В равностороннем цилиндре точка окружности верхнего основания

Авто помощник

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

В равностороннем цилиндре точка окружности верхнего основания

Угол между радиусами, проведенными в эти точки, равен 60°. Найдите угол X между проведенной прямой и осью цилиндра.

Через данные точки А и С проведем плоскость ABCD, параллельную оси. Соединим точки В и О1. Угол между радиусами, проведенными в данные точки А и С соответственно из О и O1 будет равен углу ∠BO1C = 60°.

Следовательно, равнобедренный ΔBO1С является равносторонним и BС = 0,5 = К. Искомый угол X между проведенной прямой А С и осью цилиндра равен ∠BAC. В прямоугольнике ABCD AB=D=2R (по условию). Тогда из прямоугольного ΔABC

2) Периметр параллелограмма равен 90 см и острый угол равен 60°. Диагональ параллелограмма делит его тупой угол на части в отношении 1:3. Найти длину большей стороны параллелограмма.

3) Второй член арифметической прогрессии равен 5, а четвертый ее член равен 11. Найти сумму первых пяти членов прогрессии.

4) Площадь параллелограмма равна 〖24см〗^2. Точка пересечения его диагоналей удалена от прямых, на которых лежат стороны, на 2 см и 3 см. Найти периметр параллелограмма.

2. Точка M лежит внутри равностороннего треугольника на расстоянии 3√3 от двух его сторон и на расстоянии 4√3 от третьей стороны. Найдите длину сторон треугольника.

3. Стороны треугольника относятся как 13:14:15, а высота, проведенная к большей стороне равна 33,6. Найдите большую сторону.

4. В треугольнике ABC сторона AC равна 21, высота BH равна 12, синус угла A равен 0,6. Найдите длину отрезка CH.

Видео:№ 6 - Геометрия 10-11 класс ПогореловСкачать

№ 6 - Геометрия 10-11 класс Погорелов

Геометрия сборник с решениями (стр. 3 )

В равностороннем цилиндре точка окружности верхнего основанияИз за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5

В равностороннем цилиндре точка окружности верхнего основания

Теперь нужно расписать как найти каждую из них.

В правильной треугольной пирамиде отрезок, соединяющий основание высоты пирамиды с серединой апофемы, равен m и образует с высотой пирамиды, угол β. Найдите полную поверхность пирамиды.

На рисунке изображена пирамида ACBO, OM-высота, OK-Апофема.

Точка L середина апофемы OK, LM образует с высотой OM угол β.

ΔOMK прямоугольный, следовательно ML является медианой этого треугольника, значит OL = LM = LK = m

ΔOLM равнобедренный, следовательно ∠OML = ∠LOM, а это значит что апофема образует с высотой угол β (на рисунке показано).

Sбок=p•a/2; где p — полупериметр основания, a — апофема OK.

В основании нашей пирамиды лежит правильный треугольник, стороны которого равны. Найдем сторону основания, для этого воспользуемся уже имеющимися данными. Как известно MK является радиусом вписанной в основание окружности.

Найдем чему равен r, зная что sinβ=MK/OK →OK=MK/sinβ=2m/sinβ

Цилиндр катится по некоторой плоскости. Какую фигуру образует при этом ось цилиндра?

Читайте также: Ремонт цилиндра стрелы крана

Плоскость! А точнее прямоугольник!

Высота цилиндра 8см, диаметр основания 10см. Найдите площадь сечения, проведенного параллельно оси цилиндра на расстоянии 4см от нее.

В равностороннем цилиндре точка окружности верхнего основания

Итак на рисунке я показал сечение ABCD, параллельное оси. OK=4 см. OA=OB=Rокр=5

Площадь сечения равна AB*BC, где BC=H=8 см.

Остается найти AB, которая является основанием равнобедренного треугольника с высотой OK.

Радиус цилиндра r,а высота h.Найдите площадь осевого сечения цилиндра плоскостью, к основанию и отсекающей от окружности основания дугу в 60 градусов.

Даже рисунок практически не менял! Вот цилиндр, дуга AB равна 60 градусов. Линия AB является хордой стягивающей дугу AB. Она равна:

m=2R•sin(α/2), где α-угол образующий дугу.

Значит площадь сечения ABCD=R*H

Осевое сечение цилиндра − квадрат, площадь которого Q. Найдите площадь основания цилиндра.

Как найти площадь бок. поверхности правильной треугольной пирамиды, если сторона основания = 2см, а двугранные углы по 60 градусов?

В равностороннем цилиндре точка окружности верхнего основания

Если двугранные углы по 60 градусов, то это значит что BC=SC=SB, а это значит что боковую поверхность образуют три равносторонних треугольника.

Угол M при основании трапеции MKPT равен 45o, MK=6√2, MT=10, KP=4. Найдите сумму квадратов диагоналей трапеции.

Решается довольно таки просто! Нарисуем рисунок, чтобы наглядно было понятно.

KD — высота. Так как угол M равен 45o, ∠MKD=180-90-45=45o, а это значит что MD=KD.

ΔMKD прямоугольный, а значит стороны относятся по теореме Пифагора как:

Теперь зная что MT=10, найдем DT=10-6=4.

А это значит что наша трапеция будет прямоугольной, т. е. одна из боковых сторон PT ⊥ MT

Найдем сначала диагональ KT, как видишь это просто зная что KD=PT=6

Теперь найдем диагональ MP, которая также находится по теореме Пифагора.

Найти нужно сумму квадратов диагоналей трапеции:

Найдите периметр ромба с наибольшей площадью если сумма длин его диагоналей равна 10.

Sр=d1*d2/2; где d1,d2 — диагонали ромба.

А теперь, маленький секрет! Когда будет произведение чисел больше, если в сумме они составляют n.

Ответ простой, когда каждое из них будет равно n/2.

Мы нашли площадь, хотя нам этого и не требовалось. Теперь нам нужен его периметр!

Всего у ромба 4 стороны, значит P=4*2,5*√2=10√2

Основание пирамиды — правильный треугольник со стороной а. 2 боковые грани пирамиды перпендикулярны плоскости основания, а третья наклонена к ней под углом α. Найдите площадь полной поверхности пирамиды, как тут вообще решать, если нет никаких числовых данных?

В равностороннем цилиндре точка окружности верхнего основания

ABC — основание пирамиды ABCS, BD — высота в равностороннем ΔABC. SD — опофема одной из боковых сторон.

Площадь пирамиды равна площади основания ABC плюс площади боковых сторон.

BD2=BC2-DC2 (Это по теореме Пифагора)

Теперь для того чтобы найти площадь боковой поверхности, внимательно рассмотрим все ее составляющие.

Читайте также: Презентация сечение цилиндра плоскостью

ΔSAC можно найти по формуле: SD*AC=SD*a

Решаем по теореме синусов:

sin(90-α) по формулам приведения равен cosα

Осталось найти площади ΔSBC, ΔSBA которые равны между собой так как имеют одинаковые стороны при основании и общее ребро SB. Эти треугольники также прямоугольные, так как перпендикулярны плоскости основания.

Площадь осевого сечения цилиндра равна 8 м^2,площадь основания -12м^2.Вычислите площ. сеч., параллельного оси и отстоящего от нее на 1 м.

Итак у нас имеется цилиндр, у которого площадь основания равна 12 м2, так как основание цилиндра составляют две окружности, найдем ее радиус зная что площадь каждой окружности равна 6 м2.

Теперь зная площадь осевого сечения ABCD можно найти высоту OO1, зная что Sос. сеч=H*2R

Мы уже решали с тобой задачу на нахождение площади плоскости. находящейся на расстоянии от осевого сечения, вспомни там мы сначала нашли сторону ML, а затем умножили на высоту. Для этого мы пользовались теоремой Пифагора:

Отрезок одним из своих концов скользит по окружности, оставаясь перпендикулярным к ее плоскости. Какая фигура при этом получится? Ответ : Цилиндрическая поверхность. Но как это доказать

Отрезок имеет начало и имеет конец. То есть он имеет длину равную h. Если такой отрезок будет скользить по окружности одним из концов получится цилиндр, так как он является перпендикулярным к плоскости окружности это будет прямой цилиндр. А сам отрезок будет являться образующей этого цилиндра.

В равностороннем цилиндре точка окружности верхнего основания соединена с одной из точек окружности нижнего основания. Угол между радиусами, проведёнными в эти точки, равен 30°. Определить угол между проведённой прямой и осью цилиндра.

Очень просто, для того чтобы понять достаточно одного рисунка.

Так как можно рассматривать отрезок AB как вектор, то так как между высотой и радиусом основания лежит угол 90 градусов, поэтому по сумме углов треугольника 180-90-30=60 градусов.

Периметры двух подобных четырехугольников относятся как 2:3.Найдите отношение их площадей

Периметры подобных фигур относятся как P1/P2=k

Найдите длину высоты прямоугольного треугольника, опущенной из вершины прямого угла, если она делит гипотенузу на отрезка, равные 3 и 27 см

Составьте уравнение, обозначить нужно высоту за x.

Значит площадь прямоугольного треугольника равна: (3+27)*X=30X, по правилу высота умноженная на прилежащую сторону.

Также площадь найти можно умножив катеты AB и BC и разделить на 2.

Так как высота BD образует новые прямоугольные треугольники ADB и BDC, то их длина найдется по теореме Пифагора.

Остается только подставить:

В конус вписан шар объемом 4/3п см в кубе. Найдите объем конуса, если его высота=3 см

шар объемом 4/3п вписан в конус, то есть радиус этого шара равен радиусу основания конуса.

Читайте также: Свернутая в цилиндр бумага

Стороны основания правильной треугольной пирамиды а, боковое ребро b, определите высоту пирамиды.

Если пирамида правильная в основании лежит треугольник с равными сторонами. Чтобы найти высоту OO1 нужно найти AO1, которая согласно правилу равна радиусу описанной вокруг треугольника окружности.

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

В равностороннем цилиндре точка окружности верхнего основания

Прямоугольник ABCD и цилиндр расположены таким образом, что AB — диаметр верхнего основания цилиндра, а CD лежит в плоскости нижнего основания и касается его окружности, при этом плоскость прямоугольника наклонена к плоскости основания цилиндра под углом 60°.

а) Докажите, что ABCD — квадрат.

б) Найдите длину той части отрезка BD, которая находится снаружи цилиндра, если радиус цилиндра равен

а) Пусть сторона CD прямоугольника касается окружности нижнего основания в точке K, O1 — центр нижнего основания, а O — центр верхнего. Тогда O1O — перпендикуляр к плоскости основания, отрезок O1K перпендикулярен отрезку CD и по теореме о трех перпендикулярах отрезок OK перпендикулярен CD. Поэтому K — середина CD. Тогда упомянутый угол наклона — угол OKO1 = 60° и где r — радиус цилиндра. При этом поэтому значит, ABCD — квадрат.

б) Пусть отрезок BD пересекает поверхность цилиндра в точке T; E и F — проекции точек D и T соответственно на плоскость верхнего основания.

Тогда FT лежит на образующей, и поэтому отрезок FT параллелен отрезку DE. Значит, Поскольку как угол, опирающийся на диаметр, Поэтому и т. е.

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Видео:✓ Задача про цилиндр | ЕГЭ-2018. Задание 14. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Задача про цилиндр  | ЕГЭ-2018. Задание 14. Математика. Профильный уровень | Борис Трушин

В равностороннем цилиндре точка окружности верхнего основания

Высота цилиндра равна 3. Равнобедренный треугольник ABC с боковой стороной 10 и ∠A = 120° расположен так, что его вершина A лежит на окружности нижнего основания цилиндра, а вершины B и C — на окружности верхнего основания.

а) Найдите угол между плоскостью ABC и плоскостью основания цилиндра.

б) Докажите, что радиус основания цилиндра больше, чем .

а) Пусть AA1 — образующая цилиндра, M — середина хорды BC. Тогда

В равнобедренных треугольниках BAC и BA1C медианы AM и A1M являются высотами. Поэтому искомый угол между плоскостями равен углу ∠AMA1. В прямоугольном треугольнике AMA1 имеем:

б) Из пункта а) получаем, что , , значит . Тогда . Пусть R — радиус основания цилиндра. Тогда, по теореме синусов . Отсюда . Что и требовалось доказать.

💥 Видео

11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)Скачать

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)

Все о цилиндре. All about the cylinder.Скачать

Все о цилиндре. All about the cylinder.

ЦИЛИНДР геометрия егэ по математике профильный уровень ЯщенкоСкачать

ЦИЛИНДР геометрия егэ по математике профильный уровень Ященко

ГЕОМЕТРИЯ 11 класс: Цилиндр. Площадь поверхностиСкачать

ГЕОМЕТРИЯ 11 класс: Цилиндр. Площадь поверхности

Стереометрия из реального ЕГЭ. Конус и цилиндр. Вывезешь катку? | ЕГЭ по математике 2024 | СВСкачать

Стереометрия из реального ЕГЭ. Конус и цилиндр. Вывезешь катку? | ЕГЭ по математике 2024 | СВ

Шар вписан в цилиндр. Площадь поверхности шара равна 78. Найдите площадь полной поверхности цилиндраСкачать

Шар вписан в цилиндр. Площадь поверхности шара равна 78. Найдите площадь полной поверхности цилиндра

11 класс, 14 урок, Понятие цилиндраСкачать

11 класс, 14 урок, Понятие цилиндра

Тела вращения. Цилиндр. Подготовка к ГИА. Решение задач на "Цилиндр".Скачать

Тела вращения. Цилиндр. Подготовка к ГИА. Решение задач на "Цилиндр".

Урок геометрии в 11-М РЛ 17.01.18 "Цилиндр"Скачать

Урок геометрии в 11-М  РЛ 17.01.18 "Цилиндр"

Как начертить цилиндр в объемеСкачать

Как начертить цилиндр в объеме

✓ Как решать стереометрию | ЕГЭ-2024. Математика. Профильный уровень. Задание 14 | Борис ТрушинСкачать

✓ Как решать стереометрию | ЕГЭ-2024. Математика. Профильный уровень. Задание 14 | Борис Трушин

Урок в 11М РЛ 23.01.18 (1 часть) "Сечение цилиндра"Скачать

Урок в 11М РЛ 23.01.18 (1 часть) "Сечение цилиндра"

Стереометрия ЕГЭ — тела вращения: цилиндр, конус, шар | Анна МалковаСкачать

Стереометрия ЕГЭ — тела вращения: цилиндр, конус, шар | Анна Малкова

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.
Поделиться или сохранить к себе:
Технарь знаток