В цилиндр вписана окружность

Авто помощник

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.

Радиусы шара и основания цилиндра равны. Площадь поверхности цилиндра, с радиусом основания r и высотой 2r равна

Площадь поверхности шара радиуса r равна то есть в 1,5 раза меньше площади поверхности цилиндра. Следовательно, площадь поверхности шара равна 12.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому сторона основания равна 8, а площадь основания равна 64. Тогда высота цилиндра равна

Почему получилось 64? Что-то не понятно:(

Длина диаметра цилиндра равна длине стороны квадрата в основании.

В куб вписан шар радиуса 1. Найдите объем куба.

Ребро куба равно диаметру вписанного в него шара, а объем куба равен кубу его ребра. Отсюда имеем:

В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

По теореме Пифагора длина гипотенузы треугольника в основании Поскольку гипотенуза является диаметром основания описанного цилиндра, его объем

Видео:ВПИСАННАЯ И ОПИСАННАЯ ПРИЗМЫ // СТЕРЕОМЕТРИЯСкачать

ВПИСАННАЯ И ОПИСАННАЯ ПРИЗМЫ // СТЕРЕОМЕТРИЯ

Вписанные и описанные цилиндры.

В цилиндр вписана окружность

Презентация для учащихся 11 класса по теме «Комбинация тел» содержит краткую теорию и примеры решения задач на комбинации цилиндра и щара, цилиндра и призмы.Будет полезна при подготовке к ЕГЭ.

Просмотр содержимого документа
«Вписанные и описанные цилиндры.»

В цилиндр вписана окружность

Сфера, вписанная в цилиндр

Сфера называется вписанной в цилиндр, если она касается его оснований и боковой поверхности (касается каждой образующей). При этом цилиндр называется описанным около сферы.

Читайте также: Цилиндр в тормозной системе в авто

В цилиндр можно вписать сферу, если высота цилиндра равна

Ее центром будет точка O , являющаяся

серединой отрезка, соединяющего центры оснований O 1 и O 2 цилиндра.

В режиме слайдов ответы и решения появляются после кликанья мышкой

Радиус сферы R будет равен

радиусу окружности основания цилиндра.

В цилиндр вписана окружность

В цилиндр высоты 2 вписана сфера. Найдите ее радиус.

В цилиндр вписана окружность

В цилиндр вписана сфера радиуса 1. Найдите высоту цилиндра.

В цилиндр вписана окружность

Радиус основания цилиндра равен 2. Какой должна быть высота цилиндра, чтобы в него можно было вписать сферу?

В цилиндр вписана окружность

Высота цилиндра равна 2. Каким должен быть радиус основания цилиндра, чтобы в него можно было вписать сферу?

В цилиндр вписана окружность

Осевым сечением цилиндра является прямоугольник со сторонами 1 и 2. Можно ли в этот цилиндр вписать сферу?

В цилиндр вписана окружность

Осевым сечением цилиндра является квадрат. Можно ли в этот цилиндр вписать сферу?

В цилиндр вписана окружность

Можно ли вписать сферу в цилиндр, осевым сечением которого является ромб?

В цилиндр вписана окружность

Можно ли вписать сферу в наклонный цилиндр?

В цилиндр вписана окружность

Площадь осевого сечения цилиндра, в который вписана сфера, равна 4 см 2 . Найдите диаметр сферы.

В цилиндр вписана окружность

Периметр осевого сечения цилиндра, в который вписана сфера, равен 8 см. Найдите радиус сферы.

В цилиндр вписана окружность

Какой наибольший радиус может быть у сферы, помещающейся в цилиндр, радиус основания которого равен 2, и высота 1.

В цилиндр вписана окружность

Можно ли сферу радиуса 1 поместить в наклонный цилиндр, радиус основания которого равен 1, а боковое ребро равно 2 и наклонено к плоскости основания под углом 60 о .

В цилиндр вписана окружность

Какой наибольший радиус может быть у сферы, помещающейся в наклонный цилиндр, радиус основания которого равен 1, а боковое ребро равно 2 и наклонено к плоскости основания под углом 60 о .

В цилиндр вписана окружность

Сфера, описанная около цилиндра

Цилиндр называется вписанным в сферу, если окружности оснований цилиндра лежат на сфере. При этом сфера называется описанной около цилиндра.

Около любого цилиндра можно описать сферу. Ее центром будет точка O , являющаяся серединой отрезка, соединяющего центры оснований O 1 и O 2 цилиндра.

Радиус сферы R вычисляется по формуле

где h – высота цилиндра, r – радиус окружности основания.

В режиме слайдов ответы и решения появляются после кликанья мышкой

В цилиндр вписана окружность

Диагональ осевого сечения цилиндра равна 2. Найдите радиус сферы, описанной около этого цилиндра.

Читайте также: Как найти диаметр цилиндры

В цилиндр вписана окружность

Около цилиндра высоты 2 и радиуса основания 1 описана сфера. Найдите ее радиус.

В цилиндр вписана окружность

Около цилиндра, радиус основания которого равен 1, описана сфера радиуса 2. Найдите высоту цилиндра.

В цилиндр вписана окружность

Около цилиндра, высота которого равна 1, описана сфера радиуса 1. Найдите радиус основания цилиндра.

В цилиндр вписана окружность

Найдите наименьший радиус сферы, в которую помещается наклонный цилиндр, радиус основания которого равен 1, образующая равна 2 и наклонена к плоскости основания под углом 60 о .

В цилиндр вписана окружность

Цилиндр, вписанный в призму

Ц илиндр называется вписанным в призму, если е го основания в писаны в основани я цилиндра. При этом , призма называется описанной около цилиндра

В призму можно вписать цилиндр тогда и только тогда, когда

в ее основание можно вписать окружность.

Радиус основания цилиндра равен

радиусу окружности, вписанной в основание призмы.

В режиме слайдов ответы и решения появляются после кликанья мышкой

В цилиндр вписана окружность

Можно ли вписать цилиндр в наклонную призму?

Ответ: Да, наклонный цилиндр.

В цилиндр вписана окружность

В основании прямой призмы правильный треугольник со стороной 1. Найдите радиус окружности основания цилиндра, вписанного в эту призму.

В цилиндр вписана окружность

В основании прямой призмы прямоугольный треугольник с катетами 6 и 8. Найдите радиус окружности основания цилиндра, вписанного в эту призму.

В цилиндр вписана окружность

Найдите радиус окружности основания цилиндра, вписанного в единичный куб.

В цилиндр вписана окружность

В правильную шестиугольную призму, со стороной основания 1, вписан цилиндр. Найдите радиус окружности основания этого цилиндра.

В цилиндр вписана окружность

Цилиндр, описанный около призмы

Ц илиндр называется описанным около призмы, если е го основания о писаны около основани й цилиндра. При этом , п ризма называется вписанной в цилиндр

Около призмы можно описать цилиндр, если около ее оснований можно описать окружности.

Радиус основания цилиндра равен

радиусу окружности, описанной около основания призмы.

В режиме слайдов ответы и решения появляются после кликанья мышкой

В цилиндр вписана окружность

Можно ли описать цилиндр около наклонной призмы?

Ответ: Да, наклонный цилиндр.

В цилиндр вписана окружность

В основании прямой призмы правильный треугольник со стороной 1. Найдите радиус окружности основания цилиндра, описанного около этой призмы.

В цилиндр вписана окружность

В основании прямой призмы прямоугольный треугольник с катетами 6 и 8. Найдите радиус окружности основания цилиндра, описанного около этой призмы.

В цилиндр вписана окружность

В основании прямой призмы квадрат со стороной 1. Найдите радиус окружности основания цилиндра, описанного около этой призмы.

Читайте также: Стандарт цилиндров для замков

В цилиндр вписана окружность

Около правильной шестиугольной призмы, со стороной основания 1, описан цилиндр. Найдите радиус окружности основания этого цилиндра.

В цилиндр вписана окружность

Около единичного тетраэдра описан цилиндр так, что вершины тетраэдра принадлежат окружностям оснований цилиндра. Найдите радиус основания и высоту цилиндра.

В цилиндр вписана окружность

Около единичного октаэдра описан цилиндр так, что две противоположные вершины октаэдра находятся в центрах оснований цилиндра, а остальные вершины принадлежат боковой поверхности цилиндра. Найдите радиус основания и высоту цилиндра.

Видео:Шар вписан в цилиндр. Площадь поверхности шара равна 78. Найдите площадь полной поверхности цилиндраСкачать

Шар вписан в цилиндр. Площадь поверхности шара равна 78. Найдите площадь полной поверхности цилиндра

В цилиндр вписана окружность

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.

Радиусы шара и основания цилиндра равны. Площадь поверхности цилиндра, с радиусом основания r и высотой 2r равна

Площадь поверхности шара радиуса r равна то есть в 1,5 раза меньше площади поверхности цилиндра. Следовательно, площадь поверхности шара равна 12.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.

Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому сторона основания равна 8, а площадь основания равна 64. Тогда высота цилиндра равна

Почему получилось 64? Что-то не понятно:(

Длина диаметра цилиндра равна длине стороны квадрата в основании.

В куб вписан шар радиуса 1. Найдите объем куба.

Ребро куба равно диаметру вписанного в него шара, а объем куба равен кубу его ребра. Отсюда имеем:

В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

По теореме Пифагора длина гипотенузы треугольника в основании Поскольку гипотенуза является диаметром основания описанного цилиндра, его объем

💡 Видео

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

🔴 В угол C, равный 79°, вписана окружность ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

🔴 В угол C, равный 79°, вписана окружность ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

Запомни: все формулы для площади треугольникаСкачать

Запомни: все формулы для площади треугольника

Сфера и шар. Сечение сферы. Вписанная и описанная сфераСкачать

Сфера и шар. Сечение сферы. Вписанная и описанная сфера

ЕГЭ СТЕРЕОМЕТРИЯ В ЦИЛИНДР ВПИСАНА ПРИЗМА СОВМЕЩЕННЫЕ ФИГУРЫ НА ЕГЭ | ВПИСАННЫЕ ОКРУЖНОСТИ ГЛОБАЛКАСкачать

ЕГЭ СТЕРЕОМЕТРИЯ В ЦИЛИНДР ВПИСАНА ПРИЗМА СОВМЕЩЕННЫЕ ФИГУРЫ НА ЕГЭ | ВПИСАННЫЕ ОКРУЖНОСТИ ГЛОБАЛКА

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Задание №672 — ГДЗ по геометрии 11 класс (Атанасян Л.С.)Скачать

Задание №672 — ГДЗ по геометрии 11 класс (Атанасян Л.С.)

Призма и цилиндр. Практическая часть. 11 класс.Скачать

Призма и цилиндр. Практическая часть. 11 класс.

Задание № 1215 - Геометрия 9 класс (Атанасян)Скачать

Задание № 1215 - Геометрия 9 класс (Атанасян)

11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Геометрия 11 класс (Урок№15 - Комбинации многогранников и круглых тел.)Скачать

Геометрия 11 класс (Урок№15 - Комбинации многогранников и круглых тел.)

Целых 5 ФОРМУЛ ПЛОЩАДИ треугольника!Скачать

Целых 5 ФОРМУЛ ПЛОЩАДИ треугольника!

ЕГЭ. Задача 8. Шар вписан в цилиндрСкачать

ЕГЭ. Задача 8. Шар вписан в цилиндр

ЕГЭ математика СТЕРЕОМЕТРИЯ 8#5.18🔴Скачать

ЕГЭ математика СТЕРЕОМЕТРИЯ 8#5.18🔴

В четырёхугольник ABCD вписана окружность. AB = 23 ,BC = 9 ,CD = 13 .Найдите четвертую сторонуСкачать

В четырёхугольник ABCD вписана окружность. AB = 23 ,BC = 9 ,CD = 13 .Найдите четвертую сторону

07 Стереометрия на ЕГЭ по математике. Призма вписана в цилиндр.Скачать

07 Стереометрия на ЕГЭ по математике. Призма вписана в цилиндр.

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика
Поделиться или сохранить к себе:
Технарь знаток