В правильную треугольную призму вписан цилиндр найдите отношение объема

Авто помощник

Видео:07 Стереометрия на ЕГЭ по математике. Призма вписана в цилиндр.Скачать

07 Стереометрия на ЕГЭ по математике. Призма вписана в цилиндр.

671. В цилиндр вписана правильная n-угольная призма. Найдите отношение объемов призмы и цилиндра, если: а) n = 3; б) n = 4; в) n=6; г) n = 8; д) n произвольное целое число.

а) n=3, ΔАВС — правильный. Обозначим сторону ΔАВС равной х, следовательно,

В правильную треугольную призму вписан цилиндр найдите отношение объемаВ правильную треугольную призму вписан цилиндр найдите отношение объемаВ правильную треугольную призму вписан цилиндр найдите отношение объемаВ правильную треугольную призму вписан цилиндр найдите отношение объема В правильную треугольную призму вписан цилиндр найдите отношение объема

б) n=4, ABCD — квадрат. Обозначим сторону квадрата равной х.

В правильную треугольную призму вписан цилиндр найдите отношение объемаВ правильную треугольную призму вписан цилиндр найдите отношение объемаВ правильную треугольную призму вписан цилиндр найдите отношение объемаВ правильную треугольную призму вписан цилиндр найдите отношение объема В правильную треугольную призму вписан цилиндр найдите отношение объема

в) n=6. Обозначим сторону 6-угольника за х, следовательно, r=х.

В правильную треугольную призму вписан цилиндр найдите отношение объемаВ правильную треугольную призму вписан цилиндр найдите отношение объемаВ правильную треугольную призму вписан цилиндр найдите отношение объема В правильную треугольную призму вписан цилиндр найдите отношение объема

г) обозначим сторону правильного вписанного n-угольника за х. Следовательно, радиус описанной окружности равен

В правильную треугольную призму вписан цилиндр найдите отношение объема В правильную треугольную призму вписан цилиндр найдите отношение объема

(Правильный n-угольник разбивается радиусами, проведенными из центра, на n одинаковых треугольников; все треугольники равновелики)

В правильную треугольную призму вписан цилиндр найдите отношение объема

В правильную треугольную призму вписан цилиндр найдите отношение объема

Решебник по геометрии за 10 класс (Л.С.Атанасян, 2001 год),
задача №671
к главе «Глава VII. Объемы тел. § 2. Объём прямой призмы и цилиндра».

Видео:В сосуд, имеющий форму правильной треугольной призмыСкачать

В сосуд, имеющий форму правильной треугольной призмы

Цилиндры, вписанные в призмы

Видео:11 класс. Контрольная №4 (из 6). Тема: Объем призмы, цилиндра и конуса. Решение с советами! :)Скачать

11 класс. Контрольная №4 (из 6). Тема: Объем призмы, цилиндра и конуса. Решение с советами! :)

Цилиндры, вписанные в призмы. Свойства призмы, описанной около цилиндра

В правильную треугольную призму вписан цилиндр найдите отношение объема

В правильную треугольную призму вписан цилиндр найдите отношение объема

Определение 2. Если цилиндр вписан в призму, то призму называют описанной около цилиндра.

Прежде, чем перейти к вопросу о том, в какую же призму можно вписать цилиндр, докажем следующее свойство призм.

Утверждение 1. Если в основания призмы можно вписать окружности, то отрезок, соединяющий центры вписанных окружностей, будет параллелелен и равен боковому ребру призмы.

В правильную треугольную призму вписан цилиндр найдите отношение объема

В правильную треугольную призму вписан цилиндр найдите отношение объема

Рассуждая аналогичным образом, заключаем, что точка O’ равноудалена от всех прямых, на которых лежат ребра верхнего основания A’1A’2, A’2A’3, . , An – 1An , а поскольку O’ лежит в плоскости верхнего основания, то точка O’ является центром вписанной в многоугольник A’1A’2 . A’n окружности.

В силу того, что прямые OO’ и A1A’1 параллельны по построению, а прямые OA1 и O’A’ параллельны как линии пересечения двух параллельных плоскостей третьей плоскостью, замечаем, что четырехугольник OO’A1A’1 является параллелограммом, откуда вытекает равенство: OO’ = A1A’1 .

Теорема. В призму можно вписать цилиндр тогда и только тогда, когда выполнены следующие два условия:

  1. Призма является прямой призмой;
  2. В основания призмы можно вписать окружности.

Доказательство. Докажем сначала, что если в n – угольную призму вписан цилиндр, то оба условия теоремы выполнены.

Читайте также: Модули цилиндра с сечениями

Действительно, выполнение условия 2 следует непосредственно из определения цилиндра, вписанного в призму. Докажем, что выполняется и условие 1, т.е. докажем, что описанная около цилиндра призма является прямой призмой.

С этой целью рассмотрим ось цилиндра OO’ , соединяющую центры окружностей, вписанных в нижнее и верхнее основания призмы (рис. 3).

В правильную треугольную призму вписан цилиндр найдите отношение объема

В правильную треугольную призму вписан цилиндр найдите отношение объема

Согласно утверждению 1 отрезок OO’ параллелен боковым ребрам призмы. Поскольку ось цилиндра OO’ перпендикулярна к плоскостям его оснований, то и боковые ребра призмы также перпендикулярны к плоскостям оснований, то есть призма является прямой призмой.

Таким образом, мы доказали, что, если призма описана около цилиндра, то оба условия теоремы выполнены.

Теперь рассмотрим прямую n – угольную призму высоты h, в основания которой можно вписать окружности, и докажем, что в такую призму можно вписать цилиндр.

Обозначим буквой O центр окружности радиуса r, вписанной в нижнее основание призмы, а символом O’ обозначим центр окружности, вписанной в верхнее основание призмы (рис. 4).

В правильную треугольную призму вписан цилиндр найдите отношение объема

В правильную треугольную призму вписан цилиндр найдите отношение объема

Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы вписанных в них окружностей будут равны. Согласно утверждению 1 отрезок OO’ параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы h. Значит, и отрезок OO’ перпендикулярен плоскости основания призмы и равен h.

Цилиндр с осью OO’ , радиусом r и высотой h и будет вписан в исходную призму.

Доказательство теоремы завершено.

Следствие 1 . Высота призмы, описанной около цилиндра, равна высоте цилиндра.

Следствие 2. В любую прямую треугольную призму можно вписать цилиндр.

Справедливость этого утверждения вытекает из того факта, что в любой треугольник можно вписать окружность.

Следствие 3. В любую правильную n – угольную призму можно вписать цилиндр.

Для доказательства этого следствия достаточно заметить, правильная призма является прямой призмой. Основаниями правильной призмы являются правильные многоугольники, а в любой правильный n – угольник можно вписать окружность.

Видео:ЕГЭ 2022 математика задача 4 вариант 2Скачать

ЕГЭ 2022 математика задача 4 вариант 2

Отношение объемов цилиндра и описанной около него правильной n — угольной призмы

Задача. Найти отношение объемов цилиндра и описанной около него правильной n — угольной призмы.

Решение. Поскольку и объем цилиндра, и объем призмы объем призмы вычисляются по формуле

а высота цилиндра равна высоте описанной около него призмы, то для объемов цилиндра и описанной около него правильной n — угольной призмы справедливо равенство

Следствие 4. Отношение объема цилиндра к объему описанной около него правильной треугольной призмы правильной треугольной призмы равно

Читайте также: Момент затяжки крышки блока цилиндров

Следствие 5. Отношение объема цилиндра к объему описанной около него правильной четырехугольной призмы правильной четырехугольной призмы равно

Следствие 6. Отношение объема цилиндра к объему описанной около него правильной шестиугольной призмы равно

Видео:12 Стереометрия на ЕГЭ по математике. Задача на вычисление объема призмыСкачать

12 Стереометрия на ЕГЭ по математике. Задача на вычисление объема призмы

Узнать ещё

Знание — сила. Познавательная информация

Видео:Все № 3 из Ященко 2024 (36 задач, стереометрия)Скачать

Все № 3 из Ященко 2024 (36 задач, стереометрия)

Цилиндр вписан в призму

Призма описана около цилиндра, если ее основания — многоугольники, описанные около оснований цилиндра. Соответственно, цилиндр вписан в призму.

В правильную треугольную призму вписан цилиндр найдите отношение объемаВ правильную треугольную призму вписан цилиндр найдите отношение объема

Цилиндр можно вписать в призму, если в основание призмы можно вписать окружность. Радиус вписанной окружности равен радиусу цилиндра. Высоты цилиндра и призмы равны. В школьном курсе изучается только прямой круговой цилиндр, соответственно, цилиндр в этом случае вписан в прямую призму.

Боковые грани описанной около цилиндра призмы являются касательными плоскостями к боковой поверхности цилиндра.

Найдем отношение объема призмы к объему вписанного в нее цилиндра:

В правильную треугольную призму вписан цилиндр найдите отношение объема

p — полупериметр основания призмы, r — радиус вписанной в основание призмы окружности и радиус цилиндра, H — высота призмы и высота цилиндра.

В частности, отношение объема правильной треугольной призмы к объему вписанного цилиндра

В правильную треугольную призму вписан цилиндр найдите отношение объема

Отношение объема правильной четырехугольной призмы к объему вписанного цилиндра

В правильную треугольную призму вписан цилиндр найдите отношение объема

Для правильной шестиугольной призмы это отношение равно

В правильную треугольную призму вписан цилиндр найдите отношение объема

Отношение площади боковой поверхности призмы к боковой поверхности вписанного цилиндра:

В правильную треугольную призму вписан цилиндр найдите отношение объема

Поскольку половина периметра основания — полупериметр,

В правильную треугольную призму вписан цилиндр найдите отношение объема

Таким образом, если цилиндр вписан в призму, отношение площади боковой поверхности призмы к боковой поверхности цилиндра равно отношению объема призмы к объему вписанного цилиндра. В частности, отношение площади боковой поверхности правильной треугольной призмы к площади боковой поверхности вписанного цилиндра

В правильную треугольную призму вписан цилиндр найдите отношение объема

Отношение боковой поверхности правильной четырехугольной призмы к боковой поверхности вписанного цилиндра

В правильную треугольную призму вписан цилиндр найдите отношение объема

Отношение боковой поверхности правильной шестиугольной призмы к боковой поверхности вписанного цилиндра

В правильную треугольную призму вписан цилиндр найдите отношение объема

При решении задач, в которых цилиндр вписан в призму, можно рассматривать часть сечения комбинации тел плоскостью, проходящей через ось цилиндра. Для прямой призмы это сечение — прямоугольник, стороны которого равны радиусу цилиндра и высоте цилиндра. Например, AA1O1O: AA1=H, AO=r.

Видео:ЕГЭ стереометрия Вариант 17 задача 2Скачать

ЕГЭ стереометрия  Вариант 17 задача 2

Призмы, вписанные в цилиндры

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Призмы, вписанные в цилиндр. Свойства призмы, вписанной в цилиндр

Определение 1. Призмой, вписанной в цилиндр, называют такую призму, основания которой вписаны в окружности оснований цилиндра, а боковые ребра призмы являются образующими цилиндра (рис. 1).

Определение 2. Если призма вписана в цилиндр, то цилиндр называют описанным около призмы.

В правильную треугольную призму вписан цилиндр найдите отношение объема

Прежде, чем перейти к вопросу о том, какую призму можно вписать в цилиндр, докажем следующее свойство призм.

Утверждение 1. Если около оснований призмы можно описать окружности, то отрезок, соединяющий центры описанных окружностей, будет параллелелен и равен боковому ребру призмы.

Читайте также: Лава лампа блеск цилиндра

Докажем, что точка O’ является центром окружности радиуса r, описанной около верхнего основания призмы. С этой целью рассмотрим, например, четырехугольник A1A’1O’O (рис. 2).

В правильную треугольную призму вписан цилиндр найдите отношение объема

В правильную треугольную призму вписан цилиндр найдите отношение объема

Рассуждая аналогичным образом, заключаем, что

то есть точка O’ – центр окружности радиуса r , описанной около верхнего основания призмы.

В силу того, что четырехугольник OO’A1A’1 является параллелограммом, получаем равенство

Теорема. Около призмы можно описать цилиндр тогда и только тогда, когда выполнены следующие два условия:

  1. Призма является прямой призмой;
  2. Около оснований призмы можно описать окружности.

Доказательство. Докажем сначала, что если около n – угольной призмы описан цилиндр, то оба условия теоремы выполнены.

Действительно, выполнение условия 2 следует непосредственно из определения цилиндра, описанного около призмы. Из этого определения также следует, что вписанная в цилиндр призма является прямой призмой, поскольку образующие цилиндра перпендикулярны к плоскостям его оснований,

Таким образом, мы доказали, что, если призма вписана в цилиндр, то оба условия теоремы выполнены.

Теперь рассмотрим прямую n – угольную призму высоты h, около оснований которой можно описать окружности, и докажем, что около такой призмы можно описать цилиндр.

Обозначим буквой O центр окружности радиуса r, описанной около нижнего основания призмы, а символом O’ обозначим центр окружности, описанной около верхнего основания призмы.

В правильную треугольную призму вписан цилиндр найдите отношение объема

В правильную треугольную призму вписан цилиндр найдите отношение объема

Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы описанных около них окружностей будут равны. Согласно утверждению 1 отрезок OO’ параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы h. Значит, и отрезок OO’ перпендикулярен плоскости основания призмы и равен h.

Цилиндр с осью OO’ , радиусом r и высотой h и будет описан около исходной призмы.

Доказательство теоремы завершено.

Следствие 1. Высота призмы, вписанной в цилиндр, равна высоте цилиндра.

Следствие 2. Около любой прямой треугольной призмы можно описать цилиндр (рис. 4).

В правильную треугольную призму вписан цилиндр найдите отношение объема

В правильную треугольную призму вписан цилиндр найдите отношение объема

Следствие 3. Около любого прямоугольного параллелепипеда (в частности, около куба прямоугольного параллелепипеда (в частности, около куба ) можно описать цилиндр (рис. 5).

В правильную треугольную призму вписан цилиндр найдите отношение объема

Замечание 1. Если у прямоугольного параллелепипеда прямоугольного параллелепипеда три ребра, выходящие из одной вершины, равны a, b, c и различны, то существует три возможности описать около этого параллелепипеда цилиндр в зависимости от того, какое из ребер параллелепипеда выбрано в качестве образующей описанного цилиндра (рис. 6, 7, 8).

🎥 Видео

#130. Задание 8: комбинация телСкачать

#130. Задание 8: комбинация тел

Задание 5. ЕГЭ профиль. КОМБИНАЦИИ ТЕЛ.Скачать

Задание 5. ЕГЭ профиль. КОМБИНАЦИИ ТЕЛ.

ЕГЭ|Задание 3 - Цилиндр, конус и шарСкачать

ЕГЭ|Задание 3 - Цилиндр, конус и шар

Профильный ЕГЭ 2024. Вся стереометрия первой части. Задача 3. МиниСИРОПСкачать

Профильный ЕГЭ 2024. Вся стереометрия первой части. Задача 3. МиниСИРОП

ЗАДАНИЕ 2 ЕГЭ (ПРОФИЛЬ). КОМБИНАЦИЯ ТЕЛ.Скачать

ЗАДАНИЕ 2 ЕГЭ (ПРОФИЛЬ). КОМБИНАЦИЯ ТЕЛ.

ЕГЭ по математике. В треугольную пирамиду вписан шарСкачать

ЕГЭ по математике. В треугольную пирамиду вписан шар

Цилиндр, конус и шар в задании 2 | Математика ЕГЭ 2023 | УмскулСкачать

Цилиндр, конус и шар в задании 2 | Математика ЕГЭ 2023 | Умскул

ЕГЭ-2022. ЯЩЕНКО. 36-ВАРИАНТОВ. ЗАДАНИЕ-5, СТЕРЕОМЕТРИЯСкачать

ЕГЭ-2022. ЯЩЕНКО. 36-ВАРИАНТОВ. ЗАДАНИЕ-5, СТЕРЕОМЕТРИЯ

Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |Скачать

Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |

13.04.23, 11 егэ стереометрия, призма, пирамида, параллелепипед, цилиндр, сфера, шар, сечения,объемыСкачать

13.04.23, 11 егэ стереометрия, призма, пирамида, параллелепипед, цилиндр, сфера, шар, сечения,объемы

Объемы тел (комбинации тел)Скачать

Объемы тел (комбинации тел)
Поделиться или сохранить к себе:
Технарь знаток