного из оснований цилиндра, если известно, что объем конуса равен
а) Пусть радиус основания цилиндра равен а высота Тогда тангенс угла наклона образующей есть откуда и образующая конуса равна Вычислим теперь площади боковой поверхности цилиндра и конуса. Это и что и требовалось доказать.
б) Рассмотрим сечение цилиндра и конуса осевой плоскость, проходящей через центр сферы. Все точки касания будут лежать в этой плоскости. В сечении получим окружность, вписанную в прямоугольный треугольник со сторонами поэтому ее радиус равен
C другой стороны, как мы знаем,
откуда поэтому искомый радиус равен 1.
📹 Видео
Конус. 11 класс.Скачать
Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара равен 188... (ЕГЭ, проф.)Скачать
ЕГЭ-2014 Задание В-10. Урок №280 Конус вписан в цилиндр...Стереометрия.Скачать
Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)Скачать
Стереометрия. ЕГЭ. Конус вписан в шар. Радиус основания конуса равен радиусу шараСкачать
Стереометрия (часть 1). № 3 | Профиль. №11 и 13 | База. Все типы от ФИПИ | ЕГЭ 2024. МатематикаСкачать
Задание 5. ЕГЭ профиль. КОМБИНАЦИИ ТЕЛ.Скачать
Геометрия 9 класс (Урок№34 - Тела и поверхности вращения.)Скачать
Объем цилиндра.Скачать
9 класс, 41 урок, ЦилиндрСкачать
Реальный ЕГЭ-2023, задача 2. Конус вписан в шар. Радиус основания конуса равен радиусу шара...Скачать
Цилиндр, конус, шар, 6 классСкачать
11 класс, 15 урок, Площадь поверхности цилиндраСкачать
РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать
ЦИЛИНДР. КОНУС. ШАР.Скачать
11 класс, 32 урок, Объем цилиндраСкачать