Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.
Радиусы шара и основания цилиндра равны. Площадь поверхности цилиндра, с радиусом основания r и высотой 2r равна
Площадь поверхности шара радиуса r равна то есть в 1,5 раза меньше площади поверхности цилиндра. Следовательно, площадь поверхности шара равна 12.
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.
Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.
Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому сторона основания равна 8, а площадь основания равна 64. Тогда высота цилиндра равна
Почему получилось 64? Что-то не понятно:(
Длина диаметра цилиндра равна длине стороны квадрата в основании.
В куб вписан шар радиуса 1. Найдите объем куба.
Ребро куба равно диаметру вписанного в него шара, а объем куба равен кубу его ребра. Отсюда имеем:
В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.
Читайте также: Ооо палфингер кама цилиндр
По теореме Пифагора длина гипотенузы треугольника в основании Поскольку гипотенуза является диаметром основания описанного цилиндра, его объем
Видео:№188. Ребро куба равно а. Найдите диагональ куба.Скачать
В цилиндр вписан куб ребро куба равно
Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.
В куб вписан шар радиуса 1. Найдите объем куба.
В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.
В основании прямой призмы лежит квадрат со стороной 2. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.
Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 25. Найдите объём цилиндра.
Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,5 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.
Цилиндр и конус имеют общие основание и высоту. Найдите объем конуса, если объем цилиндра равен 150.
Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.
Конус описан около правильной четырехугольной пирамиды со стороной основания 4 и высотой 6. Найдите его объем, деленный на
Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?
В куб с ребром 3 вписан шар. Найдите объем этого шара, деленный на
Около куба с ребром описан шар. Найдите объем этого шара, деленный на
Вершина A куба с ребром 1,6 является центром сферы, проходящей через точку A1. Найдите площадь S части сферы, содержащейся внутри куба. В ответе запишите величину
Читайте также: Рабочие тормозные цилиндры авео
Видео:КАК НАЙТИ РЕБРО КУБА, ЗНАЯ ЕГО ОБЪЕМ? Примеры | МАТЕМАТИКА 5 классСкачать
В цилиндр вписан куб ребро куба равно
Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.
Радиусы шара и основания цилиндра равны. Площадь поверхности цилиндра, с радиусом основания r и высотой 2r равна
Площадь поверхности шара радиуса r равна то есть в 1,5 раза меньше площади поверхности цилиндра. Следовательно, площадь поверхности шара равна 12.
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.
Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.
Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому сторона основания равна 8, а площадь основания равна 64. Тогда высота цилиндра равна
Почему получилось 64? Что-то не понятно:(
Длина диаметра цилиндра равна длине стороны квадрата в основании.
В куб вписан шар радиуса 1. Найдите объем куба.
Ребро куба равно диаметру вписанного в него шара, а объем куба равен кубу его ребра. Отсюда имеем:
В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.
По теореме Пифагора длина гипотенузы треугольника в основании Поскольку гипотенуза является диаметром основания описанного цилиндра, его объем
Видео:КАК НАЙТИ ПЛОЩАДЬ ПОВЕРХНОСТИ КУБА, ЕСЛИ ИЗВЕСТНО РЕБРО? Примеры | МАТЕМАТИКА 5 классСкачать
В цилиндр вписан куб ребро куба равно
Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.
Читайте также: Демонтаж поршня тормозного цилиндра
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.
В куб вписан шар радиуса 1. Найдите объем куба.
В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.
В основании прямой призмы лежит квадрат со стороной 2. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.
Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 25. Найдите объём цилиндра.
Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,5 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.
Цилиндр и конус имеют общие основание и высоту. Найдите объем конуса, если объем цилиндра равен 150.
Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.
Конус описан около правильной четырехугольной пирамиды со стороной основания 4 и высотой 6. Найдите его объем, деленный на
Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?
В куб с ребром 3 вписан шар. Найдите объем этого шара, деленный на
Около куба с ребром описан шар. Найдите объем этого шара, деленный на
Вершина A куба с ребром 1,6 является центром сферы, проходящей через точку A1. Найдите площадь S части сферы, содержащейся внутри куба. В ответе запишите величину
🎥 Видео
Куб. Кубики. Форма, грани, ребра, объем кубаСкачать
11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
КАК НАЙТИ ОБЪЕМ КУБА ПО РЕБРУ? Примеры | МАТЕМАТИКА 5 классСкачать
Математика 5 Объем куба Соотношения между единицами объемаСкачать
№194. Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащимиСкачать
Все Задания 3 ЕГЭ 2024 ПРОФИЛЬ из Банка ФИПИ (Математика Школа Пифагора)Скачать
Куб и цилиндр. Практическая часть. 11 класс.Скачать
ЕГЭ математика СТЕРЕОМЕТРИЯ 8#13🔴Скачать
Шар, объем которого равен 14pi, вписан в куб. Найдите объем куба (профильный ЕГЭ)Скачать
№223. Через два противолежащих ребра куба проведено сечение, площадь которого равна 64 √2 см2.Скачать
Стереометрия. ЕГЭ. Куб вписан в шар радиуса 3^0.5. Найдите объем кубаСкачать
ЕГЭ математика СТЕРЕОМЕТРИЯ 8#5.18🔴Скачать
#106. Задание 8: кубСкачать
Стереометрия. ЕГЭ. Куб описан около сферы радиуса 1. Найдите объём куба.Скачать
Задание 2|ЕГЭ ПРОФИЛЬ| СТЕРЕОМЕТРИЯ| Цилиндр вписан в прямоугольный параллелепипед.Радиус основанияСкачать
Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать
Математика 4 класс (Урок№62 - Куб.)Скачать