В цилиндр вписана правильная шестиугольная призма площадь боковой поверхности цилиндра

Авто помощник

Видео:Стереометрия. ЕГЭ. Площадь боковой поверхности правильной шестиугольной призмыСкачать

Стереометрия. ЕГЭ. Площадь боковой поверхности правильной шестиугольной призмы

В цилиндр вписана правильная шестиугольная призма площадь боковой поверхности цилиндра

В цилиндр вписана правильная шестиугольная призма площадь боковой поверхности цилиндра

Примечание. Это часть урока с задачами по геометрии (раздел стереометрия). Если Вам необходимо решить задачу по геометрии, которой здесь нет — пишите об этом в форуме. В задачах вместо символа «квадратный корень» применяется функция sqrt(), в которой sqrt — символ квадратного корня, а в скобках указано подкоренное выражение.

Видео:ЕГЭ. Задача 8. Призма и цилиндрСкачать

ЕГЭ. Задача 8. Призма и цилиндр

Задача. Призма, вписанная в цилиндр

В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 60 градусам. Диагональ большей боковой грани призмы составляет с плоскостью ее основания угол в 45 градусов. Найдите объем цилиндра.

В цилиндр вписана правильная шестиугольная призма площадь боковой поверхности цилиндра

Решение .
Объем цилиндра найдем по формуле:

где:
R — радиус основания прямого цилиндра,
h — высота.

Найдем основание цилиндра. 1-й способ .
Основание цилиндра одновременно является окружностью, описанной вокруг прямоугольного треугольника, являющегося основанием призмы. Диаметр окружности, описанной вокруг прямоугольного треугольника, лежит на его гипотенузе. То есть длина гипотенузы равна 2R.

Радиус окружности, описанной вокруг треугольника найдем по формуле:

R = x / 2 sin α
где:
x — сторона треугольника
α — угол, противолежащий стороне а.

Противолежащий угол найдем следующим образом. Поскольку треугольник прямоугольный, то противолежащий катету угол будет равен 180-90-60 = 30 градусов. Таким образом, радиус описанной окружности (он же радиус цилиндра) равен:

Найдем основание цилиндра. 2-й способ
У прямоугольного треугольника гипотенуза одновременно является диаметром описанной окружности. Половина гипотенузы будет равна ее радиусу.
Таким образом найдем гипотенузу для прямоугольного треугольника, зная угол и его катет через тригонометрическую функцию:
2R = 2a / cos 60 = 2a / 0.5 = 4a
R = 2a

Найдем высоту цилиндра .
Диаметр описанной окружности образует с диагональю призмы прямоугольный треугольник, один катет которого является диаметром описанной окружности, второй — высотой цилиндра и призмы, а гипотенуза является диагональю большей стороны призмы и одновременно цилиндра.

Поскольку угол диагонали с основанием составляет 45 градусов, то второй угол равен 180 — 45 — 90 = 45 градусов.
Исходя из того, что прямоугольный треугольник равнобедренный, то высота цилиндра и призмы равна диаметру окружности. Таким образом:

V = пR 2 h
V = п*4a 2 *4a
V = п16a 3 .

Видео:ЕГЭ 2022 математика задача 4 вариант 2Скачать

ЕГЭ 2022 математика задача 4 вариант 2

Задача. В цилиндр вписана правильная шестиугольная призма

В цилиндр вписана правильная шестиугольная призма. Найти угол между диагональю ее боковой грани и осью цилиндра, если радиус основания равен высоте цилиндра.

Если радиус основания равен высоте цилиндра, диагональ боковой грани правильной шестиугольной призмы представляет собой прямоугольный треугольник, у которого один из катетов равен высоте цилиндра (r), а второй катет равен стороне шестиугольника, вписанного в окружность.Согласно свойствам шестиугольника, вписанного в окружность, его сторона равна радиусу такой окружности.

То есть, каждая боковая грань данной вписанной призмы – квадрат. Диагональ грани образует с осью цилиндра, как и с боковым ребром, одинаковый угол 45°, так как ось цилиндра и боковые ребра вписанной призмы параллельны.

Видео:Стереометрия. ЕГЭ. Найдите площадь боковой поверхности правильной шестиугольной призмыСкачать

Стереометрия. ЕГЭ. Найдите площадь боковой поверхности правильной шестиугольной призмы

В цилиндр вписана правильная шестиугольная призма площадь боковой поверхности цилиндра

В цилиндр вписана правильная шестиугольная призма площадь боковой поверхности цилиндра

Примечание. Это часть урока с задачами по геометрии (раздел стереометрия). Если Вам необходимо решить задачу по геометрии, которой здесь нет — пишите об этом в форуме. В задачах вместо символа «квадратный корень» применяется функция sqrt(), в которой sqrt — символ квадратного корня, а в скобках указано подкоренное выражение.

Видео:#113. Задание 8: шестиугольная призмаСкачать

#113. Задание 8: шестиугольная призма

Задача. Призма, вписанная в цилиндр

В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 60 градусам. Диагональ большей боковой грани призмы составляет с плоскостью ее основания угол в 45 градусов. Найдите объем цилиндра.

В цилиндр вписана правильная шестиугольная призма площадь боковой поверхности цилиндра

Решение .
Объем цилиндра найдем по формуле:

где:
R — радиус основания прямого цилиндра,
h — высота.

Найдем основание цилиндра. 1-й способ .
Основание цилиндра одновременно является окружностью, описанной вокруг прямоугольного треугольника, являющегося основанием призмы. Диаметр окружности, описанной вокруг прямоугольного треугольника, лежит на его гипотенузе. То есть длина гипотенузы равна 2R.

Радиус окружности, описанной вокруг треугольника найдем по формуле:

R = x / 2 sin α
где:
x — сторона треугольника
α — угол, противолежащий стороне а.

Противолежащий угол найдем следующим образом. Поскольку треугольник прямоугольный, то противолежащий катету угол будет равен 180-90-60 = 30 градусов. Таким образом, радиус описанной окружности (он же радиус цилиндра) равен:

Найдем основание цилиндра. 2-й способ
У прямоугольного треугольника гипотенуза одновременно является диаметром описанной окружности. Половина гипотенузы будет равна ее радиусу.
Таким образом найдем гипотенузу для прямоугольного треугольника, зная угол и его катет через тригонометрическую функцию:
2R = 2a / cos 60 = 2a / 0.5 = 4a
R = 2a

Найдем высоту цилиндра .
Диаметр описанной окружности образует с диагональю призмы прямоугольный треугольник, один катет которого является диаметром описанной окружности, второй — высотой цилиндра и призмы, а гипотенуза является диагональю большей стороны призмы и одновременно цилиндра.

Поскольку угол диагонали с основанием составляет 45 градусов, то второй угол равен 180 — 45 — 90 = 45 градусов.
Исходя из того, что прямоугольный треугольник равнобедренный, то высота цилиндра и призмы равна диаметру окружности. Таким образом:

V = пR 2 h
V = п*4a 2 *4a
V = п16a 3 .

Видео:Геометрия Дана правильная шестиугольная призма ABCDEFA1B1C1D1E1F1, площадь основания которой равнаСкачать

Геометрия Дана правильная шестиугольная призма ABCDEFA1B1C1D1E1F1, площадь основания которой равна

Задача. В цилиндр вписана правильная шестиугольная призма

В цилиндр вписана правильная шестиугольная призма. Найти угол между диагональю ее боковой грани и осью цилиндра, если радиус основания равен высоте цилиндра.

Если радиус основания равен высоте цилиндра, диагональ боковой грани правильной шестиугольной призмы представляет собой прямоугольный треугольник, у которого один из катетов равен высоте цилиндра (r), а второй катет равен стороне шестиугольника, вписанного в окружность.Согласно свойствам шестиугольника, вписанного в окружность, его сторона равна радиусу такой окружности.

То есть, каждая боковая грань данной вписанной призмы – квадрат. Диагональ грани образует с осью цилиндра, как и с боковым ребром, одинаковый угол 45°, так как ось цилиндра и боковые ребра вписанной призмы параллельны.

Видео:#130. Задание 8: комбинация телСкачать

#130. Задание 8: комбинация тел

Решение №2305 Цилиндр вписан в правильную четырёхугольную призму. Радиус основания и высота цилиндра равны 3.

В цилиндр вписана правильная шестиугольная призма площадь боковой поверхности цилиндра

Цилиндр вписан в правильную четырёхугольную призму. Радиус основания и высота цилиндра равны 3. Найдите площадь боковой поверхности призмы.

Источник: Ященко ЕГЭ 2022 (36 вар)

Правильной четырёхугольной призмой – называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками.
Площадь боковой поверхности данной призмы – это площадь 4-х равных прямоугольников.
Длина прямоугольника равна диаметру цилиндра, ширина прямоугольника равна высоте цилиндра.

В цилиндр вписана правильная шестиугольная призма площадь боковой поверхности цилиндра

Найдём площадь боковой поверхности призмы:

Sбок. поверх. = 4·Sпрямоугольника = 4· h ·( r + r ) = 4·3·(3 + 3) = 4·3·6 = 72

Видео:Стереометрия, номер 33.1Скачать

Стереометрия, номер 33.1

В цилиндр вписана правильная шестиугольная призма площадь боковой поверхности цилиндра

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.

В куб вписан шар радиуса 1. Найдите объем куба.

В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

В основании прямой призмы лежит квадрат со стороной 2. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 25. Найдите объём цилиндра.

Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,5 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.

Цилиндр и конус имеют общие основание и высоту. Найдите объем конуса, если объем цилиндра равен 150.

Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.

Конус описан около правильной четырехугольной пирамиды со стороной основания 4 и высотой 6. Найдите его объем, деленный на

Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

В куб с ребром 3 вписан шар. Найдите объем этого шара, деленный на

Около куба с ребром описан шар. Найдите объем этого шара, деленный на

Вершина A куба с ребром 1,6 является центром сферы, проходящей через точку A1. Найдите площадь S части сферы, содержащейся внутри куба. В ответе запишите величину

Видео:ЕГЭ Задание 8 Правильная шестиугольная призмаСкачать

ЕГЭ Задание 8 Правильная шестиугольная призма

Найдите площадь боковой поверхности правильной

27065. Найдите площадь боковой поверхности правильной треугольной призмы, описанной около цилиндра, радиус основания которого равен √3, а высота равна 2.

Площадь боковой поверхности данной призмы равна сумме площадей всех боковых граней. Так как дана правильная треугольная призма, то все три грани являются прямоугольниками, площади которых равны.

Для нахождения площади боковой грани необходимо знать её высоту и длину ребра основания. Высота дана. Найдём длину ребра основания. Рассмотрим проекцию (вид сверху:

Из прямоугольного треугольника АОС можем найти АС. По определению тангенса: Значит

Таким образом, сторона правильного треугольника выражается через радиус вписанной в него окружности как Значит площадь боковой поверхности будет равна: Ответ: 36

27066. Найдите площадь боковой поверхности правильной шестиугольной призмы, описанной около цилиндра, радиус основания которого равен √3, а высота равна 2.

Площадь боковой поверхности призмы равна произведению периметра снования и высоты. *Высота призмы равна высоте цилиндра. Вычислим сторону шестиугольника. Построим эскиз: Треугольник AOH равносторонний, Провели высоту OH, АН=НВ. Можем записать: Следовательно АВ=2. Таким образом, периметр шестиугольника равен 12, а искомая площадь 24 (периметр умножили на высоту призмы).

27107. Найдите площадь боковой поверхности правильной треугольной призмы, вписанной в цилиндр, радиус основания которого равен 2√3, а высота равна 2.

Площадь боковой поверхности призмы равна: Сторона правильного треугольника выражается через радиус описанной окружности как: Тогда площадь боковой поверхности призмы равна: Ответ: 36

27064. Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Диаметр цилиндра равен стороне квадрата лежащего в основании, это 2. Тогда периметр квадрата равен 8. Площадь боковой поверхности равна 8∙1=8.

📸 Видео

Цилиндр вписан в четырехугольную призму. Найдите площадь боковой поверхности призмы.Скачать

Цилиндр вписан в четырехугольную призму. Найдите площадь боковой поверхности призмы.

ЦИЛИНДР | 9 класс геометрия Атанасян | задачи 1215 1217Скачать

ЦИЛИНДР | 9 класс геометрия Атанасян  | задачи 1215 1217

Стереометрия. ЕГЭ. Правильная четырехугольная призма описана около цилиндра. Найдите высоту цилиндраСкачать

Стереометрия. ЕГЭ. Правильная четырехугольная призма описана около цилиндра. Найдите высоту цилиндра

Стереометрия. ЕГЭ. Правильная четырехугольная призма описана около цилиндраСкачать

Стереометрия. ЕГЭ. Правильная четырехугольная призма описана около цилиндра

§ 6 № 1-54 - Геометрия 10-11 класс ПогореловСкачать

§ 6 № 1-54 - Геометрия 10-11 класс Погорелов

Цилиндр вписан в правильную четырехугольную призмуСкачать

Цилиндр вписан в правильную четырехугольную призму

ВПИСАННАЯ И ОПИСАННАЯ ПРИЗМЫ // СТЕРЕОМЕТРИЯСкачать

ВПИСАННАЯ И ОПИСАННАЯ ПРИЗМЫ // СТЕРЕОМЕТРИЯ

ЕГЭ. Математика. База . Задача 16. Дана Правильная шестиугольная призма все ребра которой равны 1Скачать

ЕГЭ. Математика. База . Задача 16. Дана Правильная шестиугольная призма все ребра которой равны 1

Нахождение площади боковой поверхности цилиндраСкачать

Нахождение площади боковой поверхности цилиндра

34 Стереометрия на ЕГЭ по математике. Вычисление объема правильной шестиугольной призмы.Скачать

34 Стереометрия на ЕГЭ по математике. Вычисление объема правильной шестиугольной призмы.

Объемы и площади куба, шара, конуса, призмы и цилиндраСкачать

Объемы и площади куба, шара, конуса, призмы и цилиндра
Поделиться или сохранить к себе:
Технарь знаток