В правильную треугольную призму вписан цилиндр найти его площадь

Авто помощник

Видео:11 класс. Контрольная №4 (из 6). Тема: Объем призмы, цилиндра и конуса. Решение с советами! :)Скачать

11 класс. Контрольная №4 (из 6). Тема: Объем призмы, цилиндра и конуса. Решение с советами! :)

Решение №2305 Цилиндр вписан в правильную четырёхугольную призму. Радиус основания и высота цилиндра равны 3.

В правильную треугольную призму вписан цилиндр найти его площадь

Цилиндр вписан в правильную четырёхугольную призму. Радиус основания и высота цилиндра равны 3. Найдите площадь боковой поверхности призмы.

Источник: Ященко ЕГЭ 2022 (36 вар)

Правильной четырёхугольной призмой – называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками.
Площадь боковой поверхности данной призмы – это площадь 4-х равных прямоугольников.
Длина прямоугольника равна диаметру цилиндра, ширина прямоугольника равна высоте цилиндра.

В правильную треугольную призму вписан цилиндр найти его площадь

Найдём площадь боковой поверхности призмы:

Sбок. поверх. = 4·Sпрямоугольника = 4· h ·( r + r ) = 4·3·(3 + 3) = 4·3·6 = 72

Видео:Цилиндр вписан в правильную четырехугольную призмуСкачать

Цилиндр вписан в правильную четырехугольную призму

11 класс. Геометрия. Тела вращения. Взаимные комбинации тел вращения.

11 класс. Геометрия. Тела вращения. Взаимные комбинации тел вращения.

Вопросы

Задай свой вопрос по этому материалу!

Поделись с друзьями

Комментарии преподавателя

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Цилиндр, вписанный в призму

Го­во­рят, что ци­линдр впи­сан в приз­му (или приз­ма опи­са­на около ци­лин­дра), если ос­но­ва­ния ци­лин­дра впи­са­ны в со­от­вет­ству­ю­щие ос­но­ва­ния приз­мы (рис. 1). Оче­вид­но, что их вы­со­ты сов­па­дут (рис. 2).

В правильную треугольную призму вписан цилиндр найти его площадь

В правильную треугольную призму вписан цилиндр найти его площадь

Рис. 1. Ци­линдр, впи­сан­ный в приз­му

Рис. 2. Ци­линдр, впи­сан­ный в приз­му

Видео:ЕГЭ 2017 по Математике. Призма вписана в цилиндр Задание 8 #4Скачать

ЕГЭ 2017 по Математике. Призма вписана в цилиндр Задание 8 #4

Условия, при которых цилиндр можно вписать в призму

Нужно, чтобы в ос­но­ва­ние приз­мы можно было впи­сать окруж­ность. Что для тре­уголь­ной и пра­виль­ной приз­мы верно все­гда (рис. 3, 4).

Читайте также: Размеры расточки блока цилиндров приора

В правильную треугольную призму вписан цилиндр найти его площадь

В правильную треугольную призму вписан цилиндр найти его площадь

Рис. 3. Ци­линдр, впи­сан­ный в тре­уголь­ную приз­му

Рис. 4. Ци­линдр, впи­сан­ный в пра­виль­ную ше­сти­уголь­ную приз­му

Вывод: ци­линдр можно впи­сать в приз­му, если приз­ма пря­мая, а в ее ос­но­ва­ние можно впи­сать окруж­ность.

Для че­ты­рех­уголь­ный приз­мы необ­хо­ди­мо чтобы приз­ма была также пря­мой, а че­ты­рех­уголь­ник в ос­но­ва­нии был опи­сан­ным. Т. е. суммы про­ти­во­по­лож­ных сто­рон были равны (рис. 5).

В правильную треугольную призму вписан цилиндр найти его площадь

Рис. 5. Ци­линдр, впи­сан­ный в че­ты­рех­уголь­ную приз­му

Видео:GeoGebra: цилиндр, вписанный в правильную призмуСкачать

GeoGebra: цилиндр, вписанный в правильную призму

Задача №1

Усло­вие: в пра­виль­ную тре­уголь­ную приз­му, все ребра ко­то­рой равны 6, впи­сан ци­линдр. Найти его ра­ди­ус и вы­со­ту (рис. 6).

В правильную треугольную призму вписан цилиндр найти его площадь

Рис. 6. Ил­лю­стра­ция к за­да­че 1

За­ме­тим, что вы­со­та ци­лин­дра равна вы­со­те приз­мы, а зна­чит, равна 6.

Ра­ди­ус ос­но­ва­ния ци­лин­дра равен ра­ди­у­су окруж­но­сти, впи­сан­ной в пра­виль­ный тре­уголь­ник со сто­ро­ной 6. Ра­ди­ус этой окруж­но­сти на­хо­дим по фор­му­ле В правильную треугольную призму вписан цилиндр найти его площадь, то есть он равен В правильную треугольную призму вписан цилиндр найти его площадь.

В правильную треугольную призму вписан цилиндр найти его площадь

Ответ: .

Видео:07 Стереометрия на ЕГЭ по математике. Призма вписана в цилиндр.Скачать

07 Стереометрия на ЕГЭ по математике. Призма вписана в цилиндр.

Цилиндр, описанный около призмы

Го­во­рят, что ци­линдр можно опи­сать около приз­мы (или приз­му впи­сать в ци­линдр), если ос­но­ва­ния приз­мы впи­са­ны в ос­но­ва­ния ци­лин­дра. В дан­ном слу­чае, оче­вид­но, снова будут равны вы­со­ты (бо­ко­вые сто­ро­ны приз­мы и об­ра­зу­ю­щие ци­лин­дра) (рис. 7).

В правильную треугольную призму вписан цилиндр найти его площадь

Рис. 7. Ци­линдр, опи­сан­ный около приз­мы

Видео:ЕГЭ. Профильная математика, задание 3Скачать

ЕГЭ. Профильная математика, задание 3

Условия, при которых цилиндр можно описать около призмы

Ци­линдр можно опи­сать около приз­мы, когда ос­но­ва­ние приз­мы можно впи­сать в окруж­ность. Для тре­уголь­ной -уголь­ной пра­виль­ной приз­мы – все­гда, для че­ты­рех­уголь­ной – когда сумма про­ти­во­по­лож­ных углов в ос­но­ва­нии дает 180 гра­ду­сов (рис. 8).

В правильную треугольную призму вписан цилиндр найти его площадь

Рис. 8. Ци­линдр, опи­сан­ный около че­ты­рех­уголь­ной приз­мы

Видео:#130. Задание 8: комбинация телСкачать

#130. Задание 8: комбинация тел

Задача №2

В правильную треугольную призму вписан цилиндр найти его площадь

Усло­вие: дана пра­виль­ная ше­сти­уголь­ная приз­ма, впи­сан­ная в ци­линдр. Ра­ди­ус ос­но­ва­ния ци­лин­дра равен 7, а пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28. Найти пло­щадь бо­ко­вой по­верх­но­сти приз­мы (рис. 9).

В правильную треугольную призму вписан цилиндр найти его площадь

Рис. 9. Ил­лю­стра­ция к за­да­че 2

Читайте также: Главный тормозной цилиндр мерседес виано

Спер­ва най­дем вы­со­ту ци­лин­дра. Так как В правильную треугольную призму вписан цилиндр найти его площадь, то В правильную треугольную призму вписан цилиндр найти его площадь.

Зна­чит, и бо­ко­вое ребро приз­мы также равно 2.

Далее, в ос­но­ва­нии приз­мы лежит пра­виль­ный ше­сти­уголь­ник, впи­сан­ный в окруж­ность. Как из­вест­но, сто­ро­на пра­виль­но­го ше­сти­уголь­ни­ка равна ра­ди­у­су опи­сан­ной окруж­но­сти, то есть 7.

В правильную треугольную призму вписан цилиндр найти его площадь

Тогда пло­щадь бо­ко­вой по­верх­но­сти приз­мы равна .

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Разветвление: задача №3

Усло­вие. Дана че­ты­рех­уголь­ная пря­мая приз­ма, все ребра ко­то­рой равны 1. Из­вест­но, что около этой приз­мы можно опи­сать ци­линдр. Най­ди­те объем приз­мы и пло­щадь пол­ной по­верх­но­сти дан­но­го ци­лин­дра (рис. 10).

В правильную треугольную призму вписан цилиндр найти его площадь

Рис. 10. Ил­лю­стра­ция к за­да­че 3

Так как все ребра равны, то в ос­но­ва­нии приз­мы лежит ромб. Раз можно опи­сать ци­линдр около приз­мы, то ромб можно впи­сать в окруж­ность, а зна­чит, этот ромб – квад­рат. Сле­до­ва­тель­но, приз­ма – это куб со сто­ро­ной 1, его объем также равен 1.

Вы­со­та ци­лин­дра – 1, а ра­ди­ус окруж­но­сти равен по­ло­вине диа­го­на­ли квад­ра­та, то есть В правильную треугольную призму вписан цилиндр найти его площадь. Тогда В правильную треугольную призму вписан цилиндр найти его площадь.

В правильную треугольную призму вписан цилиндр найти его площадь

Ответ: .

Видео:ВПИСАННАЯ И ОПИСАННАЯ ПРИЗМЫ // СТЕРЕОМЕТРИЯСкачать

ВПИСАННАЯ И ОПИСАННАЯ ПРИЗМЫ // СТЕРЕОМЕТРИЯ

Заключение

На уроке мы разо­бра­ли ком­би­на­ции приз­мы и ци­лин­дра, а также ре­ши­ли за­да­чи по темам: ци­линдр, опи­сан­ный во­круг приз­мы и ци­линдр, впи­сан­ный в приз­му.

Видео:ЕГЭ 2022 математика задача 4 вариант 2Скачать

ЕГЭ 2022 математика задача 4 вариант 2

В правильную треугольную призму вписан цилиндр найти его площадь

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.

В куб вписан шар радиуса 1. Найдите объем куба.

В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

В основании прямой призмы лежит квадрат со стороной 2. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

Читайте также: Замки под цилиндр для металлических дверей

Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 25. Найдите объём цилиндра.

Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,5 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.

Цилиндр и конус имеют общие основание и высоту. Найдите объем конуса, если объем цилиндра равен 150.

Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.

Конус описан около правильной четырехугольной пирамиды со стороной основания 4 и высотой 6. Найдите его объем, деленный на

Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

В куб с ребром 3 вписан шар. Найдите объем этого шара, деленный на

Около куба с ребром описан шар. Найдите объем этого шара, деленный на

Вершина A куба с ребром 1,6 является центром сферы, проходящей через точку A1. Найдите площадь S части сферы, содержащейся внутри куба. В ответе запишите величину

📺 Видео

ЕГЭ. Задача 8. Призма и цилиндрСкачать

ЕГЭ. Задача 8. Призма и цилиндр

#131. Задание 8: комбинация телСкачать

#131. Задание 8: комбинация тел

Объемы прямой призмы и цилиндраСкачать

Объемы прямой призмы и цилиндра

xi408 Комбинации с цилиндромСкачать

xi408 Комбинации с цилиндром

Стереометрия. В правильную четырехугольную призму вписан круглый цилиндра. Найдите высоту цилиндраСкачать

Стереометрия. В правильную четырехугольную призму вписан круглый цилиндра. Найдите высоту цилиндра

Призма и цилиндр. Практическая часть. 11 класс.Скачать

Призма и цилиндр. Практическая часть. 11 класс.

Шар вписан в треугольную призмуСкачать

Шар вписан в треугольную призму

11 класс. Геометрия. Объем цилиндраСкачать

11 класс. Геометрия. Объем цилиндра

Задание 3. ЕГЭ математика 2024. Разбор за 42 минуты всех типов. Стереометрия ЕГЭ. Подготовка к ЕГЭ.Скачать

Задание 3. ЕГЭ математика 2024. Разбор за 42 минуты всех типов. Стереометрия ЕГЭ. Подготовка к ЕГЭ.
Поделиться или сохранить к себе:
Технарь знаток