- В основании прямого кругового цилиндра проведена хорда
- В основании прямого кругового цилиндра проведена хорда
- В основании прямого кругового цилиндра проведена хорда
- Решение задачи 14. Вариант 219
- В основании прямого кругового цилиндра проведена хорда
- В основании прямого кругового цилиндра проведена хорда
- В основании прямого кругового цилиндра проведена хорда
- 🔍 Видео
Видео:Задание 5 | Математика ЕГЭ 2021 | Стереометрия | Онлайн курс по математикеСкачать
В основании прямого кругового цилиндра проведена хорда
В одном основании прямого кругового цилиндра с высотой 12 и радиусом основания 6 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
а) Докажите, что диагонали этого сечения равны между собой.
б) Найдите объём пирамиды CABNM.
а) Так сечение перпендикулярно прямой CD, то оно перпендикулярно основанию цилиндра содержащему эту прямую. Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Диагонали прямоугольника равны, что и требовалось доказать.
б) Площадь прямоугольника ABNM равна Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен
Видео:Разбор Варианта ЕГЭ Ларина №219 (№1-15).Скачать
В основании прямого кругового цилиндра проведена хорда
В одном основании прямого кругового цилиндра с высотой 9 и радиусом основания 2 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
а) Докажите, что диагонали этого сечения равны между собой.
б) Найдите объём пирамиды CABNM.
а) Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Отрезки AN и BM равны как диагонали прямоугольника, что и требовалось доказать.
б) Площадь прямоугольника ABNM равна 9 · 2 = 18. Пусть H — точка пересечения отрезков NM и CD. Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен:
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Видео:Задание 14 ЕГЭ по математикеСкачать
В основании прямого кругового цилиндра проведена хорда
В одном основании прямого кругового цилиндра с высотой 12 и радиусом основания 6 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
а) Докажите, что диагонали этого сечения равны между собой.
б) Найдите объём пирамиды CABNM.
а) Так сечение перпендикулярно прямой CD, то оно перпендикулярно основанию цилиндра содержащему эту прямую. Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Диагонали прямоугольника равны, что и требовалось доказать.
б) Площадь прямоугольника ABNM равна Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Видео:Подготовка к ЕГЭ. Математика. Занятие 13. Стереометрия. Часть 3Скачать
Решение задачи 14. Вариант 219
В одном основании прямого кругового цилиндра с высотой 12 и радиусом
основания 6 проведена хорда AB, равная радиусу основания, а в другом его основании
проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее
через прямую AB перпендикулярно прямой CD так, что точка C и центр основания
цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
а) Докажите, что диагонали этого сечения равны между собой.
б) Найдите объём пирамиды CABNM.
Так как плоскость сечения пересекает две параллельные плоскости, то линии пересечения плоскостей будут параллельными, т.е AB параллельна MN.
Пункт А, на самом деле очень простой. Прямая CD перпендикулярна плоскости ABNM
\( (DMC)⊥(MNAB) \) — т.к Если плоскость проходит через прямую, перпендикулярную другой плоскости, то такие плоскости взаимно перпендикулярны.
\( AB=MN \) — это в принципе и так очевидно, т.к MN — проекция AB на плоскость основания, но можно доказать строго с помощью равенства соответствующих треугольников.
\( AN \) и \( BN \) — образующие цилиндра, значит они перпендикулярны плоскостям основания, в том числе прямой AB
\( ABNM \) — прямоугольник. А по свойству прямоугольника : его диагонали равны.
По условию \( DC⊥AB \) и еще \( DC⊥AN \) значит \( DC⊥(ABNM) \)
Вывод: \( CH \) — высота пирамиды
треугольник \( MON \) — равносторонний, так как по условию сторона равна радиусу.
\( OH=\frac > =3\sqrt \) — как высота правильного треугольника.
Видео:Стереометрия на ЕГЭ. Вебинар | МатематикаСкачать
В основании прямого кругового цилиндра проведена хорда
В одном основании прямого кругового цилиндра с высотой 3 и радиусом основания 8 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
а) Докажите, что диагонали этого сечения равны между собой.
б) Найдите объём пирамиды CABNM.
а) Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Отрезки AN и BM равны как диагонали прямоугольника, что и требовалось доказать.
б) Площадь прямоугольника ABNM равна 3 · 8 = 24. Пусть H — точка пересечения отрезков NM и CD. Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен:
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
В основании прямого кругового цилиндра проведена хорда
В одном основании прямого кругового цилиндра с высотой 12 и радиусом основания 6 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
а) Докажите, что диагонали этого сечения равны между собой.
б) Найдите объём пирамиды CABNM.
а) Так сечение перпендикулярно прямой CD, то оно перпендикулярно основанию цилиндра содержащему эту прямую. Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Диагонали прямоугольника равны, что и требовалось доказать.
б) Площадь прямоугольника ABNM равна Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Видео:ЗАДАНИЕ 2 ЕГЭ (ПРОФИЛЬ). ЦИЛИНДР.Скачать
В основании прямого кругового цилиндра проведена хорда
В одном основании прямого кругового цилиндра с высотой 3 и радиусом основания 8 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
а) Докажите, что диагонали этого сечения равны между собой.
б) Найдите объём пирамиды CABNM.
а) Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Отрезки AN и BM равны как диагонали прямоугольника, что и требовалось доказать.
б) Площадь прямоугольника ABNM равна 3 · 8 = 24. Пусть H — точка пересечения отрезков NM и CD. Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен:
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
🔍 Видео
Разбор Варианта ЕГЭ Ларина #219 (№1-15)Скачать
Профильный ЕГЭ 2024. Вся стереометрия первой части. Задача 3. МиниСИРОПСкачать
Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭСкачать
14-я задача ЕГЭ по математике. Видеоурок №2Скачать
Теорема о диаметре, перпендикулярном хордеСкачать
Решение задач на конусСкачать
№13. Цилиндр на ЕГЭ | ЕГЭ с ДетекторомСкачать
Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)Скачать
11 класс, 14 урок, Понятие цилиндраСкачать
Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)Скачать
Планиметрия с нуля и до уровня ЕГЭ 2024 за 4 часа | Вся теория по №1,17 | Математика профильСкачать
ВСЯ ТЕОРИЯ И ВСЕ ЗАДАЧИ по стереометрии для №14 за 3 часа | ЕГЭ 2024 по математикеСкачать
Прокачиваем задачу 14. Профильный ЕГЭСкачать