В правильную треугольную призму вписан цилиндр найдите объем призмы

Авто помощник

Видео:#130. Задание 8: комбинация телСкачать

#130. Задание 8: комбинация тел

Цилиндры, вписанные в призмы. Свойства призмы, описанной около цилиндра

В правильную треугольную призму вписан цилиндр найдите объем призмы

В правильную треугольную призму вписан цилиндр найдите объем призмы

Определение 2. Если цилиндр вписан в призму, то призму называют описанной около цилиндра.

Прежде, чем перейти к вопросу о том, в какую же призму можно вписать цилиндр, докажем следующее свойство призм.

Утверждение 1. Если в основания призмы можно вписать окружности, то отрезок, соединяющий центры вписанных окружностей, будет параллелелен и равен боковому ребру призмы.

В правильную треугольную призму вписан цилиндр найдите объем призмы

В правильную треугольную призму вписан цилиндр найдите объем призмы

Рассуждая аналогичным образом, заключаем, что точка O’ равноудалена от всех прямых, на которых лежат ребра верхнего основания A’1A’2, A’2A’3, . , An – 1An , а поскольку O’ лежит в плоскости верхнего основания, то точка O’ является центром вписанной в многоугольник A’1A’2 . A’n окружности.

В силу того, что прямые OO’ и A1A’1 параллельны по построению, а прямые OA1 и O’A’ параллельны как линии пересечения двух параллельных плоскостей третьей плоскостью, замечаем, что четырехугольник OO’A1A’1 является параллелограммом, откуда вытекает равенство: OO’ = A1A’1 .

Теорема. В призму можно вписать цилиндр тогда и только тогда, когда выполнены следующие два условия:

  1. Призма является прямой призмой;
  2. В основания призмы можно вписать окружности.

Доказательство. Докажем сначала, что если в n – угольную призму вписан цилиндр, то оба условия теоремы выполнены.

Действительно, выполнение условия 2 следует непосредственно из определения цилиндра, вписанного в призму. Докажем, что выполняется и условие 1, т.е. докажем, что описанная около цилиндра призма является прямой призмой.

С этой целью рассмотрим ось цилиндра OO’ , соединяющую центры окружностей, вписанных в нижнее и верхнее основания призмы (рис. 3).

В правильную треугольную призму вписан цилиндр найдите объем призмы

В правильную треугольную призму вписан цилиндр найдите объем призмы

Согласно утверждению 1 отрезок OO’ параллелен боковым ребрам призмы. Поскольку ось цилиндра OO’ перпендикулярна к плоскостям его оснований, то и боковые ребра призмы также перпендикулярны к плоскостям оснований, то есть призма является прямой призмой.

Таким образом, мы доказали, что, если призма описана около цилиндра, то оба условия теоремы выполнены.

Теперь рассмотрим прямую n – угольную призму высоты h, в основания которой можно вписать окружности, и докажем, что в такую призму можно вписать цилиндр.

Читайте также: Цилиндры минераловатные в краснодаре

Обозначим буквой O центр окружности радиуса r, вписанной в нижнее основание призмы, а символом O’ обозначим центр окружности, вписанной в верхнее основание призмы (рис. 4).

В правильную треугольную призму вписан цилиндр найдите объем призмы

В правильную треугольную призму вписан цилиндр найдите объем призмы

Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы вписанных в них окружностей будут равны. Согласно утверждению 1 отрезок OO’ параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы h. Значит, и отрезок OO’ перпендикулярен плоскости основания призмы и равен h.

Цилиндр с осью OO’ , радиусом r и высотой h и будет вписан в исходную призму.

Доказательство теоремы завершено.

Следствие 1 . Высота призмы, описанной около цилиндра, равна высоте цилиндра.

Следствие 2. В любую прямую треугольную призму можно вписать цилиндр.

Справедливость этого утверждения вытекает из того факта, что в любой треугольник можно вписать окружность.

Следствие 3. В любую правильную n – угольную призму можно вписать цилиндр.

Для доказательства этого следствия достаточно заметить, правильная призма является прямой призмой. Основаниями правильной призмы являются правильные многоугольники, а в любой правильный n – угольник можно вписать окружность.

Видео:11 класс. Контрольная №4 (из 6). Тема: Объем призмы, цилиндра и конуса. Решение с советами! :)Скачать

11 класс. Контрольная №4 (из 6). Тема: Объем призмы, цилиндра и конуса. Решение с советами! :)

Отношение объемов цилиндра и описанной около него правильной n — угольной призмы

Задача. Найти отношение объемов цилиндра и описанной около него правильной n — угольной призмы.

Решение. Поскольку и объем цилиндра, и объем призмы объем призмы вычисляются по формуле

а высота цилиндра равна высоте описанной около него призмы, то для объемов цилиндра и описанной около него правильной n — угольной призмы справедливо равенство

Следствие 4. Отношение объема цилиндра к объему описанной около него правильной треугольной призмы правильной треугольной призмы равно

Следствие 5. Отношение объема цилиндра к объему описанной около него правильной четырехугольной призмы правильной четырехугольной призмы равно

Следствие 6. Отношение объема цилиндра к объему описанной около него правильной шестиугольной призмы равно

Видео:Цилиндр вписан в правильную четырехугольную призмуСкачать

Цилиндр вписан в правильную четырехугольную призму

Задание 9

Найдите объем правильной треугольной призмы, вписанной в цилиндр, радиус основания которого равен \(2\sqrt 3\) , а высота равна \(3\sqrt 3\) .

Объем призмы равен произведению площади основания на высоту \(V=S_oH.\) Высота известна из условия и равна \(3\sqrt 3\) . Осталось найти площадь основания.

Так как призма правильная, то в основании лежит правильный треугольник. Площадь правильного треугольника можно найти через радиус описанной окружности \(S_o= R^2.\)

Тогда искомый объем равен \(V= (2\sqrt 3)^2*3\sqrt 3=81.\)

P.S. Можно не запоминать формулу площади правильного треугольника, так как здесь довольно просто можно вычислить длину стороны, зная радиус описанной окружности. Центр описанной окружности лежит в точке пересечения медиан. Медианы делятся точкой пересечения в отношении 2 к 1, считая от вершины. Из этих соображений находим длину медианы, а затем длину стороны и считаем площадь треугольника.

Читайте также: Цилиндр с губкой бобом

Пусть m — длина медианы (а в правильном треугольнике это высота и биссектрисса), тогда по определению синуса угла (а все углы в правильном треугольнике равны 60 градусам): \(sin60^o=m/a \Rightarrow a=m/sin60^o= m.\)

Так как медианы точкой пересечения делятся в отношении 2 к 1, считая от вершины, то \(R= m \Rightarrow m= R.\) Тогда \(a=\sqrt3R=6.\)

Площадь треуольника в основании равна \(S= a*a*sin60^o=9\sqrt 3\) , а тогда \(V=9\sqrt3*3\sqrt3=27*3=81.\)

Видео:🔴 Сторона основания правильной треугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Сторона основания правильной треугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

В правильную треугольную призму вписан цилиндр найдите объем призмы

В цилиндр вписана правильная треугольная призма Найдите. объем призмы, если обьем цилиндра равен 8 корней из 3х

Ответы и объяснения 1

В правильную треугольную призму вписан цилиндр найдите объем призмы

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.
  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Математика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Решение №2305 Цилиндр вписан в правильную четырёхугольную призму. Радиус основания и высота цилиндра равны 3.

В правильную треугольную призму вписан цилиндр найдите объем призмы

Цилиндр вписан в правильную четырёхугольную призму. Радиус основания и высота цилиндра равны 3. Найдите площадь боковой поверхности призмы.

Источник: Ященко ЕГЭ 2022 (36 вар)

Правильной четырёхугольной призмой – называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками.
Площадь боковой поверхности данной призмы – это площадь 4-х равных прямоугольников.
Длина прямоугольника равна диаметру цилиндра, ширина прямоугольника равна высоте цилиндра.

В правильную треугольную призму вписан цилиндр найдите объем призмы

Найдём площадь боковой поверхности призмы:

Sбок. поверх. = 4·Sпрямоугольника = 4· h ·( r + r ) = 4·3·(3 + 3) = 4·3·6 = 72

Видео:07 Стереометрия на ЕГЭ по математике. Призма вписана в цилиндр.Скачать

07 Стереометрия на ЕГЭ по математике. Призма вписана в цилиндр.

В правильную треугольную призму вписан цилиндр найдите объем призмы

В цилиндр вписана правильная треугольная призма Найдите. объем призмы, если обьем цилиндра равен 8 корней из 3х

Ответы и объяснения 1

В правильную треугольную призму вписан цилиндр найдите объем призмы

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.
  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.

Читайте также: Ремкомплект главного тормозного цилиндра соболь

Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Математика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

Видео:Найдите объем треугольной призмыСкачать

Найдите объем треугольной призмы

В правильную треугольную призму вписан цилиндр найдите объем призмы

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.

В куб вписан шар радиуса 1. Найдите объем куба.

В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

В основании прямой призмы лежит квадрат со стороной 2. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 25. Найдите объём цилиндра.

Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,5 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.

Цилиндр и конус имеют общие основание и высоту. Найдите объем конуса, если объем цилиндра равен 150.

Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.

Конус описан около правильной четырехугольной пирамиды со стороной основания 4 и высотой 6. Найдите его объем, деленный на

Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

В куб с ребром 3 вписан шар. Найдите объем этого шара, деленный на

Около куба с ребром описан шар. Найдите объем этого шара, деленный на

Вершина A куба с ребром 1,6 является центром сферы, проходящей через точку A1. Найдите площадь S части сферы, содержащейся внутри куба. В ответе запишите величину

📹 Видео

В сосуд, имеющий форму правильной треугольной призмыСкачать

В сосуд, имеющий форму правильной треугольной призмы

Задача 4.4 Объём n -угольной призмыСкачать

Задача 4.4 Объём n -угольной призмы

Объемы прямой призмы и цилиндраСкачать

Объемы прямой призмы и цилиндра

12 Стереометрия на ЕГЭ по математике. Задача на вычисление объема призмыСкачать

12 Стереометрия на ЕГЭ по математике. Задача на вычисление объема призмы

11 класс, 31 урок, Объем прямой призмыСкачать

11 класс, 31 урок, Объем прямой призмы

Объём цилиндраСкачать

Объём цилиндра

Призма и цилиндр. Практическая часть. 11 класс.Скачать

Призма и цилиндр. Практическая часть. 11 класс.

#131. Задание 8: комбинация телСкачать

#131. Задание 8: комбинация тел

xi408 Комбинации с цилиндромСкачать

xi408 Комбинации с цилиндром

ЕГЭ 2017 по Математике. Призма вписана в цилиндр Задание 8 #4Скачать

ЕГЭ 2017 по Математике. Призма вписана в цилиндр Задание 8 #4

ЕГЭ 2022 математика задача 4 вариант 2Скачать

ЕГЭ 2022 математика задача 4 вариант 2

Стереометрия. В правильную четырехугольную призму вписан круглый цилиндра. Найдите высоту цилиндраСкачать

Стереометрия. В правильную четырехугольную призму вписан круглый цилиндра. Найдите высоту цилиндра

ЕГЭ стереометрия Вариант 17 задача 2Скачать

ЕГЭ стереометрия  Вариант 17 задача 2
Поделиться или сохранить к себе:
Технарь знаток