- 671. В цилиндр вписана правильная n-угольная призма. Найдите отношение объемов призмы и цилиндра, если: а) n = 3; б) n = 4; в) n=6; г) n = 8; д) n произвольное целое число.
- В цилиндр вписана правильная 6 угольная призма найти отношение
- Как написать хороший ответ?
- В цилиндр вписана правильная 6 угольная призма найти отношение
- Задача. Призма, вписанная в цилиндр
- Задача. В цилиндр вписана правильная шестиугольная призма
- Цилиндры, вписанные в призмы
- Цилиндры, вписанные в призмы. Свойства призмы, описанной около цилиндра
- Отношение объемов цилиндра и описанной около него правильной n — угольной призмы
- 🌟 Видео
Видео:№ 671 - Геометрия 10-11 класс АтанасянСкачать
671. В цилиндр вписана правильная n-угольная призма. Найдите отношение объемов призмы и цилиндра, если: а) n = 3; б) n = 4; в) n=6; г) n = 8; д) n произвольное целое число.
а) n=3, ΔАВС — правильный. Обозначим сторону ΔАВС равной х, следовательно,
б) n=4, ABCD — квадрат. Обозначим сторону квадрата равной х.
в) n=6. Обозначим сторону 6-угольника за х, следовательно, r=х.
г) обозначим сторону правильного вписанного n-угольника за х. Следовательно, радиус описанной окружности равен
(Правильный n-угольник разбивается радиусами, проведенными из центра, на n одинаковых треугольников; все треугольники равновелики)
Решебник по геометрии за 10 класс (Л.С.Атанасян, 2001 год),
задача №671
к главе «Глава VII. Объемы тел. § 2. Объём прямой призмы и цилиндра».
Видео:Задание № 1215 - Геометрия 9 класс (Атанасян)Скачать
В цилиндр вписана правильная 6 угольная призма найти отношение
В цилиндр вписана правильная шестиугольная призма. Найти отношение боковых поверхностей цилиндра и призмы.
Ответы и объяснения 1
Площадь боковой поверхности цилиндра равна:
, где -радиус основания, а — высота цилиндра.
Площадь боковой поверхности шестиугольной призмы равна:
, где — периметр основания, а — высота шестиугольной призмы, причём , где — радиус окружности, описанной вокруг основания призмы.
Ну и, как «Лучшее решение» не забудь отметить, ОК. ;))
Знаете ответ? Поделитесь им!
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
- Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
- Писать без грамматических, орфографических и пунктуационных ошибок.
- Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
- Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
- Использовать мат — это неуважительно по отношению к пользователям;
- Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Читайте также: Дизель по метке первого цилиндра в вмт
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.
Видео:Задание №671 — ГДЗ по геометрии 11 класс (Атанасян Л.С.)Скачать
В цилиндр вписана правильная 6 угольная призма найти отношение
Примечание. Это часть урока с задачами по геометрии (раздел стереометрия). Если Вам необходимо решить задачу по геометрии, которой здесь нет — пишите об этом в форуме. В задачах вместо символа «квадратный корень» применяется функция sqrt(), в которой sqrt — символ квадратного корня, а в скобках указано подкоренное выражение.
Видео:11 класс объем цилиндраСкачать
Задача. Призма, вписанная в цилиндр
В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 60 градусам. Диагональ большей боковой грани призмы составляет с плоскостью ее основания угол в 45 градусов. Найдите объем цилиндра.
Решение .
Объем цилиндра найдем по формуле:
где:
R — радиус основания прямого цилиндра,
h — высота.
Найдем основание цилиндра. 1-й способ .
Основание цилиндра одновременно является окружностью, описанной вокруг прямоугольного треугольника, являющегося основанием призмы. Диаметр окружности, описанной вокруг прямоугольного треугольника, лежит на его гипотенузе. То есть длина гипотенузы равна 2R.
Радиус окружности, описанной вокруг треугольника найдем по формуле:
R = x / 2 sin α
где:
x — сторона треугольника
α — угол, противолежащий стороне а.
Противолежащий угол найдем следующим образом. Поскольку треугольник прямоугольный, то противолежащий катету угол будет равен 180-90-60 = 30 градусов. Таким образом, радиус описанной окружности (он же радиус цилиндра) равен:
Найдем основание цилиндра. 2-й способ
У прямоугольного треугольника гипотенуза одновременно является диаметром описанной окружности. Половина гипотенузы будет равна ее радиусу.
Таким образом найдем гипотенузу для прямоугольного треугольника, зная угол и его катет через тригонометрическую функцию:
2R = 2a / cos 60 = 2a / 0.5 = 4a
R = 2a
Найдем высоту цилиндра .
Диаметр описанной окружности образует с диагональю призмы прямоугольный треугольник, один катет которого является диаметром описанной окружности, второй — высотой цилиндра и призмы, а гипотенуза является диагональю большей стороны призмы и одновременно цилиндра.
Поскольку угол диагонали с основанием составляет 45 градусов, то второй угол равен 180 — 45 — 90 = 45 градусов.
Исходя из того, что прямоугольный треугольник равнобедренный, то высота цилиндра и призмы равна диаметру окружности. Таким образом:
V = пR 2 h
V = п*4a 2 *4a
V = п16a 3 .
Видео:Объем цилиндра. Практическая часть. 11 класс.Скачать
Задача. В цилиндр вписана правильная шестиугольная призма
В цилиндр вписана правильная шестиугольная призма. Найти угол между диагональю ее боковой грани и осью цилиндра, если радиус основания равен высоте цилиндра.
Если радиус основания равен высоте цилиндра, диагональ боковой грани правильной шестиугольной призмы представляет собой прямоугольный треугольник, у которого один из катетов равен высоте цилиндра (r), а второй катет равен стороне шестиугольника, вписанного в окружность.Согласно свойствам шестиугольника, вписанного в окружность, его сторона равна радиусу такой окружности.
То есть, каждая боковая грань данной вписанной призмы – квадрат. Диагональ грани образует с осью цилиндра, как и с боковым ребром, одинаковый угол 45°, так как ось цилиндра и боковые ребра вписанной призмы параллельны.
Видео:Объём цилиндраСкачать
Цилиндры, вписанные в призмы
Видео:Задача 4.4 Объём n -угольной призмыСкачать
Цилиндры, вписанные в призмы. Свойства призмы, описанной около цилиндра
Определение 2. Если цилиндр вписан в призму, то призму называют описанной около цилиндра.
Прежде, чем перейти к вопросу о том, в какую же призму можно вписать цилиндр, докажем следующее свойство призм.
Утверждение 1. Если в основания призмы можно вписать окружности, то отрезок, соединяющий центры вписанных окружностей, будет параллелелен и равен боковому ребру призмы.
Рассуждая аналогичным образом, заключаем, что точка O’ равноудалена от всех прямых, на которых лежат ребра верхнего основания A’1A’2, A’2A’3, . , An – 1An , а поскольку O’ лежит в плоскости верхнего основания, то точка O’ является центром вписанной в многоугольник A’1A’2 . A’n окружности.
В силу того, что прямые OO’ и A1A’1 параллельны по построению, а прямые OA1 и O’A’ параллельны как линии пересечения двух параллельных плоскостей третьей плоскостью, замечаем, что четырехугольник OO’A1A’1 является параллелограммом, откуда вытекает равенство: OO’ = A1A’1 .
Теорема. В призму можно вписать цилиндр тогда и только тогда, когда выполнены следующие два условия:
- Призма является прямой призмой;
- В основания призмы можно вписать окружности.
Доказательство. Докажем сначала, что если в n – угольную призму вписан цилиндр, то оба условия теоремы выполнены.
Действительно, выполнение условия 2 следует непосредственно из определения цилиндра, вписанного в призму. Докажем, что выполняется и условие 1, т.е. докажем, что описанная около цилиндра призма является прямой призмой.
С этой целью рассмотрим ось цилиндра OO’ , соединяющую центры окружностей, вписанных в нижнее и верхнее основания призмы (рис. 3).
Согласно утверждению 1 отрезок OO’ параллелен боковым ребрам призмы. Поскольку ось цилиндра OO’ перпендикулярна к плоскостям его оснований, то и боковые ребра призмы также перпендикулярны к плоскостям оснований, то есть призма является прямой призмой.
Таким образом, мы доказали, что, если призма описана около цилиндра, то оба условия теоремы выполнены.
Теперь рассмотрим прямую n – угольную призму высоты h, в основания которой можно вписать окружности, и докажем, что в такую призму можно вписать цилиндр.
Обозначим буквой O центр окружности радиуса r, вписанной в нижнее основание призмы, а символом O’ обозначим центр окружности, вписанной в верхнее основание призмы (рис. 4).
Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы вписанных в них окружностей будут равны. Согласно утверждению 1 отрезок OO’ параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы h. Значит, и отрезок OO’ перпендикулярен плоскости основания призмы и равен h.
Цилиндр с осью OO’ , радиусом r и высотой h и будет вписан в исходную призму.
Доказательство теоремы завершено.
Следствие 1 . Высота призмы, описанной около цилиндра, равна высоте цилиндра.
Следствие 2. В любую прямую треугольную призму можно вписать цилиндр.
Справедливость этого утверждения вытекает из того факта, что в любой треугольник можно вписать окружность.
Следствие 3. В любую правильную n – угольную призму можно вписать цилиндр.
Для доказательства этого следствия достаточно заметить, правильная призма является прямой призмой. Основаниями правильной призмы являются правильные многоугольники, а в любой правильный n – угольник можно вписать окружность.
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Отношение объемов цилиндра и описанной около него правильной n — угольной призмы
Задача. Найти отношение объемов цилиндра и описанной около него правильной n — угольной призмы.
Решение. Поскольку и объем цилиндра, и объем призмы объем призмы вычисляются по формуле
а высота цилиндра равна высоте описанной около него призмы, то для объемов цилиндра и описанной около него правильной n — угольной призмы справедливо равенство
Следствие 4. Отношение объема цилиндра к объему описанной около него правильной треугольной призмы правильной треугольной призмы равно
Следствие 5. Отношение объема цилиндра к объему описанной около него правильной четырехугольной призмы правильной четырехугольной призмы равно
Следствие 6. Отношение объема цилиндра к объему описанной около него правильной шестиугольной призмы равно
🌟 Видео
10 класс, 30 урок, ПризмаСкачать
Задание №663 — ГДЗ по геометрии 11 класс (Атанасян Л.С.)Скачать
Видеоурок по математике "Цилиндр"Скачать
Свойства правильного шестиугольника. Сравнение площадей. Разбор задачи из стереометрии.Скачать
№ 1215 - Геометрия 7-9 класс АтанасянСкачать
ЕГЭ Задание 8 Правильная шестиугольная призмаСкачать
Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать
Цилиндр, конус, шар, 6 классСкачать
11 класс, 32 урок, Объем цилиндраСкачать
работа КШМ рядного 6-ти цилиндрового ДВССкачать
Комбинации многогранников и круглых телСкачать