В прямом круговом цилиндре диаметр нижнего основания

Авто помощник

Видео:№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длинеСкачать

№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длине

В прямом круговом цилиндре диаметр нижнего основания

В прямом круговом цилиндре проведена образующая NN1, точка N лежит в нижнем основании. Отрезок KM1 пересекает ось цилиндра, а точки K и M1 лежат на окружностях нижнего и верхнего основания соответственно.

а) Докажите, что треугольник KNM1 прямоугольный.

б) Найдите расстояние от точки N до прямой KM1, если KN = 9, N1M1 = 20.

а) Назовём ось цилиндра OO1, проведём образующие MM1 и KK1. Тогда, так как KM1 пересекает ось цилиндра, ось цилиндра лежит в плоскости KMM1K1. Таким образом, KM — диаметр и, значит, угол KNM — прямой. Тогда, по теореме о трёх перпендикулярах, прямая NM1 также перпендикулярна прямой KN, а треугольник KNM1 — прямоугольный.

б) Из точки N опустим перпендикуляр NH на прямую KM1, искомое расстояние — длина этого перпендикуляра. Найдём её, как высоту прямоугольного треугольника KNM1:

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Видео:Задание 14 ЕГЭ по математикеСкачать

Задание 14 ЕГЭ по математике

В прямом круговом цилиндре диаметр нижнего основания

В прямом круговом цилиндре проведена образующая NN1, точка N лежит в нижнем основании. Отрезок KM1 пересекает ось цилиндра, а точки K и M1 лежат на окружностях нижнего и верхнего основания соответственно.

а) Докажите, что треугольник KNM1 прямоугольный.

б) Найдите расстояние от точки N до прямой KM1, если KN = 9, N1M1 = 20.

а) Назовём ось цилиндра OO1, проведём образующие MM1 и KK1. Тогда, так как KM1 пересекает ось цилиндра, ось цилиндра лежит в плоскости KMM1K1. Таким образом, KM — диаметр и, значит, угол KNM — прямой. Тогда, по теореме о трёх перпендикулярах, прямая NM1 также перпендикулярна прямой KN, а треугольник KNM1 — прямоугольный.

б) Из точки N опустим перпендикуляр NH на прямую KM1, искомое расстояние — длина этого перпендикуляра. Найдём её, как высоту прямоугольного треугольника KNM1:

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

В прямом круговом цилиндре диаметр нижнего основания

В прямом круговом цилиндре проведена образующая NN1, точка N лежит в нижнем основании. Отрезок KM1 пересекает ось цилиндра, а точки K и M1 лежат на окружностях нижнего и верхнего основания соответственно.

а) Докажите, что треугольник KNM1 прямоугольный.

б) Найдите расстояние от точки N до прямой KM1, если KN = 9, N1M1 = 20.

а) Назовём ось цилиндра OO1, проведём образующие MM1 и KK1. Тогда, так как KM1 пересекает ось цилиндра, ось цилиндра лежит в плоскости KMM1K1. Таким образом, KM — диаметр и, значит, угол KNM — прямой. Тогда, по теореме о трёх перпендикулярах, прямая NM1 также перпендикулярна прямой KN, а треугольник KNM1 — прямоугольный.

б) Из точки N опустим перпендикуляр NH на прямую KM1, искомое расстояние — длина этого перпендикуляра. Найдём её, как высоту прямоугольного треугольника KNM1:

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

В прямом круговом цилиндре диаметр нижнего основания

В одном основании прямого кругового цилиндра с высотой 9 и радиусом основания 2 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.

а) Докажите, что диагонали этого сечения равны между собой.

б) Найдите объём пирамиды CABNM.

а) Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Отрезки AN и BM равны как диагонали прямоугольника, что и требовалось доказать.

б) Площадь прямоугольника ABNM равна 9 · 2 = 18. Пусть H — точка пересечения отрезков NM и CD. Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен:

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Видео:Усеченный конус. 11 класс.Скачать

Усеченный конус. 11 класс.

В прямом круговом цилиндре диаметр нижнего основания

Загрузка решений доступна для зарегистрировавшихся пользователей

В одном основании прямого кругового цилиндра с высотой 12 и радиусом основания 6 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.

а) Докажите, что диагонали этого сечения равны между собой.

б) Найдите объём пирамиды CABNM.

Загрузка решений доступна для зарегистрировавшихся пользователей

Высота цилиндра равна 3. Равнобедренный треугольник ABC с боковой стороной 10 и ∠A = 120° расположен так, что его вершина A лежит на окружности нижнего основания цилиндра, а вершины B и C — на окружности верхнего основания.

а) Найдите угол между плоскостью ABC и плоскостью основания цилиндра.

б) Докажите, что радиус основания цилиндра больше, чем .

Загрузка решений доступна для зарегистрировавшихся пользователей

AB — диаметр нижнего основания цилиндра, а CD — хорда верхнего основания цилиндра, причём CD || AB.

а) Докажите, что отрезки AC и BD равны.

б) Найдите объём пирамиды, основанием которой является четырёхугольник с вершинами в точках A, B, C, D, а вершиной — центр верхнего основания цилиндра, если известно, что высота цилиндра равна 9, AB = 26, CD = 10.

Загрузка решений доступна для зарегистрировавшихся пользователей

Диаметр окружности основания цилиндра равен 26, образующая цилиндра равна 21. Плоскость пересекает его основания по хордам длины 24 и 10. Расстояние между этими хордами равно

а) Докажите, что центры оснований цилиндра лежат по разные стороны от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.

Загрузка решений доступна для зарегистрировавшихся пользователей

Высота цилиндра равна 3, а радиус основания равен 13.

а) Постройте сечение цилиндра плоскостью, проходящей параллельно оси цилиндра, так, чтобы площадь этого сечения равнялась 72.

б) Найдите расстояние от плоскости сечения до центра основания цилиндра.

Загрузка решений доступна для зарегистрировавшихся пользователей

Прямоугольник ABCD и цилиндр расположены таким образом, что AB — диаметр верхнего основания цилиндра, а CD лежит в плоскости нижнего основания и касается его окружности, при этом плоскость прямоугольника наклонена к плоскости основания цилиндра под углом 60°.

а) Докажите, что ABCD — квадрат.

б) Найдите длину той части отрезка BD, которая находится снаружи цилиндра, если радиус цилиндра равен

Загрузка решений доступна для зарегистрировавшихся пользователей

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания — точка C1, причём CC1 — образующая цилиндра, а AC&nbsp— диаметр основания. Известно,что

а) Докажите, что угол между прямыми и равен

Загрузка решений доступна для зарегистрировавшихся пользователей

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

Загрузка решений доступна для зарегистрировавшихся пользователей

В цилиндре на окружности одного из оснований цилиндра выбраны точки A и B, а на окружности другого основания — точки B1 и C1, причём BB1 — образующая цилиндра, а AC1 пересекает его ось цилиндра.

б) Найдите площадь боковой поверхности, если AB = 16, BB1 = 5, B1C1 = 12.

Загрузка решений доступна для зарегистрировавшихся пользователей

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

б) Найдите площадь боковой поверхности цилиндра, если AB = 20, BB1 = 15, B1C1 = 21.

Загрузка решений доступна для зарегистрировавшихся пользователей

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания — точка C1 причём CC1 — образующая цилиндра, а AC — диаметр основания. Известно, что

а) Докажите, что угол между прямыми BC и AC1 равен

б) Найдите расстояние от точки B до AC1.

Загрузка решений доступна для зарегистрировавшихся пользователей

Цилиндр и конус имеют общее основание, вершина конуса является центром другого основания цилиндра. Каждая образующая конуса наклонена к плоскости основания под углом 30°.

а) Докажите, что площади боковых поверхностей цилиндра и конуса равны

б) Найдите радиус сферы, касающейся боковых поверхностей цилиндра и конуса, а так

же одного из оснований цилиндра, если известно, что объем конуса равен

Загрузка решений доступна для зарегистрировавшихся пользователей

В конус вписан цилиндр так, что нижнее основание цилиндра лежит на основании конуса, а окружность верхнего основания принадлежит боковой поверхности конуса. Объем конуса равен 72.

а) Найти объем цилиндра, верхнее основание которого делит высоту конуса пополам.

б) Найти наибольший объем вписанного цилиндра.

Загрузка решений доступна для зарегистрировавшихся пользователей

В одном основании прямого кругового цилиндра с высотой 12 и радиусом основания 6 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.

а) Докажите, что диагонали этого сечения равны между собой.

б) Найдите объём пирамиды CABNM.

Загрузка решений доступна для зарегистрировавшихся пользователей

В окружность нижнего основания цилиндра с высотой 2 вписан правильный треугольник ABC со стороной В окружность верхнего основания вписан правильный треугольник A1B1C1 так, что он повернут относительно треугольника ABC на угол 60°.

а) Докажите, что четырехугольник ABB1C1 — прямоугольник.

Загрузка решений доступна для зарегистрировавшихся пользователей

Основание АВС правильной треугольной пирамиды SABC вписано в нижнее основание цилиндра, а вершина S расположена на оси О1О2 цилиндра (точка О1 — центр верхнего основания). Объем цилиндра равен 21π, а объем пирамиды

б) Найдите расстояние между прямыми АС и SB, если радиус основания цилиндра равен

Загрузка решений доступна для зарегистрировавшихся пользователей

В прямом круговом цилиндре проведена образующая NN1, точка N лежит в нижнем основании. Отрезок KM1 пересекает ось цилиндра, а точки K и M1 лежат на окружностях нижнего и верхнего основания соответственно.

а) Докажите, что треугольник KNM1 прямоугольный.

б) Найдите расстояние от точки N до прямой KM1, если KN = 9, N1M1 = 20.

Загрузка решений доступна для зарегистрировавшихся пользователей

📸 Видео

Задание 14 из реального ЕГЭСкачать

Задание 14 из реального ЕГЭ

✓ Задача про цилиндр | ЕГЭ-2018. Задание 14. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Задача про цилиндр  | ЕГЭ-2018. Задание 14. Математика. Профильный уровень | Борис Трушин

Радиус основания цилиндра равен 26, а его образующая равна 9... Найдите площадь сечения.Скачать

Радиус основания цилиндра равен 26, а его образующая равна 9... Найдите площадь сечения.

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДР

11 класс, 32 урок, Объем цилиндраСкачать

11 класс, 32 урок, Объем цилиндра

Профильный ЕГЭ 2024. Вся стереометрия первой части. Задача 3. МиниСИРОПСкачать

Профильный ЕГЭ 2024. Вся стереометрия первой части. Задача 3. МиниСИРОП

11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Задание 5 | Математика ЕГЭ 2021 | Стереометрия | Онлайн курс по математикеСкачать

Задание 5 | Математика ЕГЭ 2021 | Стереометрия |  Онлайн курс по математике

Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |Скачать

Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)Скачать

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)

Объем и площадь поверхности цилиндра (видео 44) | Подобие. Геометрия | МатематикаСкачать

Объем и площадь поверхности цилиндра (видео 44) | Подобие. Геометрия | Математика

Как начертить цилиндр в объемеСкачать

Как начертить цилиндр в объеме

9 класс, 41 урок, ЦилиндрСкачать

9 класс, 41 урок, Цилиндр

ЕГЭ 2022 Профиль 5 задание. ДемоверсияСкачать

ЕГЭ 2022 Профиль 5 задание. Демоверсия

Геометрия 11 класс: Объем призмы и цилиндра. ВидеоурокСкачать

Геометрия 11 класс: Объем призмы и цилиндра. Видеоурок
Поделиться или сохранить к себе:
Технарь знаток